// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2006 Jonathan McDowell * * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28) * Copyright (c) 2003 Texas Instruments * Copyright (c) 2002 Thomas Gleixner * * Converted to platform driver by Janusz Krzysztofik * Partially stolen from plat_nand.c * * Overview: * This is a device driver for the NAND flash device found on the * Amstrad E3 (Delta). */ #include #include #include #include #include #include #include #include #include #include #include /* * MTD structure for E3 (Delta) */ struct gpio_nand { struct nand_controller base; struct nand_chip nand_chip; struct gpio_desc *gpiod_rdy; struct gpio_desc *gpiod_nce; struct gpio_desc *gpiod_nre; struct gpio_desc *gpiod_nwp; struct gpio_desc *gpiod_nwe; struct gpio_desc *gpiod_ale; struct gpio_desc *gpiod_cle; struct gpio_descs *data_gpiods; bool data_in; unsigned int tRP; unsigned int tWP; u8 (*io_read)(struct gpio_nand *this); void (*io_write)(struct gpio_nand *this, u8 byte); }; static void gpio_nand_write_commit(struct gpio_nand *priv) { gpiod_set_value(priv->gpiod_nwe, 1); ndelay(priv->tWP); gpiod_set_value(priv->gpiod_nwe, 0); } static void gpio_nand_io_write(struct gpio_nand *priv, u8 byte) { struct gpio_descs *data_gpiods = priv->data_gpiods; DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, }; gpiod_set_raw_array_value(data_gpiods->ndescs, data_gpiods->desc, data_gpiods->info, values); gpio_nand_write_commit(priv); } static void gpio_nand_dir_output(struct gpio_nand *priv, u8 byte) { struct gpio_descs *data_gpiods = priv->data_gpiods; DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, }; int i; for (i = 0; i < data_gpiods->ndescs; i++) gpiod_direction_output_raw(data_gpiods->desc[i], test_bit(i, values)); gpio_nand_write_commit(priv); priv->data_in = false; } static u8 gpio_nand_io_read(struct gpio_nand *priv) { u8 res; struct gpio_descs *data_gpiods = priv->data_gpiods; DECLARE_BITMAP(values, BITS_PER_TYPE(res)) = { 0, }; gpiod_set_value(priv->gpiod_nre, 1); ndelay(priv->tRP); gpiod_get_raw_array_value(data_gpiods->ndescs, data_gpiods->desc, data_gpiods->info, values); gpiod_set_value(priv->gpiod_nre, 0); res = values[0]; return res; } static void gpio_nand_dir_input(struct gpio_nand *priv) { struct gpio_descs *data_gpiods = priv->data_gpiods; int i; for (i = 0; i < data_gpiods->ndescs; i++) gpiod_direction_input(data_gpiods->desc[i]); priv->data_in = true; } static void gpio_nand_write_buf(struct gpio_nand *priv, const u8 *buf, int len) { int i = 0; if (len > 0 && priv->data_in) gpio_nand_dir_output(priv, buf[i++]); while (i < len) priv->io_write(priv, buf[i++]); } static void gpio_nand_read_buf(struct gpio_nand *priv, u8 *buf, int len) { int i; if (priv->data_gpiods && !priv->data_in) gpio_nand_dir_input(priv); for (i = 0; i < len; i++) buf[i] = priv->io_read(priv); } static void gpio_nand_ctrl_cs(struct gpio_nand *priv, bool assert) { gpiod_set_value(priv->gpiod_nce, assert); } static int gpio_nand_exec_op(struct nand_chip *this, const struct nand_operation *op, bool check_only) { struct gpio_nand *priv = nand_get_controller_data(this); const struct nand_op_instr *instr; int ret = 0; if (check_only) return 0; gpio_nand_ctrl_cs(priv, 1); for (instr = op->instrs; instr < op->instrs + op->ninstrs; instr++) { switch (instr->type) { case NAND_OP_CMD_INSTR: gpiod_set_value(priv->gpiod_cle, 1); gpio_nand_write_buf(priv, &instr->ctx.cmd.opcode, 1); gpiod_set_value(priv->gpiod_cle, 0); break; case NAND_OP_ADDR_INSTR: gpiod_set_value(priv->gpiod_ale, 1); gpio_nand_write_buf(priv, instr->ctx.addr.addrs, instr->ctx.addr.naddrs); gpiod_set_value(priv->gpiod_ale, 0); break; case NAND_OP_DATA_IN_INSTR: gpio_nand_read_buf(priv, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: gpio_nand_write_buf(priv, instr->ctx.data.buf.out, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: ret = priv->gpiod_rdy ? nand_gpio_waitrdy(this, priv->gpiod_rdy, instr->ctx.waitrdy.timeout_ms) : nand_soft_waitrdy(this, instr->ctx.waitrdy.timeout_ms); break; } if (ret) break; } gpio_nand_ctrl_cs(priv, 0); return ret; } static int gpio_nand_setup_data_interface(struct nand_chip *this, int csline, const struct nand_data_interface *cf) { struct gpio_nand *priv = nand_get_controller_data(this); const struct nand_sdr_timings *sdr = nand_get_sdr_timings(cf); struct device *dev = &nand_to_mtd(this)->dev; if (IS_ERR(sdr)) return PTR_ERR(sdr); if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; if (priv->gpiod_nre) { priv->tRP = DIV_ROUND_UP(sdr->tRP_min, 1000); dev_dbg(dev, "using %u ns read pulse width\n", priv->tRP); } priv->tWP = DIV_ROUND_UP(sdr->tWP_min, 1000); dev_dbg(dev, "using %u ns write pulse width\n", priv->tWP); return 0; } static const struct nand_controller_ops gpio_nand_ops = { .exec_op = gpio_nand_exec_op, .setup_data_interface = gpio_nand_setup_data_interface, }; /* * Main initialization routine */ static int gpio_nand_probe(struct platform_device *pdev) { struct gpio_nand_platdata *pdata = dev_get_platdata(&pdev->dev); const struct mtd_partition *partitions = NULL; int num_partitions = 0; struct gpio_nand *priv; struct nand_chip *this; struct mtd_info *mtd; int (*probe)(struct platform_device *pdev, struct gpio_nand *priv); int err = 0; if (pdata) { partitions = pdata->parts; num_partitions = pdata->num_parts; } /* Allocate memory for MTD device structure and private data */ priv = devm_kzalloc(&pdev->dev, sizeof(struct gpio_nand), GFP_KERNEL); if (!priv) return -ENOMEM; this = &priv->nand_chip; mtd = nand_to_mtd(this); mtd->dev.parent = &pdev->dev; nand_set_controller_data(this, priv); nand_set_flash_node(this, pdev->dev.of_node); priv->gpiod_rdy = devm_gpiod_get_optional(&pdev->dev, "rdy", GPIOD_IN); if (IS_ERR(priv->gpiod_rdy)) { err = PTR_ERR(priv->gpiod_rdy); dev_warn(&pdev->dev, "RDY GPIO request failed (%d)\n", err); return err; } this->ecc.mode = NAND_ECC_SOFT; this->ecc.algo = NAND_ECC_HAMMING; platform_set_drvdata(pdev, priv); /* Set chip enabled but write protected */ priv->gpiod_nwp = devm_gpiod_get_optional(&pdev->dev, "nwp", GPIOD_OUT_HIGH); if (IS_ERR(priv->gpiod_nwp)) { err = PTR_ERR(priv->gpiod_nwp); dev_err(&pdev->dev, "NWP GPIO request failed (%d)\n", err); return err; } priv->gpiod_nce = devm_gpiod_get_optional(&pdev->dev, "nce", GPIOD_OUT_LOW); if (IS_ERR(priv->gpiod_nce)) { err = PTR_ERR(priv->gpiod_nce); dev_err(&pdev->dev, "NCE GPIO request failed (%d)\n", err); return err; } priv->gpiod_nre = devm_gpiod_get_optional(&pdev->dev, "nre", GPIOD_OUT_LOW); if (IS_ERR(priv->gpiod_nre)) { err = PTR_ERR(priv->gpiod_nre); dev_err(&pdev->dev, "NRE GPIO request failed (%d)\n", err); return err; } priv->gpiod_nwe = devm_gpiod_get_optional(&pdev->dev, "nwe", GPIOD_OUT_LOW); if (IS_ERR(priv->gpiod_nwe)) { err = PTR_ERR(priv->gpiod_nwe); dev_err(&pdev->dev, "NWE GPIO request failed (%d)\n", err); return err; } priv->gpiod_ale = devm_gpiod_get(&pdev->dev, "ale", GPIOD_OUT_LOW); if (IS_ERR(priv->gpiod_ale)) { err = PTR_ERR(priv->gpiod_ale); dev_err(&pdev->dev, "ALE GPIO request failed (%d)\n", err); return err; } priv->gpiod_cle = devm_gpiod_get(&pdev->dev, "cle", GPIOD_OUT_LOW); if (IS_ERR(priv->gpiod_cle)) { err = PTR_ERR(priv->gpiod_cle); dev_err(&pdev->dev, "CLE GPIO request failed (%d)\n", err); return err; } /* Request array of data pins, initialize them as input */ priv->data_gpiods = devm_gpiod_get_array_optional(&pdev->dev, "data", GPIOD_IN); if (IS_ERR(priv->data_gpiods)) { err = PTR_ERR(priv->data_gpiods); dev_err(&pdev->dev, "data GPIO request failed: %d\n", err); return err; } if (priv->data_gpiods) { if (!priv->gpiod_nwe) { dev_err(&pdev->dev, "mandatory NWE pin not provided by platform\n"); return -ENODEV; } priv->io_read = gpio_nand_io_read; priv->io_write = gpio_nand_io_write; priv->data_in = true; } if (pdev->id_entry) probe = (void *) pdev->id_entry->driver_data; else probe = of_device_get_match_data(&pdev->dev); if (probe) err = probe(pdev, priv); if (err) return err; if (!priv->io_read || !priv->io_write) { dev_err(&pdev->dev, "incomplete device configuration\n"); return -ENODEV; } /* Initialize the NAND controller object embedded in gpio_nand. */ priv->base.ops = &gpio_nand_ops; nand_controller_init(&priv->base); this->controller = &priv->base; /* * FIXME: We should release write protection only after nand_scan() to * be on the safe side but we can't do that until we have a generic way * to assert/deassert WP from the core. Even if the core shouldn't * write things in the nand_scan() path, it should have control on this * pin just in case we ever need to disable write protection during * chip detection/initialization. */ /* Release write protection */ gpiod_set_value(priv->gpiod_nwp, 0); /* Scan to find existence of the device */ err = nand_scan(this, 1); if (err) return err; /* Register the partitions */ err = mtd_device_register(mtd, partitions, num_partitions); if (err) goto err_nand_cleanup; return 0; err_nand_cleanup: nand_cleanup(this); return err; } /* * Clean up routine */ static int gpio_nand_remove(struct platform_device *pdev) { struct gpio_nand *priv = platform_get_drvdata(pdev); struct mtd_info *mtd = nand_to_mtd(&priv->nand_chip); int ret; /* Apply write protection */ gpiod_set_value(priv->gpiod_nwp, 1); /* Unregister device */ ret = mtd_device_unregister(mtd); WARN_ON(ret); nand_cleanup(mtd_to_nand(mtd)); return 0; } static const struct of_device_id gpio_nand_of_id_table[] = { { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, gpio_nand_of_id_table); static const struct platform_device_id gpio_nand_plat_id_table[] = { { .name = "ams-delta-nand", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, gpio_nand_plat_id_table); static struct platform_driver gpio_nand_driver = { .probe = gpio_nand_probe, .remove = gpio_nand_remove, .id_table = gpio_nand_plat_id_table, .driver = { .name = "ams-delta-nand", .of_match_table = of_match_ptr(gpio_nand_of_id_table), }, }; module_platform_driver(gpio_nand_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Jonathan McDowell "); MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)");