// SPDX-License-Identifier: GPL-2.0+ /* * Freescale GPMI NAND Flash Driver * * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. * Copyright (C) 2008 Embedded Alley Solutions, Inc. */ #include #include #include #include #include #include #include #include #include "gpmi-nand.h" #include "bch-regs.h" /* Resource names for the GPMI NAND driver. */ #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" /* add our owner bbt descriptor */ static uint8_t scan_ff_pattern[] = { 0xff }; static struct nand_bbt_descr gpmi_bbt_descr = { .options = 0, .offs = 0, .len = 1, .pattern = scan_ff_pattern }; /* * We may change the layout if we can get the ECC info from the datasheet, * else we will use all the (page + OOB). */ static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *geo = &this->bch_geometry; if (section) return -ERANGE; oobregion->offset = 0; oobregion->length = geo->page_size - mtd->writesize; return 0; } static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *geo = &this->bch_geometry; if (section) return -ERANGE; /* The available oob size we have. */ if (geo->page_size < mtd->writesize + mtd->oobsize) { oobregion->offset = geo->page_size - mtd->writesize; oobregion->length = mtd->oobsize - oobregion->offset; } return 0; } static const char * const gpmi_clks_for_mx2x[] = { "gpmi_io", }; static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { .ecc = gpmi_ooblayout_ecc, .free = gpmi_ooblayout_free, }; static const struct gpmi_devdata gpmi_devdata_imx23 = { .type = IS_MX23, .bch_max_ecc_strength = 20, .max_chain_delay = 16000, .clks = gpmi_clks_for_mx2x, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), }; static const struct gpmi_devdata gpmi_devdata_imx28 = { .type = IS_MX28, .bch_max_ecc_strength = 20, .max_chain_delay = 16000, .clks = gpmi_clks_for_mx2x, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), }; static const char * const gpmi_clks_for_mx6[] = { "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", }; static const struct gpmi_devdata gpmi_devdata_imx6q = { .type = IS_MX6Q, .bch_max_ecc_strength = 40, .max_chain_delay = 12000, .clks = gpmi_clks_for_mx6, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), }; static const struct gpmi_devdata gpmi_devdata_imx6sx = { .type = IS_MX6SX, .bch_max_ecc_strength = 62, .max_chain_delay = 12000, .clks = gpmi_clks_for_mx6, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), }; static const char * const gpmi_clks_for_mx7d[] = { "gpmi_io", "gpmi_bch_apb", }; static const struct gpmi_devdata gpmi_devdata_imx7d = { .type = IS_MX7D, .bch_max_ecc_strength = 62, .max_chain_delay = 12000, .clks = gpmi_clks_for_mx7d, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), }; static irqreturn_t bch_irq(int irq, void *cookie) { struct gpmi_nand_data *this = cookie; gpmi_clear_bch(this); complete(&this->bch_done); return IRQ_HANDLED; } /* * Calculate the ECC strength by hand: * E : The ECC strength. * G : the length of Galois Field. * N : The chunk count of per page. * O : the oobsize of the NAND chip. * M : the metasize of per page. * * The formula is : * E * G * N * ------------ <= (O - M) * 8 * * So, we get E by: * (O - M) * 8 * E <= ------------- * G * N */ static inline int get_ecc_strength(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct mtd_info *mtd = nand_to_mtd(&this->nand); int ecc_strength; ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) / (geo->gf_len * geo->ecc_chunk_count); /* We need the minor even number. */ return round_down(ecc_strength, 2); } static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; /* Do the sanity check. */ if (GPMI_IS_MXS(this)) { /* The mx23/mx28 only support the GF13. */ if (geo->gf_len == 14) return false; } return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; } /* * If we can get the ECC information from the nand chip, we do not * need to calculate them ourselves. * * We may have available oob space in this case. */ static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, unsigned int ecc_strength, unsigned int ecc_step) { struct bch_geometry *geo = &this->bch_geometry; struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); unsigned int block_mark_bit_offset; switch (ecc_step) { case SZ_512: geo->gf_len = 13; break; case SZ_1K: geo->gf_len = 14; break; default: dev_err(this->dev, "unsupported nand chip. ecc bits : %d, ecc size : %d\n", chip->base.eccreq.strength, chip->base.eccreq.step_size); return -EINVAL; } geo->ecc_chunk_size = ecc_step; geo->ecc_strength = round_up(ecc_strength, 2); if (!gpmi_check_ecc(this)) return -EINVAL; /* Keep the C >= O */ if (geo->ecc_chunk_size < mtd->oobsize) { dev_err(this->dev, "unsupported nand chip. ecc size: %d, oob size : %d\n", ecc_step, mtd->oobsize); return -EINVAL; } /* The default value, see comment in the legacy_set_geometry(). */ geo->metadata_size = 10; geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; /* * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: * * | P | * |<----------------------------------------------------->| * | | * | (Block Mark) | * | P' | | | | * |<-------------------------------------------->| D | | O' | * | |<---->| |<--->| * V V V V V * +---+----------+-+----------+-+----------+-+----------+-+-----+ * | M | data |E| data |E| data |E| data |E| | * +---+----------+-+----------+-+----------+-+----------+-+-----+ * ^ ^ * | O | * |<------------>| * | | * * P : the page size for BCH module. * E : The ECC strength. * G : the length of Galois Field. * N : The chunk count of per page. * M : the metasize of per page. * C : the ecc chunk size, aka the "data" above. * P': the nand chip's page size. * O : the nand chip's oob size. * O': the free oob. * * The formula for P is : * * E * G * N * P = ------------ + P' + M * 8 * * The position of block mark moves forward in the ECC-based view * of page, and the delta is: * * E * G * (N - 1) * D = (---------------- + M) * 8 * * Please see the comment in legacy_set_geometry(). * With the condition C >= O , we still can get same result. * So the bit position of the physical block mark within the ECC-based * view of the page is : * (P' - D) * 8 */ geo->page_size = mtd->writesize + geo->metadata_size + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; geo->payload_size = mtd->writesize; geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + ALIGN(geo->ecc_chunk_count, 4); if (!this->swap_block_mark) return 0; /* For bit swap. */ block_mark_bit_offset = mtd->writesize * 8 - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + geo->metadata_size * 8); geo->block_mark_byte_offset = block_mark_bit_offset / 8; geo->block_mark_bit_offset = block_mark_bit_offset % 8; return 0; } static int legacy_set_geometry(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct mtd_info *mtd = nand_to_mtd(&this->nand); unsigned int metadata_size; unsigned int status_size; unsigned int block_mark_bit_offset; /* * The size of the metadata can be changed, though we set it to 10 * bytes now. But it can't be too large, because we have to save * enough space for BCH. */ geo->metadata_size = 10; /* The default for the length of Galois Field. */ geo->gf_len = 13; /* The default for chunk size. */ geo->ecc_chunk_size = 512; while (geo->ecc_chunk_size < mtd->oobsize) { geo->ecc_chunk_size *= 2; /* keep C >= O */ geo->gf_len = 14; } geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; /* We use the same ECC strength for all chunks. */ geo->ecc_strength = get_ecc_strength(this); if (!gpmi_check_ecc(this)) { dev_err(this->dev, "ecc strength: %d cannot be supported by the controller (%d)\n" "try to use minimum ecc strength that NAND chip required\n", geo->ecc_strength, this->devdata->bch_max_ecc_strength); return -EINVAL; } geo->page_size = mtd->writesize + geo->metadata_size + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; geo->payload_size = mtd->writesize; /* * The auxiliary buffer contains the metadata and the ECC status. The * metadata is padded to the nearest 32-bit boundary. The ECC status * contains one byte for every ECC chunk, and is also padded to the * nearest 32-bit boundary. */ metadata_size = ALIGN(geo->metadata_size, 4); status_size = ALIGN(geo->ecc_chunk_count, 4); geo->auxiliary_size = metadata_size + status_size; geo->auxiliary_status_offset = metadata_size; if (!this->swap_block_mark) return 0; /* * We need to compute the byte and bit offsets of * the physical block mark within the ECC-based view of the page. * * NAND chip with 2K page shows below: * (Block Mark) * | | * | D | * |<---->| * V V * +---+----------+-+----------+-+----------+-+----------+-+ * | M | data |E| data |E| data |E| data |E| * +---+----------+-+----------+-+----------+-+----------+-+ * * The position of block mark moves forward in the ECC-based view * of page, and the delta is: * * E * G * (N - 1) * D = (---------------- + M) * 8 * * With the formula to compute the ECC strength, and the condition * : C >= O (C is the ecc chunk size) * * It's easy to deduce to the following result: * * E * G (O - M) C - M C - M * ----------- <= ------- <= -------- < --------- * 8 N N (N - 1) * * So, we get: * * E * G * (N - 1) * D = (---------------- + M) < C * 8 * * The above inequality means the position of block mark * within the ECC-based view of the page is still in the data chunk, * and it's NOT in the ECC bits of the chunk. * * Use the following to compute the bit position of the * physical block mark within the ECC-based view of the page: * (page_size - D) * 8 * * --Huang Shijie */ block_mark_bit_offset = mtd->writesize * 8 - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + geo->metadata_size * 8); geo->block_mark_byte_offset = block_mark_bit_offset / 8; geo->block_mark_bit_offset = block_mark_bit_offset % 8; return 0; } int common_nfc_set_geometry(struct gpmi_nand_data *this) { struct nand_chip *chip = &this->nand; if (chip->ecc.strength > 0 && chip->ecc.size > 0) return set_geometry_by_ecc_info(this, chip->ecc.strength, chip->ecc.size); if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) || legacy_set_geometry(this)) { if (!(chip->base.eccreq.strength > 0 && chip->base.eccreq.step_size > 0)) return -EINVAL; return set_geometry_by_ecc_info(this, chip->base.eccreq.strength, chip->base.eccreq.step_size); } return 0; } struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) { /* We use the DMA channel 0 to access all the nand chips. */ return this->dma_chans[0]; } /* Can we use the upper's buffer directly for DMA? */ bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len, enum dma_data_direction dr) { struct scatterlist *sgl = &this->data_sgl; int ret; /* first try to map the upper buffer directly */ if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { sg_init_one(sgl, buf, len); ret = dma_map_sg(this->dev, sgl, 1, dr); if (ret == 0) goto map_fail; return true; } map_fail: /* We have to use our own DMA buffer. */ sg_init_one(sgl, this->data_buffer_dma, len); if (dr == DMA_TO_DEVICE) memcpy(this->data_buffer_dma, buf, len); dma_map_sg(this->dev, sgl, 1, dr); return false; } /* This will be called after the DMA operation is finished. */ static void dma_irq_callback(void *param) { struct gpmi_nand_data *this = param; struct completion *dma_c = &this->dma_done; complete(dma_c); } int start_dma_without_bch_irq(struct gpmi_nand_data *this, struct dma_async_tx_descriptor *desc) { struct completion *dma_c = &this->dma_done; unsigned long timeout; init_completion(dma_c); desc->callback = dma_irq_callback; desc->callback_param = this; dmaengine_submit(desc); dma_async_issue_pending(get_dma_chan(this)); /* Wait for the interrupt from the DMA block. */ timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); if (!timeout) { dev_err(this->dev, "DMA timeout, last DMA\n"); gpmi_dump_info(this); return -ETIMEDOUT; } return 0; } /* * This function is used in BCH reading or BCH writing pages. * It will wait for the BCH interrupt as long as ONE second. * Actually, we must wait for two interrupts : * [1] firstly the DMA interrupt and * [2] secondly the BCH interrupt. */ int start_dma_with_bch_irq(struct gpmi_nand_data *this, struct dma_async_tx_descriptor *desc) { struct completion *bch_c = &this->bch_done; unsigned long timeout; /* Prepare to receive an interrupt from the BCH block. */ init_completion(bch_c); /* start the DMA */ start_dma_without_bch_irq(this, desc); /* Wait for the interrupt from the BCH block. */ timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); if (!timeout) { dev_err(this->dev, "BCH timeout\n"); gpmi_dump_info(this); return -ETIMEDOUT; } return 0; } static int acquire_register_block(struct gpmi_nand_data *this, const char *res_name) { struct platform_device *pdev = this->pdev; struct resources *res = &this->resources; struct resource *r; void __iomem *p; r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); p = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(p)) return PTR_ERR(p); if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) res->gpmi_regs = p; else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) res->bch_regs = p; else dev_err(this->dev, "unknown resource name : %s\n", res_name); return 0; } static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) { struct platform_device *pdev = this->pdev; const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; struct resource *r; int err; r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); if (!r) { dev_err(this->dev, "Can't get resource for %s\n", res_name); return -ENODEV; } err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); if (err) dev_err(this->dev, "error requesting BCH IRQ\n"); return err; } static void release_dma_channels(struct gpmi_nand_data *this) { unsigned int i; for (i = 0; i < DMA_CHANS; i++) if (this->dma_chans[i]) { dma_release_channel(this->dma_chans[i]); this->dma_chans[i] = NULL; } } static int acquire_dma_channels(struct gpmi_nand_data *this) { struct platform_device *pdev = this->pdev; struct dma_chan *dma_chan; /* request dma channel */ dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); if (!dma_chan) { dev_err(this->dev, "Failed to request DMA channel.\n"); goto acquire_err; } this->dma_chans[0] = dma_chan; return 0; acquire_err: release_dma_channels(this); return -EINVAL; } static int gpmi_get_clks(struct gpmi_nand_data *this) { struct resources *r = &this->resources; struct clk *clk; int err, i; for (i = 0; i < this->devdata->clks_count; i++) { clk = devm_clk_get(this->dev, this->devdata->clks[i]); if (IS_ERR(clk)) { err = PTR_ERR(clk); goto err_clock; } r->clock[i] = clk; } if (GPMI_IS_MX6(this)) /* * Set the default value for the gpmi clock. * * If you want to use the ONFI nand which is in the * Synchronous Mode, you should change the clock as you need. */ clk_set_rate(r->clock[0], 22000000); return 0; err_clock: dev_dbg(this->dev, "failed in finding the clocks.\n"); return err; } static int acquire_resources(struct gpmi_nand_data *this) { int ret; ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); if (ret) goto exit_regs; ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); if (ret) goto exit_regs; ret = acquire_bch_irq(this, bch_irq); if (ret) goto exit_regs; ret = acquire_dma_channels(this); if (ret) goto exit_regs; ret = gpmi_get_clks(this); if (ret) goto exit_clock; return 0; exit_clock: release_dma_channels(this); exit_regs: return ret; } static void release_resources(struct gpmi_nand_data *this) { release_dma_channels(this); } static int send_page_prepare(struct gpmi_nand_data *this, const void *source, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, const void **use_virt, dma_addr_t *use_phys) { struct device *dev = this->dev; if (virt_addr_valid(source)) { dma_addr_t source_phys; source_phys = dma_map_single(dev, (void *)source, length, DMA_TO_DEVICE); if (dma_mapping_error(dev, source_phys)) { if (alt_size < length) { dev_err(dev, "Alternate buffer is too small\n"); return -ENOMEM; } goto map_failed; } *use_virt = source; *use_phys = source_phys; return 0; } map_failed: /* * Copy the content of the source buffer into the alternate * buffer and set up the return values accordingly. */ memcpy(alt_virt, source, length); *use_virt = alt_virt; *use_phys = alt_phys; return 0; } static void send_page_end(struct gpmi_nand_data *this, const void *source, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, const void *used_virt, dma_addr_t used_phys) { struct device *dev = this->dev; if (used_virt == source) dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); } static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) { struct device *dev = this->dev; if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) dma_free_coherent(dev, this->page_buffer_size, this->page_buffer_virt, this->page_buffer_phys); kfree(this->cmd_buffer); kfree(this->data_buffer_dma); kfree(this->raw_buffer); this->cmd_buffer = NULL; this->data_buffer_dma = NULL; this->raw_buffer = NULL; this->page_buffer_virt = NULL; this->page_buffer_size = 0; } /* Allocate the DMA buffers */ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct device *dev = this->dev; struct mtd_info *mtd = nand_to_mtd(&this->nand); /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); if (this->cmd_buffer == NULL) goto error_alloc; /* * [2] Allocate a read/write data buffer. * The gpmi_alloc_dma_buffer can be called twice. * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer * is called before the NAND identification; and we allocate a * buffer of the real NAND page size when the gpmi_alloc_dma_buffer * is called after. */ this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, GFP_DMA | GFP_KERNEL); if (this->data_buffer_dma == NULL) goto error_alloc; /* * [3] Allocate the page buffer. * * Both the payload buffer and the auxiliary buffer must appear on * 32-bit boundaries. We presume the size of the payload buffer is a * power of two and is much larger than four, which guarantees the * auxiliary buffer will appear on a 32-bit boundary. */ this->page_buffer_size = geo->payload_size + geo->auxiliary_size; this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, &this->page_buffer_phys, GFP_DMA); if (!this->page_buffer_virt) goto error_alloc; this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); if (!this->raw_buffer) goto error_alloc; /* Slice up the page buffer. */ this->payload_virt = this->page_buffer_virt; this->payload_phys = this->page_buffer_phys; this->auxiliary_virt = this->payload_virt + geo->payload_size; this->auxiliary_phys = this->payload_phys + geo->payload_size; return 0; error_alloc: gpmi_free_dma_buffer(this); return -ENOMEM; } static void gpmi_cmd_ctrl(struct nand_chip *chip, int data, unsigned int ctrl) { struct gpmi_nand_data *this = nand_get_controller_data(chip); int ret; /* * Every operation begins with a command byte and a series of zero or * more address bytes. These are distinguished by either the Address * Latch Enable (ALE) or Command Latch Enable (CLE) signals being * asserted. When MTD is ready to execute the command, it will deassert * both latch enables. * * Rather than run a separate DMA operation for every single byte, we * queue them up and run a single DMA operation for the entire series * of command and data bytes. NAND_CMD_NONE means the END of the queue. */ if ((ctrl & (NAND_ALE | NAND_CLE))) { if (data != NAND_CMD_NONE) this->cmd_buffer[this->command_length++] = data; return; } if (!this->command_length) return; ret = gpmi_send_command(this); if (ret) dev_err(this->dev, "Chip: %u, Error %d\n", this->current_chip, ret); this->command_length = 0; } static int gpmi_dev_ready(struct nand_chip *chip) { struct gpmi_nand_data *this = nand_get_controller_data(chip); return gpmi_is_ready(this, this->current_chip); } static void gpmi_select_chip(struct nand_chip *chip, int chipnr) { struct gpmi_nand_data *this = nand_get_controller_data(chip); int ret; /* * For power consumption matters, disable/enable the clock each time a * die is selected/unselected. */ if (this->current_chip < 0 && chipnr >= 0) { ret = gpmi_enable_clk(this); if (ret) dev_err(this->dev, "Failed to enable the clock\n"); } else if (this->current_chip >= 0 && chipnr < 0) { ret = gpmi_disable_clk(this); if (ret) dev_err(this->dev, "Failed to disable the clock\n"); } /* * This driver currently supports only one NAND chip. Plus, dies share * the same configuration. So once timings have been applied on the * controller side, they will not change anymore. When the time will * come, the check on must_apply_timings will have to be dropped. */ if (chipnr >= 0 && this->hw.must_apply_timings) { this->hw.must_apply_timings = false; gpmi_nfc_apply_timings(this); } this->current_chip = chipnr; } static void gpmi_read_buf(struct nand_chip *chip, uint8_t *buf, int len) { struct gpmi_nand_data *this = nand_get_controller_data(chip); dev_dbg(this->dev, "len is %d\n", len); gpmi_read_data(this, buf, len); } static void gpmi_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) { struct gpmi_nand_data *this = nand_get_controller_data(chip); dev_dbg(this->dev, "len is %d\n", len); gpmi_send_data(this, buf, len); } static uint8_t gpmi_read_byte(struct nand_chip *chip) { struct gpmi_nand_data *this = nand_get_controller_data(chip); uint8_t *buf = this->data_buffer_dma; gpmi_read_buf(chip, buf, 1); return buf[0]; } /* * Handles block mark swapping. * It can be called in swapping the block mark, or swapping it back, * because the the operations are the same. */ static void block_mark_swapping(struct gpmi_nand_data *this, void *payload, void *auxiliary) { struct bch_geometry *nfc_geo = &this->bch_geometry; unsigned char *p; unsigned char *a; unsigned int bit; unsigned char mask; unsigned char from_data; unsigned char from_oob; if (!this->swap_block_mark) return; /* * If control arrives here, we're swapping. Make some convenience * variables. */ bit = nfc_geo->block_mark_bit_offset; p = payload + nfc_geo->block_mark_byte_offset; a = auxiliary; /* * Get the byte from the data area that overlays the block mark. Since * the ECC engine applies its own view to the bits in the page, the * physical block mark won't (in general) appear on a byte boundary in * the data. */ from_data = (p[0] >> bit) | (p[1] << (8 - bit)); /* Get the byte from the OOB. */ from_oob = a[0]; /* Swap them. */ a[0] = from_data; mask = (0x1 << bit) - 1; p[0] = (p[0] & mask) | (from_oob << bit); mask = ~0 << bit; p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); } static int gpmi_ecc_read_page_data(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; struct mtd_info *mtd = nand_to_mtd(chip); dma_addr_t payload_phys; unsigned int i; unsigned char *status; unsigned int max_bitflips = 0; int ret; bool direct = false; dev_dbg(this->dev, "page number is : %d\n", page); payload_phys = this->payload_phys; if (virt_addr_valid(buf)) { dma_addr_t dest_phys; dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size, DMA_FROM_DEVICE); if (!dma_mapping_error(this->dev, dest_phys)) { payload_phys = dest_phys; direct = true; } } /* go! */ ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys); if (direct) dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size, DMA_FROM_DEVICE); if (ret) { dev_err(this->dev, "Error in ECC-based read: %d\n", ret); return ret; } /* Loop over status bytes, accumulating ECC status. */ status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset; if (!direct) memcpy(buf, this->payload_virt, nfc_geo->payload_size); for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) continue; if (*status == STATUS_UNCORRECTABLE) { int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; u8 *eccbuf = this->raw_buffer; int offset, bitoffset; int eccbytes; int flips; /* Read ECC bytes into our internal raw_buffer */ offset = nfc_geo->metadata_size * 8; offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); offset -= eccbits; bitoffset = offset % 8; eccbytes = DIV_ROUND_UP(offset + eccbits, 8); offset /= 8; eccbytes -= offset; nand_change_read_column_op(chip, offset, eccbuf, eccbytes, false); /* * ECC data are not byte aligned and we may have * in-band data in the first and last byte of * eccbuf. Set non-eccbits to one so that * nand_check_erased_ecc_chunk() does not count them * as bitflips. */ if (bitoffset) eccbuf[0] |= GENMASK(bitoffset - 1, 0); bitoffset = (bitoffset + eccbits) % 8; if (bitoffset) eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); /* * The ECC hardware has an uncorrectable ECC status * code in case we have bitflips in an erased page. As * nothing was written into this subpage the ECC is * obviously wrong and we can not trust it. We assume * at this point that we are reading an erased page and * try to correct the bitflips in buffer up to * ecc_strength bitflips. If this is a page with random * data, we exceed this number of bitflips and have a * ECC failure. Otherwise we use the corrected buffer. */ if (i == 0) { /* The first block includes metadata */ flips = nand_check_erased_ecc_chunk( buf + i * nfc_geo->ecc_chunk_size, nfc_geo->ecc_chunk_size, eccbuf, eccbytes, this->auxiliary_virt, nfc_geo->metadata_size, nfc_geo->ecc_strength); } else { flips = nand_check_erased_ecc_chunk( buf + i * nfc_geo->ecc_chunk_size, nfc_geo->ecc_chunk_size, eccbuf, eccbytes, NULL, 0, nfc_geo->ecc_strength); } if (flips > 0) { max_bitflips = max_t(unsigned int, max_bitflips, flips); mtd->ecc_stats.corrected += flips; continue; } mtd->ecc_stats.failed++; continue; } mtd->ecc_stats.corrected += *status; max_bitflips = max_t(unsigned int, max_bitflips, *status); } /* handle the block mark swapping */ block_mark_swapping(this, buf, this->auxiliary_virt); if (oob_required) { /* * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() * for details about our policy for delivering the OOB. * * We fill the caller's buffer with set bits, and then copy the * block mark to th caller's buffer. Note that, if block mark * swapping was necessary, it has already been done, so we can * rely on the first byte of the auxiliary buffer to contain * the block mark. */ memset(chip->oob_poi, ~0, mtd->oobsize); chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; } return max_bitflips; } static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { nand_read_page_op(chip, page, 0, NULL, 0); return gpmi_ecc_read_page_data(chip, buf, oob_required, page); } /* Fake a virtual small page for the subpage read */ static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, uint32_t len, uint8_t *buf, int page) { struct gpmi_nand_data *this = nand_get_controller_data(chip); void __iomem *bch_regs = this->resources.bch_regs; struct bch_geometry old_geo = this->bch_geometry; struct bch_geometry *geo = &this->bch_geometry; int size = chip->ecc.size; /* ECC chunk size */ int meta, n, page_size; u32 r1_old, r2_old, r1_new, r2_new; unsigned int max_bitflips; int first, last, marker_pos; int ecc_parity_size; int col = 0; int old_swap_block_mark = this->swap_block_mark; /* The size of ECC parity */ ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; /* Align it with the chunk size */ first = offs / size; last = (offs + len - 1) / size; if (this->swap_block_mark) { /* * Find the chunk which contains the Block Marker. * If this chunk is in the range of [first, last], * we have to read out the whole page. * Why? since we had swapped the data at the position of Block * Marker to the metadata which is bound with the chunk 0. */ marker_pos = geo->block_mark_byte_offset / size; if (last >= marker_pos && first <= marker_pos) { dev_dbg(this->dev, "page:%d, first:%d, last:%d, marker at:%d\n", page, first, last, marker_pos); return gpmi_ecc_read_page(chip, buf, 0, page); } } meta = geo->metadata_size; if (first) { col = meta + (size + ecc_parity_size) * first; meta = 0; buf = buf + first * size; } nand_read_page_op(chip, page, col, NULL, 0); /* Save the old environment */ r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); /* change the BCH registers and bch_geometry{} */ n = last - first + 1; page_size = meta + (size + ecc_parity_size) * n; r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | BM_BCH_FLASH0LAYOUT0_META_SIZE); r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); geo->ecc_chunk_count = n; geo->payload_size = n * size; geo->page_size = page_size; geo->auxiliary_status_offset = ALIGN(meta, 4); dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", page, offs, len, col, first, n, page_size); /* Read the subpage now */ this->swap_block_mark = false; max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page); /* Restore */ writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); this->bch_geometry = old_geo; this->swap_block_mark = old_swap_block_mark; return max_bitflips; } static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; const void *payload_virt; dma_addr_t payload_phys; const void *auxiliary_virt; dma_addr_t auxiliary_phys; int ret; dev_dbg(this->dev, "ecc write page.\n"); nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (this->swap_block_mark) { /* * If control arrives here, we're doing block mark swapping. * Since we can't modify the caller's buffers, we must copy them * into our own. */ memcpy(this->payload_virt, buf, mtd->writesize); payload_virt = this->payload_virt; payload_phys = this->payload_phys; memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); auxiliary_virt = this->auxiliary_virt; auxiliary_phys = this->auxiliary_phys; /* Handle block mark swapping. */ block_mark_swapping(this, (void *)payload_virt, (void *)auxiliary_virt); } else { /* * If control arrives here, we're not doing block mark swapping, * so we can to try and use the caller's buffers. */ ret = send_page_prepare(this, buf, mtd->writesize, this->payload_virt, this->payload_phys, nfc_geo->payload_size, &payload_virt, &payload_phys); if (ret) { dev_err(this->dev, "Inadequate payload DMA buffer\n"); return 0; } ret = send_page_prepare(this, chip->oob_poi, mtd->oobsize, this->auxiliary_virt, this->auxiliary_phys, nfc_geo->auxiliary_size, &auxiliary_virt, &auxiliary_phys); if (ret) { dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); goto exit_auxiliary; } } /* Ask the NFC. */ ret = gpmi_send_page(this, payload_phys, auxiliary_phys); if (ret) dev_err(this->dev, "Error in ECC-based write: %d\n", ret); if (!this->swap_block_mark) { send_page_end(this, chip->oob_poi, mtd->oobsize, this->auxiliary_virt, this->auxiliary_phys, nfc_geo->auxiliary_size, auxiliary_virt, auxiliary_phys); exit_auxiliary: send_page_end(this, buf, mtd->writesize, this->payload_virt, this->payload_phys, nfc_geo->payload_size, payload_virt, payload_phys); } if (ret) return ret; return nand_prog_page_end_op(chip); } /* * There are several places in this driver where we have to handle the OOB and * block marks. This is the function where things are the most complicated, so * this is where we try to explain it all. All the other places refer back to * here. * * These are the rules, in order of decreasing importance: * * 1) Nothing the caller does can be allowed to imperil the block mark. * * 2) In read operations, the first byte of the OOB we return must reflect the * true state of the block mark, no matter where that block mark appears in * the physical page. * * 3) ECC-based read operations return an OOB full of set bits (since we never * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads * return). * * 4) "Raw" read operations return a direct view of the physical bytes in the * page, using the conventional definition of which bytes are data and which * are OOB. This gives the caller a way to see the actual, physical bytes * in the page, without the distortions applied by our ECC engine. * * * What we do for this specific read operation depends on two questions: * * 1) Are we doing a "raw" read, or an ECC-based read? * * 2) Are we using block mark swapping or transcription? * * There are four cases, illustrated by the following Karnaugh map: * * | Raw | ECC-based | * -------------+-------------------------+-------------------------+ * | Read the conventional | | * | OOB at the end of the | | * Swapping | page and return it. It | | * | contains exactly what | | * | we want. | Read the block mark and | * -------------+-------------------------+ return it in a buffer | * | Read the conventional | full of set bits. | * | OOB at the end of the | | * | page and also the block | | * Transcribing | mark in the metadata. | | * | Copy the block mark | | * | into the first byte of | | * | the OOB. | | * -------------+-------------------------+-------------------------+ * * Note that we break rule #4 in the Transcribing/Raw case because we're not * giving an accurate view of the actual, physical bytes in the page (we're * overwriting the block mark). That's OK because it's more important to follow * rule #2. * * It turns out that knowing whether we want an "ECC-based" or "raw" read is not * easy. When reading a page, for example, the NAND Flash MTD code calls our * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an * ECC-based or raw view of the page is implicit in which function it calls * (there is a similar pair of ECC-based/raw functions for writing). */ static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); dev_dbg(this->dev, "page number is %d\n", page); /* clear the OOB buffer */ memset(chip->oob_poi, ~0, mtd->oobsize); /* Read out the conventional OOB. */ nand_read_page_op(chip, page, mtd->writesize, NULL, 0); chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); /* * Now, we want to make sure the block mark is correct. In the * non-transcribing case (!GPMI_IS_MX23()), we already have it. * Otherwise, we need to explicitly read it. */ if (GPMI_IS_MX23(this)) { /* Read the block mark into the first byte of the OOB buffer. */ nand_read_page_op(chip, page, 0, NULL, 0); chip->oob_poi[0] = chip->legacy.read_byte(chip); } return 0; } static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mtd_oob_region of = { }; /* Do we have available oob area? */ mtd_ooblayout_free(mtd, 0, &of); if (!of.length) return -EPERM; if (!nand_is_slc(chip)) return -EPERM; return nand_prog_page_op(chip, page, mtd->writesize + of.offset, chip->oob_poi + of.offset, of.length); } /* * This function reads a NAND page without involving the ECC engine (no HW * ECC correction). * The tricky part in the GPMI/BCH controller is that it stores ECC bits * inline (interleaved with payload DATA), and do not align data chunk on * byte boundaries. * We thus need to take care moving the payload data and ECC bits stored in the * page into the provided buffers, which is why we're using gpmi_copy_bits. * * See set_geometry_by_ecc_info inline comments to have a full description * of the layout used by the GPMI controller. */ static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; int eccsize = nfc_geo->ecc_chunk_size; int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; u8 *tmp_buf = this->raw_buffer; size_t src_bit_off; size_t oob_bit_off; size_t oob_byte_off; uint8_t *oob = chip->oob_poi; int step; nand_read_page_op(chip, page, 0, tmp_buf, mtd->writesize + mtd->oobsize); /* * If required, swap the bad block marker and the data stored in the * metadata section, so that we don't wrongly consider a block as bad. * * See the layout description for a detailed explanation on why this * is needed. */ if (this->swap_block_mark) swap(tmp_buf[0], tmp_buf[mtd->writesize]); /* * Copy the metadata section into the oob buffer (this section is * guaranteed to be aligned on a byte boundary). */ if (oob_required) memcpy(oob, tmp_buf, nfc_geo->metadata_size); oob_bit_off = nfc_geo->metadata_size * 8; src_bit_off = oob_bit_off; /* Extract interleaved payload data and ECC bits */ for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { if (buf) gpmi_copy_bits(buf, step * eccsize * 8, tmp_buf, src_bit_off, eccsize * 8); src_bit_off += eccsize * 8; /* Align last ECC block to align a byte boundary */ if (step == nfc_geo->ecc_chunk_count - 1 && (oob_bit_off + eccbits) % 8) eccbits += 8 - ((oob_bit_off + eccbits) % 8); if (oob_required) gpmi_copy_bits(oob, oob_bit_off, tmp_buf, src_bit_off, eccbits); src_bit_off += eccbits; oob_bit_off += eccbits; } if (oob_required) { oob_byte_off = oob_bit_off / 8; if (oob_byte_off < mtd->oobsize) memcpy(oob + oob_byte_off, tmp_buf + mtd->writesize + oob_byte_off, mtd->oobsize - oob_byte_off); } return 0; } /* * This function writes a NAND page without involving the ECC engine (no HW * ECC generation). * The tricky part in the GPMI/BCH controller is that it stores ECC bits * inline (interleaved with payload DATA), and do not align data chunk on * byte boundaries. * We thus need to take care moving the OOB area at the right place in the * final page, which is why we're using gpmi_copy_bits. * * See set_geometry_by_ecc_info inline comments to have a full description * of the layout used by the GPMI controller. */ static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; int eccsize = nfc_geo->ecc_chunk_size; int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; u8 *tmp_buf = this->raw_buffer; uint8_t *oob = chip->oob_poi; size_t dst_bit_off; size_t oob_bit_off; size_t oob_byte_off; int step; /* * Initialize all bits to 1 in case we don't have a buffer for the * payload or oob data in order to leave unspecified bits of data * to their initial state. */ if (!buf || !oob_required) memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); /* * First copy the metadata section (stored in oob buffer) at the * beginning of the page, as imposed by the GPMI layout. */ memcpy(tmp_buf, oob, nfc_geo->metadata_size); oob_bit_off = nfc_geo->metadata_size * 8; dst_bit_off = oob_bit_off; /* Interleave payload data and ECC bits */ for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { if (buf) gpmi_copy_bits(tmp_buf, dst_bit_off, buf, step * eccsize * 8, eccsize * 8); dst_bit_off += eccsize * 8; /* Align last ECC block to align a byte boundary */ if (step == nfc_geo->ecc_chunk_count - 1 && (oob_bit_off + eccbits) % 8) eccbits += 8 - ((oob_bit_off + eccbits) % 8); if (oob_required) gpmi_copy_bits(tmp_buf, dst_bit_off, oob, oob_bit_off, eccbits); dst_bit_off += eccbits; oob_bit_off += eccbits; } oob_byte_off = oob_bit_off / 8; if (oob_required && oob_byte_off < mtd->oobsize) memcpy(tmp_buf + mtd->writesize + oob_byte_off, oob + oob_byte_off, mtd->oobsize - oob_byte_off); /* * If required, swap the bad block marker and the first byte of the * metadata section, so that we don't modify the bad block marker. * * See the layout description for a detailed explanation on why this * is needed. */ if (this->swap_block_mark) swap(tmp_buf[0], tmp_buf[mtd->writesize]); return nand_prog_page_op(chip, page, 0, tmp_buf, mtd->writesize + mtd->oobsize); } static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) { return gpmi_ecc_read_page_raw(chip, NULL, 1, page); } static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) { return gpmi_ecc_write_page_raw(chip, NULL, 1, page); } static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); int ret = 0; uint8_t *block_mark; int column, page, chipnr; chipnr = (int)(ofs >> chip->chip_shift); nand_select_target(chip, chipnr); column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; /* Write the block mark. */ block_mark = this->data_buffer_dma; block_mark[0] = 0; /* bad block marker */ /* Shift to get page */ page = (int)(ofs >> chip->page_shift); ret = nand_prog_page_op(chip, page, column, block_mark, 1); nand_deselect_target(chip); return ret; } static int nand_boot_set_geometry(struct gpmi_nand_data *this) { struct boot_rom_geometry *geometry = &this->rom_geometry; /* * Set the boot block stride size. * * In principle, we should be reading this from the OTP bits, since * that's where the ROM is going to get it. In fact, we don't have any * way to read the OTP bits, so we go with the default and hope for the * best. */ geometry->stride_size_in_pages = 64; /* * Set the search area stride exponent. * * In principle, we should be reading this from the OTP bits, since * that's where the ROM is going to get it. In fact, we don't have any * way to read the OTP bits, so we go with the default and hope for the * best. */ geometry->search_area_stride_exponent = 2; return 0; } static const char *fingerprint = "STMP"; static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) { struct boot_rom_geometry *rom_geo = &this->rom_geometry; struct device *dev = this->dev; struct nand_chip *chip = &this->nand; unsigned int search_area_size_in_strides; unsigned int stride; unsigned int page; u8 *buffer = nand_get_data_buf(chip); int saved_chip_number; int found_an_ncb_fingerprint = false; /* Compute the number of strides in a search area. */ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; saved_chip_number = this->current_chip; nand_select_target(chip, 0); /* * Loop through the first search area, looking for the NCB fingerprint. */ dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { /* Compute the page addresses. */ page = stride * rom_geo->stride_size_in_pages; dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); /* * Read the NCB fingerprint. The fingerprint is four bytes long * and starts in the 12th byte of the page. */ nand_read_page_op(chip, page, 12, NULL, 0); chip->legacy.read_buf(chip, buffer, strlen(fingerprint)); /* Look for the fingerprint. */ if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { found_an_ncb_fingerprint = true; break; } } if (saved_chip_number >= 0) nand_select_target(chip, saved_chip_number); else nand_deselect_target(chip); if (found_an_ncb_fingerprint) dev_dbg(dev, "\tFound a fingerprint\n"); else dev_dbg(dev, "\tNo fingerprint found\n"); return found_an_ncb_fingerprint; } /* Writes a transcription stamp. */ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) { struct device *dev = this->dev; struct boot_rom_geometry *rom_geo = &this->rom_geometry; struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); unsigned int block_size_in_pages; unsigned int search_area_size_in_strides; unsigned int search_area_size_in_pages; unsigned int search_area_size_in_blocks; unsigned int block; unsigned int stride; unsigned int page; u8 *buffer = nand_get_data_buf(chip); int saved_chip_number; int status; /* Compute the search area geometry. */ block_size_in_pages = mtd->erasesize / mtd->writesize; search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; search_area_size_in_pages = search_area_size_in_strides * rom_geo->stride_size_in_pages; search_area_size_in_blocks = (search_area_size_in_pages + (block_size_in_pages - 1)) / block_size_in_pages; dev_dbg(dev, "Search Area Geometry :\n"); dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); /* Select chip 0. */ saved_chip_number = this->current_chip; nand_select_target(chip, 0); /* Loop over blocks in the first search area, erasing them. */ dev_dbg(dev, "Erasing the search area...\n"); for (block = 0; block < search_area_size_in_blocks; block++) { /* Erase this block. */ dev_dbg(dev, "\tErasing block 0x%x\n", block); status = nand_erase_op(chip, block); if (status) dev_err(dev, "[%s] Erase failed.\n", __func__); } /* Write the NCB fingerprint into the page buffer. */ memset(buffer, ~0, mtd->writesize); memcpy(buffer + 12, fingerprint, strlen(fingerprint)); /* Loop through the first search area, writing NCB fingerprints. */ dev_dbg(dev, "Writing NCB fingerprints...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { /* Compute the page addresses. */ page = stride * rom_geo->stride_size_in_pages; /* Write the first page of the current stride. */ dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); status = chip->ecc.write_page_raw(chip, buffer, 0, page); if (status) dev_err(dev, "[%s] Write failed.\n", __func__); } /* Deselect chip 0. */ if (saved_chip_number >= 0) nand_select_target(chip, saved_chip_number); else nand_deselect_target(chip); return 0; } static int mx23_boot_init(struct gpmi_nand_data *this) { struct device *dev = this->dev; struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); unsigned int block_count; unsigned int block; int chipnr; int page; loff_t byte; uint8_t block_mark; int ret = 0; /* * If control arrives here, we can't use block mark swapping, which * means we're forced to use transcription. First, scan for the * transcription stamp. If we find it, then we don't have to do * anything -- the block marks are already transcribed. */ if (mx23_check_transcription_stamp(this)) return 0; /* * If control arrives here, we couldn't find a transcription stamp, so * so we presume the block marks are in the conventional location. */ dev_dbg(dev, "Transcribing bad block marks...\n"); /* Compute the number of blocks in the entire medium. */ block_count = nanddev_eraseblocks_per_target(&chip->base); /* * Loop over all the blocks in the medium, transcribing block marks as * we go. */ for (block = 0; block < block_count; block++) { /* * Compute the chip, page and byte addresses for this block's * conventional mark. */ chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); page = block << (chip->phys_erase_shift - chip->page_shift); byte = block << chip->phys_erase_shift; /* Send the command to read the conventional block mark. */ nand_select_target(chip, chipnr); nand_read_page_op(chip, page, mtd->writesize, NULL, 0); block_mark = chip->legacy.read_byte(chip); nand_deselect_target(chip); /* * Check if the block is marked bad. If so, we need to mark it * again, but this time the result will be a mark in the * location where we transcribe block marks. */ if (block_mark != 0xff) { dev_dbg(dev, "Transcribing mark in block %u\n", block); ret = chip->legacy.block_markbad(chip, byte); if (ret) dev_err(dev, "Failed to mark block bad with ret %d\n", ret); } } /* Write the stamp that indicates we've transcribed the block marks. */ mx23_write_transcription_stamp(this); return 0; } static int nand_boot_init(struct gpmi_nand_data *this) { nand_boot_set_geometry(this); /* This is ROM arch-specific initilization before the BBT scanning. */ if (GPMI_IS_MX23(this)) return mx23_boot_init(this); return 0; } static int gpmi_set_geometry(struct gpmi_nand_data *this) { int ret; /* Free the temporary DMA memory for reading ID. */ gpmi_free_dma_buffer(this); /* Set up the NFC geometry which is used by BCH. */ ret = bch_set_geometry(this); if (ret) { dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); return ret; } /* Alloc the new DMA buffers according to the pagesize and oobsize */ return gpmi_alloc_dma_buffer(this); } static int gpmi_init_last(struct gpmi_nand_data *this) { struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; struct bch_geometry *bch_geo = &this->bch_geometry; int ret; /* Set up the medium geometry */ ret = gpmi_set_geometry(this); if (ret) return ret; /* Init the nand_ecc_ctrl{} */ ecc->read_page = gpmi_ecc_read_page; ecc->write_page = gpmi_ecc_write_page; ecc->read_oob = gpmi_ecc_read_oob; ecc->write_oob = gpmi_ecc_write_oob; ecc->read_page_raw = gpmi_ecc_read_page_raw; ecc->write_page_raw = gpmi_ecc_write_page_raw; ecc->read_oob_raw = gpmi_ecc_read_oob_raw; ecc->write_oob_raw = gpmi_ecc_write_oob_raw; ecc->mode = NAND_ECC_HW; ecc->size = bch_geo->ecc_chunk_size; ecc->strength = bch_geo->ecc_strength; mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); /* * We only enable the subpage read when: * (1) the chip is imx6, and * (2) the size of the ECC parity is byte aligned. */ if (GPMI_IS_MX6(this) && ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { ecc->read_subpage = gpmi_ecc_read_subpage; chip->options |= NAND_SUBPAGE_READ; } return 0; } static int gpmi_nand_attach_chip(struct nand_chip *chip) { struct gpmi_nand_data *this = nand_get_controller_data(chip); int ret; if (chip->bbt_options & NAND_BBT_USE_FLASH) { chip->bbt_options |= NAND_BBT_NO_OOB; if (of_property_read_bool(this->dev->of_node, "fsl,no-blockmark-swap")) this->swap_block_mark = false; } dev_dbg(this->dev, "Blockmark swapping %sabled\n", this->swap_block_mark ? "en" : "dis"); ret = gpmi_init_last(this); if (ret) return ret; chip->options |= NAND_SKIP_BBTSCAN; return 0; } static const struct nand_controller_ops gpmi_nand_controller_ops = { .attach_chip = gpmi_nand_attach_chip, .setup_data_interface = gpmi_setup_data_interface, }; static int gpmi_nand_init(struct gpmi_nand_data *this) { struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* init current chip */ this->current_chip = -1; /* init the MTD data structures */ mtd->name = "gpmi-nand"; mtd->dev.parent = this->dev; /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ nand_set_controller_data(chip, this); nand_set_flash_node(chip, this->pdev->dev.of_node); chip->legacy.select_chip = gpmi_select_chip; chip->legacy.cmd_ctrl = gpmi_cmd_ctrl; chip->legacy.dev_ready = gpmi_dev_ready; chip->legacy.read_byte = gpmi_read_byte; chip->legacy.read_buf = gpmi_read_buf; chip->legacy.write_buf = gpmi_write_buf; chip->badblock_pattern = &gpmi_bbt_descr; chip->legacy.block_markbad = gpmi_block_markbad; chip->options |= NAND_NO_SUBPAGE_WRITE; /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ this->swap_block_mark = !GPMI_IS_MX23(this); /* * Allocate a temporary DMA buffer for reading ID in the * nand_scan_ident(). */ this->bch_geometry.payload_size = 1024; this->bch_geometry.auxiliary_size = 128; ret = gpmi_alloc_dma_buffer(this); if (ret) goto err_out; chip->legacy.dummy_controller.ops = &gpmi_nand_controller_ops; ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); if (ret) goto err_out; ret = nand_boot_init(this); if (ret) goto err_nand_cleanup; ret = nand_create_bbt(chip); if (ret) goto err_nand_cleanup; ret = mtd_device_register(mtd, NULL, 0); if (ret) goto err_nand_cleanup; return 0; err_nand_cleanup: nand_cleanup(chip); err_out: gpmi_free_dma_buffer(this); return ret; } static const struct of_device_id gpmi_nand_id_table[] = { { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d, }, {} }; MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); static int gpmi_nand_probe(struct platform_device *pdev) { struct gpmi_nand_data *this; const struct of_device_id *of_id; int ret; this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); if (!this) return -ENOMEM; of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); if (of_id) { this->devdata = of_id->data; } else { dev_err(&pdev->dev, "Failed to find the right device id.\n"); return -ENODEV; } platform_set_drvdata(pdev, this); this->pdev = pdev; this->dev = &pdev->dev; ret = acquire_resources(this); if (ret) goto exit_acquire_resources; ret = gpmi_init(this); if (ret) goto exit_nfc_init; ret = gpmi_nand_init(this); if (ret) goto exit_nfc_init; dev_info(this->dev, "driver registered.\n"); return 0; exit_nfc_init: release_resources(this); exit_acquire_resources: return ret; } static int gpmi_nand_remove(struct platform_device *pdev) { struct gpmi_nand_data *this = platform_get_drvdata(pdev); nand_release(&this->nand); gpmi_free_dma_buffer(this); release_resources(this); return 0; } #ifdef CONFIG_PM_SLEEP static int gpmi_pm_suspend(struct device *dev) { struct gpmi_nand_data *this = dev_get_drvdata(dev); release_dma_channels(this); return 0; } static int gpmi_pm_resume(struct device *dev) { struct gpmi_nand_data *this = dev_get_drvdata(dev); int ret; ret = acquire_dma_channels(this); if (ret < 0) return ret; /* re-init the GPMI registers */ ret = gpmi_init(this); if (ret) { dev_err(this->dev, "Error setting GPMI : %d\n", ret); return ret; } /* re-init the BCH registers */ ret = bch_set_geometry(this); if (ret) { dev_err(this->dev, "Error setting BCH : %d\n", ret); return ret; } return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops gpmi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) }; static struct platform_driver gpmi_nand_driver = { .driver = { .name = "gpmi-nand", .pm = &gpmi_pm_ops, .of_match_table = gpmi_nand_id_table, }, .probe = gpmi_nand_probe, .remove = gpmi_nand_remove, }; module_platform_driver(gpmi_nand_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); MODULE_LICENSE("GPL");