/* SPDX-License-Identifier: GPL-2.0 * * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. * */ #ifndef HABANALABSP_H_ #define HABANALABSP_H_ #include "include/armcp_if.h" #include "include/qman_if.h" #include #include #include #include #include #include #include #define HL_NAME "habanalabs" #define HL_MMAP_CB_MASK (0x8000000000000000ull >> PAGE_SHIFT) #define HL_PENDING_RESET_PER_SEC 5 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ #define HL_ARMCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ #define HL_ARMCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ #define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */ #define HL_MAX_QUEUES 128 /* MUST BE POWER OF 2 and larger than 1 */ #define HL_MAX_PENDING_CS 64 #define HL_IDLE_BUSY_TS_ARR_SIZE 4096 /* Memory */ #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /* MMU */ #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /** * struct pgt_info - MMU hop page info. * @node: hash linked-list node for the pgts shadow hash of pgts. * @phys_addr: physical address of the pgt. * @shadow_addr: shadow hop in the host. * @ctx: pointer to the owner ctx. * @num_of_ptes: indicates how many ptes are used in the pgt. * * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop) * is needed during mapping, a new page is allocated and this structure holds * its essential information. During unmapping, if no valid PTEs remained in the * page, it is freed with its pgt_info structure. */ struct pgt_info { struct hlist_node node; u64 phys_addr; u64 shadow_addr; struct hl_ctx *ctx; int num_of_ptes; }; struct hl_device; struct hl_fpriv; /** * enum hl_queue_type - Supported QUEUE types. * @QUEUE_TYPE_NA: queue is not available. * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the * host. * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's * memories and/or operates the compute engines. * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion * notifications are sent by H/W. */ enum hl_queue_type { QUEUE_TYPE_NA, QUEUE_TYPE_EXT, QUEUE_TYPE_INT, QUEUE_TYPE_CPU, QUEUE_TYPE_HW }; /** * struct hw_queue_properties - queue information. * @type: queue type. * @driver_only: true if only the driver is allowed to send a job to this queue, * false otherwise. * @requires_kernel_cb: true if a CB handle must be provided for jobs on this * queue, false otherwise (a CB address must be provided). */ struct hw_queue_properties { enum hl_queue_type type; u8 driver_only; u8 requires_kernel_cb; }; /** * enum vm_type_t - virtual memory mapping request information. * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. */ enum vm_type_t { VM_TYPE_USERPTR = 0x1, VM_TYPE_PHYS_PACK = 0x2 }; /** * enum hl_device_hw_state - H/W device state. use this to understand whether * to do reset before hw_init or not * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute * hw_init */ enum hl_device_hw_state { HL_DEVICE_HW_STATE_CLEAN = 0, HL_DEVICE_HW_STATE_DIRTY }; /** * struct hl_mmu_properties - ASIC specific MMU address translation properties. * @start_addr: virtual start address of the memory region. * @end_addr: virtual end address of the memory region. * @hop0_shift: shift of hop 0 mask. * @hop1_shift: shift of hop 1 mask. * @hop2_shift: shift of hop 2 mask. * @hop3_shift: shift of hop 3 mask. * @hop4_shift: shift of hop 4 mask. * @hop0_mask: mask to get the PTE address in hop 0. * @hop1_mask: mask to get the PTE address in hop 1. * @hop2_mask: mask to get the PTE address in hop 2. * @hop3_mask: mask to get the PTE address in hop 3. * @hop4_mask: mask to get the PTE address in hop 4. * @page_size: default page size used to allocate memory. */ struct hl_mmu_properties { u64 start_addr; u64 end_addr; u64 hop0_shift; u64 hop1_shift; u64 hop2_shift; u64 hop3_shift; u64 hop4_shift; u64 hop0_mask; u64 hop1_mask; u64 hop2_mask; u64 hop3_mask; u64 hop4_mask; u32 page_size; }; /** * struct asic_fixed_properties - ASIC specific immutable properties. * @hw_queues_props: H/W queues properties. * @armcp_info: received various information from ArmCP regarding the H/W, e.g. * available sensors. * @uboot_ver: F/W U-boot version. * @preboot_ver: F/W Preboot version. * @dmmu: DRAM MMU address translation properties. * @pmmu: PCI (host) MMU address translation properties. * @pmmu_huge: PCI (host) MMU address translation properties for memory * allocated with huge pages. * @sram_base_address: SRAM physical start address. * @sram_end_address: SRAM physical end address. * @sram_user_base_address - SRAM physical start address for user access. * @dram_base_address: DRAM physical start address. * @dram_end_address: DRAM physical end address. * @dram_user_base_address: DRAM physical start address for user access. * @dram_size: DRAM total size. * @dram_pci_bar_size: size of PCI bar towards DRAM. * @max_power_default: max power of the device after reset * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page * fault. * @pcie_dbi_base_address: Base address of the PCIE_DBI block. * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. * @mmu_dram_default_page_addr: DRAM default page physical address. * @mmu_pgt_size: MMU page tables total size. * @mmu_pte_size: PTE size in MMU page tables. * @mmu_hop_table_size: MMU hop table size. * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. * @dram_page_size: page size for MMU DRAM allocation. * @cfg_size: configuration space size on SRAM. * @sram_size: total size of SRAM. * @max_asid: maximum number of open contexts (ASIDs). * @num_of_events: number of possible internal H/W IRQs. * @psoc_pci_pll_nr: PCI PLL NR value. * @psoc_pci_pll_nf: PCI PLL NF value. * @psoc_pci_pll_od: PCI PLL OD value. * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. * @high_pll: high PLL frequency used by the device. * @cb_pool_cb_cnt: number of CBs in the CB pool. * @cb_pool_cb_size: size of each CB in the CB pool. * @tpc_enabled_mask: which TPCs are enabled. * @completion_queues_count: number of completion queues. */ struct asic_fixed_properties { struct hw_queue_properties hw_queues_props[HL_MAX_QUEUES]; struct armcp_info armcp_info; char uboot_ver[VERSION_MAX_LEN]; char preboot_ver[VERSION_MAX_LEN]; struct hl_mmu_properties dmmu; struct hl_mmu_properties pmmu; struct hl_mmu_properties pmmu_huge; u64 sram_base_address; u64 sram_end_address; u64 sram_user_base_address; u64 dram_base_address; u64 dram_end_address; u64 dram_user_base_address; u64 dram_size; u64 dram_pci_bar_size; u64 max_power_default; u64 dram_size_for_default_page_mapping; u64 pcie_dbi_base_address; u64 pcie_aux_dbi_reg_addr; u64 mmu_pgt_addr; u64 mmu_dram_default_page_addr; u32 mmu_pgt_size; u32 mmu_pte_size; u32 mmu_hop_table_size; u32 mmu_hop0_tables_total_size; u32 dram_page_size; u32 cfg_size; u32 sram_size; u32 max_asid; u32 num_of_events; u32 psoc_pci_pll_nr; u32 psoc_pci_pll_nf; u32 psoc_pci_pll_od; u32 psoc_pci_pll_div_factor; u32 high_pll; u32 cb_pool_cb_cnt; u32 cb_pool_cb_size; u8 tpc_enabled_mask; u8 completion_queues_count; }; /** * struct hl_dma_fence - wrapper for fence object used by command submissions. * @base_fence: kernel fence object. * @lock: spinlock to protect fence. * @hdev: habanalabs device structure. * @cs_seq: command submission sequence number. */ struct hl_dma_fence { struct dma_fence base_fence; spinlock_t lock; struct hl_device *hdev; u64 cs_seq; }; /* * Command Buffers */ /** * struct hl_cb_mgr - describes a Command Buffer Manager. * @cb_lock: protects cb_handles. * @cb_handles: an idr to hold all command buffer handles. */ struct hl_cb_mgr { spinlock_t cb_lock; struct idr cb_handles; /* protected by cb_lock */ }; /** * struct hl_cb - describes a Command Buffer. * @refcount: reference counter for usage of the CB. * @hdev: pointer to device this CB belongs to. * @lock: spinlock to protect mmap/cs flows. * @debugfs_list: node in debugfs list of command buffers. * @pool_list: node in pool list of command buffers. * @kernel_address: Holds the CB's kernel virtual address. * @bus_address: Holds the CB's DMA address. * @mmap_size: Holds the CB's size that was mmaped. * @size: holds the CB's size. * @id: the CB's ID. * @cs_cnt: holds number of CS that this CB participates in. * @ctx_id: holds the ID of the owner's context. * @mmap: true if the CB is currently mmaped to user. * @is_pool: true if CB was acquired from the pool, false otherwise. */ struct hl_cb { struct kref refcount; struct hl_device *hdev; spinlock_t lock; struct list_head debugfs_list; struct list_head pool_list; u64 kernel_address; dma_addr_t bus_address; u32 mmap_size; u32 size; u32 id; u32 cs_cnt; u32 ctx_id; u8 mmap; u8 is_pool; }; /* * QUEUES */ struct hl_cs_job; /* * Currently, there are two limitations on the maximum length of a queue: * * 1. The memory footprint of the queue. The current allocated space for the * queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE, * the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE, * which currently is 4096/16 = 256 entries. * * To increase that, we need either to decrease the size of the * BD (difficult), or allocate more than a single page (easier). * * 2. Because the size of the JOB handle field in the BD CTL / completion queue * is 10-bit, we can have up to 1024 open jobs per hardware queue. * Therefore, each queue can hold up to 1024 entries. * * HL_QUEUE_LENGTH is in units of struct hl_bd. * HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE */ #define HL_PAGE_SIZE 4096 /* minimum page size */ /* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */ #define HL_QUEUE_LENGTH 256 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) /* * HL_CQ_LENGTH is in units of struct hl_cq_entry. * HL_CQ_LENGTH should be <= HL_PAGE_SIZE */ #define HL_CQ_LENGTH HL_QUEUE_LENGTH #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) /* Must be power of 2 (HL_PAGE_SIZE / HL_EQ_ENTRY_SIZE) */ #define HL_EQ_LENGTH 64 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) /* Host <-> ArmCP shared memory size */ #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M /** * struct hl_hw_queue - describes a H/W transport queue. * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. * @queue_type: type of queue. * @kernel_address: holds the queue's kernel virtual address. * @bus_address: holds the queue's DMA address. * @pi: holds the queue's pi value. * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). * @hw_queue_id: the id of the H/W queue. * @int_queue_len: length of internal queue (number of entries). * @valid: is the queue valid (we have array of 32 queues, not all of them * exists). */ struct hl_hw_queue { struct hl_cs_job **shadow_queue; enum hl_queue_type queue_type; u64 kernel_address; dma_addr_t bus_address; u32 pi; u32 ci; u32 hw_queue_id; u16 int_queue_len; u8 valid; }; /** * struct hl_cq - describes a completion queue * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @hw_queue_id: the id of the matching H/W queue * @ci: ci inside the queue * @pi: pi inside the queue * @free_slots_cnt: counter of free slots in queue */ struct hl_cq { struct hl_device *hdev; u64 kernel_address; dma_addr_t bus_address; u32 hw_queue_id; u32 ci; u32 pi; atomic_t free_slots_cnt; }; /** * struct hl_eq - describes the event queue (single one per device) * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @ci: ci inside the queue */ struct hl_eq { struct hl_device *hdev; u64 kernel_address; dma_addr_t bus_address; u32 ci; }; /* * ASICs */ /** * enum hl_asic_type - supported ASIC types. * @ASIC_INVALID: Invalid ASIC type. * @ASIC_GOYA: Goya device. * @ASIC_GAUDI: Gaudi device. */ enum hl_asic_type { ASIC_INVALID, ASIC_GOYA, ASIC_GAUDI }; struct hl_cs_parser; /** * enum hl_pm_mng_profile - power management profile. * @PM_AUTO: internal clock is set by the Linux driver. * @PM_MANUAL: internal clock is set by the user. * @PM_LAST: last power management type. */ enum hl_pm_mng_profile { PM_AUTO = 1, PM_MANUAL, PM_LAST }; /** * enum hl_pll_frequency - PLL frequency. * @PLL_HIGH: high frequency. * @PLL_LOW: low frequency. * @PLL_LAST: last frequency values that were configured by the user. */ enum hl_pll_frequency { PLL_HIGH = 1, PLL_LOW, PLL_LAST }; /** * struct hl_asic_funcs - ASIC specific functions that are can be called from * common code. * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. * @early_fini: tears down what was done in early_init. * @late_init: sets up late driver/hw state (post hw_init) - Optional. * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. * @sw_init: sets up driver state, does not configure H/W. * @sw_fini: tears down driver state, does not configure H/W. * @hw_init: sets up the H/W state. * @hw_fini: tears down the H/W state. * @halt_engines: halt engines, needed for reset sequence. This also disables * interrupts from the device. Should be called before * hw_fini and before CS rollback. * @suspend: handles IP specific H/W or SW changes for suspend. * @resume: handles IP specific H/W or SW changes for resume. * @cb_mmap: maps a CB. * @ring_doorbell: increment PI on a given QMAN. * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific * function because the PQs are located in different memory areas * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of * writing the PQE must match the destination memory area * properties. * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling * dma_alloc_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @asic_dma_free_coherent: Free coherent DMA memory by calling * dma_free_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @get_int_queue_base: get the internal queue base address. * @test_queues: run simple test on all queues for sanity check. * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. * size of allocation is HL_DMA_POOL_BLK_SIZE. * @asic_dma_pool_free: free small DMA allocation from pool. * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. * @hl_dma_unmap_sg: DMA unmap scatter-gather list. * @cs_parser: parse Command Submission. * @asic_dma_map_sg: DMA map scatter-gather list. * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB. * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. * @update_eq_ci: update event queue CI. * @context_switch: called upon ASID context switch. * @restore_phase_topology: clear all SOBs amd MONs. * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM. * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM. * @add_device_attr: add ASIC specific device attributes. * @handle_eqe: handle event queue entry (IRQ) from ArmCP. * @set_pll_profile: change PLL profile (manual/automatic). * @get_events_stat: retrieve event queue entries histogram. * @read_pte: read MMU page table entry from DRAM. * @write_pte: write MMU page table entry to DRAM. * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft * (L1 only) or hard (L0 & L1) flush. * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with * ASID-VA-size mask. * @send_heartbeat: send is-alive packet to ArmCP and verify response. * @debug_coresight: perform certain actions on Coresight for debugging. * @is_device_idle: return true if device is idle, false otherwise. * @soft_reset_late_init: perform certain actions needed after soft reset. * @hw_queues_lock: acquire H/W queues lock. * @hw_queues_unlock: release H/W queues lock. * @get_pci_id: retrieve PCI ID. * @get_eeprom_data: retrieve EEPROM data from F/W. * @send_cpu_message: send buffer to ArmCP. * @get_hw_state: retrieve the H/W state * @pci_bars_map: Map PCI BARs. * @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns * old address the bar pointed to or U64_MAX for failure * @init_iatu: Initialize the iATU unit inside the PCI controller. * @rreg: Read a register. Needed for simulator support. * @wreg: Write a register. Needed for simulator support. * @halt_coresight: stop the ETF and ETR traces. * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz */ struct hl_asic_funcs { int (*early_init)(struct hl_device *hdev); int (*early_fini)(struct hl_device *hdev); int (*late_init)(struct hl_device *hdev); void (*late_fini)(struct hl_device *hdev); int (*sw_init)(struct hl_device *hdev); int (*sw_fini)(struct hl_device *hdev); int (*hw_init)(struct hl_device *hdev); void (*hw_fini)(struct hl_device *hdev, bool hard_reset); void (*halt_engines)(struct hl_device *hdev, bool hard_reset); int (*suspend)(struct hl_device *hdev); int (*resume)(struct hl_device *hdev); int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, u64 kaddress, phys_addr_t paddress, u32 size); void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd); void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag); void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle); void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, dma_addr_t *dma_handle, u16 *queue_len); int (*test_queues)(struct hl_device *hdev); void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle); void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr); void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, size_t size, void *vaddr); void (*hl_dma_unmap_sg)(struct hl_device *hdev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); int (*asic_dma_map_sg)(struct hl_device *hdev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); u32 (*get_dma_desc_list_size)(struct hl_device *hdev, struct sg_table *sgt); void (*add_end_of_cb_packets)(struct hl_device *hdev, u64 kernel_address, u32 len, u64 cq_addr, u32 cq_val, u32 msix_num); void (*update_eq_ci)(struct hl_device *hdev, u32 val); int (*context_switch)(struct hl_device *hdev, u32 asid); void (*restore_phase_topology)(struct hl_device *hdev); int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val); int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val); int (*debugfs_read64)(struct hl_device *hdev, u64 addr, u64 *val); int (*debugfs_write64)(struct hl_device *hdev, u64 addr, u64 val); void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_attr_grp); void (*handle_eqe)(struct hl_device *hdev, struct hl_eq_entry *eq_entry); void (*set_pll_profile)(struct hl_device *hdev, enum hl_pll_frequency freq); void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, u32 *size); u64 (*read_pte)(struct hl_device *hdev, u64 addr); void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, u32 flags); void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, u32 asid, u64 va, u64 size); int (*send_heartbeat)(struct hl_device *hdev); int (*debug_coresight)(struct hl_device *hdev, void *data); bool (*is_device_idle)(struct hl_device *hdev, u32 *mask, struct seq_file *s); int (*soft_reset_late_init)(struct hl_device *hdev); void (*hw_queues_lock)(struct hl_device *hdev); void (*hw_queues_unlock)(struct hl_device *hdev); u32 (*get_pci_id)(struct hl_device *hdev); int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, u16 len, u32 timeout, long *result); enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev); int (*pci_bars_map)(struct hl_device *hdev); u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); int (*init_iatu)(struct hl_device *hdev); u32 (*rreg)(struct hl_device *hdev, u32 reg); void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); void (*halt_coresight)(struct hl_device *hdev); int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); }; /* * CONTEXTS */ #define HL_KERNEL_ASID_ID 0 /** * struct hl_va_range - virtual addresses range. * @lock: protects the virtual addresses list. * @list: list of virtual addresses blocks available for mappings. * @start_addr: range start address. * @end_addr: range end address. */ struct hl_va_range { struct mutex lock; struct list_head list; u64 start_addr; u64 end_addr; }; /** * struct hl_ctx - user/kernel context. * @mem_hash: holds mapping from virtual address to virtual memory area * descriptor (hl_vm_phys_pg_list or hl_userptr). * @mmu_phys_hash: holds a mapping from physical address to pgt_info structure. * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). * @hdev: pointer to the device structure. * @refcount: reference counter for the context. Context is released only when * this hits 0l. It is incremented on CS and CS_WAIT. * @cs_pending: array of DMA fence objects representing pending CS. * @host_va_range: holds available virtual addresses for host mappings. * @host_huge_va_range: holds available virtual addresses for host mappings * with huge pages. * @dram_va_range: holds available virtual addresses for DRAM mappings. * @mem_hash_lock: protects the mem_hash. * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the * MMU hash or walking the PGT requires talking this lock * @debugfs_list: node in debugfs list of contexts. * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed * to user so user could inquire about CS. It is used as * index to cs_pending array. * @dram_default_hops: array that holds all hops addresses needed for default * DRAM mapping. * @cs_lock: spinlock to protect cs_sequence. * @dram_phys_mem: amount of used physical DRAM memory by this context. * @thread_ctx_switch_token: token to prevent multiple threads of the same * context from running the context switch phase. * Only a single thread should run it. * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run * the context switch phase from moving to their * execution phase before the context switch phase * has finished. * @asid: context's unique address space ID in the device's MMU. * @handle: context's opaque handle for user */ struct hl_ctx { DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); DECLARE_HASHTABLE(mmu_phys_hash, MMU_HASH_TABLE_BITS); DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); struct hl_fpriv *hpriv; struct hl_device *hdev; struct kref refcount; struct dma_fence *cs_pending[HL_MAX_PENDING_CS]; struct hl_va_range *host_va_range; struct hl_va_range *host_huge_va_range; struct hl_va_range *dram_va_range; struct mutex mem_hash_lock; struct mutex mmu_lock; struct list_head debugfs_list; u64 cs_sequence; u64 *dram_default_hops; spinlock_t cs_lock; atomic64_t dram_phys_mem; atomic_t thread_ctx_switch_token; u32 thread_ctx_switch_wait_token; u32 asid; u32 handle; }; /** * struct hl_ctx_mgr - for handling multiple contexts. * @ctx_lock: protects ctx_handles. * @ctx_handles: idr to hold all ctx handles. */ struct hl_ctx_mgr { struct mutex ctx_lock; struct idr ctx_handles; }; /* * COMMAND SUBMISSIONS */ /** * struct hl_userptr - memory mapping chunk information * @vm_type: type of the VM. * @job_node: linked-list node for hanging the object on the Job's list. * @vec: pointer to the frame vector. * @sgt: pointer to the scatter-gather table that holds the pages. * @dir: for DMA unmapping, the direction must be supplied, so save it. * @debugfs_list: node in debugfs list of command submissions. * @addr: user-space virtual address of the start of the memory area. * @size: size of the memory area to pin & map. * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. */ struct hl_userptr { enum vm_type_t vm_type; /* must be first */ struct list_head job_node; struct frame_vector *vec; struct sg_table *sgt; enum dma_data_direction dir; struct list_head debugfs_list; u64 addr; u32 size; u8 dma_mapped; }; /** * struct hl_cs - command submission. * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. * @ctx: the context this CS belongs to. * @job_list: list of the CS's jobs in the various queues. * @job_lock: spinlock for the CS's jobs list. Needed for free_job. * @refcount: reference counter for usage of the CS. * @fence: pointer to the fence object of this CS. * @work_tdr: delayed work node for TDR. * @mirror_node : node in device mirror list of command submissions. * @debugfs_list: node in debugfs list of command submissions. * @sequence: the sequence number of this CS. * @submitted: true if CS was submitted to H/W. * @completed: true if CS was completed by device. * @timedout : true if CS was timedout. * @tdr_active: true if TDR was activated for this CS (to prevent * double TDR activation). * @aborted: true if CS was aborted due to some device error. */ struct hl_cs { u16 jobs_in_queue_cnt[HL_MAX_QUEUES]; struct hl_ctx *ctx; struct list_head job_list; spinlock_t job_lock; struct kref refcount; struct dma_fence *fence; struct delayed_work work_tdr; struct list_head mirror_node; struct list_head debugfs_list; u64 sequence; u8 submitted; u8 completed; u8 timedout; u8 tdr_active; u8 aborted; }; /** * struct hl_cs_job - command submission job. * @cs_node: the node to hang on the CS jobs list. * @cs: the CS this job belongs to. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @finish_work: workqueue object to run when job is completed. * @userptr_list: linked-list of userptr mappings that belong to this job and * wait for completion. * @debugfs_list: node in debugfs list of command submission jobs. * @queue_type: the type of the H/W queue this job is submitted to. * @id: the id of this job inside a CS. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @job_cb_size: the actual size of the CB that we put on the queue. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). */ struct hl_cs_job { struct list_head cs_node; struct hl_cs *cs; struct hl_cb *user_cb; struct hl_cb *patched_cb; struct work_struct finish_work; struct list_head userptr_list; struct list_head debugfs_list; enum hl_queue_type queue_type; u32 id; u32 hw_queue_id; u32 user_cb_size; u32 job_cb_size; u8 is_kernel_allocated_cb; }; /** * struct hl_cs_parser - command submission parser properties. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @job_userptr_list: linked-list of userptr mappings that belong to the related * job and wait for completion. * @cs_sequence: the sequence number of the related CS. * @queue_type: the type of the H/W queue this job is submitted to. * @ctx_id: the ID of the context the related CS belongs to. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @patched_cb_size: the size of the CB after parsing. * @job_id: the id of the related job inside the related CS. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). */ struct hl_cs_parser { struct hl_cb *user_cb; struct hl_cb *patched_cb; struct list_head *job_userptr_list; u64 cs_sequence; enum hl_queue_type queue_type; u32 ctx_id; u32 hw_queue_id; u32 user_cb_size; u32 patched_cb_size; u8 job_id; u8 is_kernel_allocated_cb; }; /* * MEMORY STRUCTURE */ /** * struct hl_vm_hash_node - hash element from virtual address to virtual * memory area descriptor (hl_vm_phys_pg_list or * hl_userptr). * @node: node to hang on the hash table in context object. * @vaddr: key virtual address. * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). */ struct hl_vm_hash_node { struct hlist_node node; u64 vaddr; void *ptr; }; /** * struct hl_vm_phys_pg_pack - physical page pack. * @vm_type: describes the type of the virtual area descriptor. * @pages: the physical page array. * @npages: num physical pages in the pack. * @total_size: total size of all the pages in this list. * @mapping_cnt: number of shared mappings. * @asid: the context related to this list. * @page_size: size of each page in the pack. * @flags: HL_MEM_* flags related to this list. * @handle: the provided handle related to this list. * @offset: offset from the first page. * @contiguous: is contiguous physical memory. * @created_from_userptr: is product of host virtual address. */ struct hl_vm_phys_pg_pack { enum vm_type_t vm_type; /* must be first */ u64 *pages; u64 npages; u64 total_size; atomic_t mapping_cnt; u32 asid; u32 page_size; u32 flags; u32 handle; u32 offset; u8 contiguous; u8 created_from_userptr; }; /** * struct hl_vm_va_block - virtual range block information. * @node: node to hang on the virtual range list in context object. * @start: virtual range start address. * @end: virtual range end address. * @size: virtual range size. */ struct hl_vm_va_block { struct list_head node; u64 start; u64 end; u64 size; }; /** * struct hl_vm - virtual memory manager for MMU. * @dram_pg_pool: pool for DRAM physical pages of 2MB. * @dram_pg_pool_refcount: reference counter for the pool usage. * @idr_lock: protects the phys_pg_list_handles. * @phys_pg_pack_handles: idr to hold all device allocations handles. * @init_done: whether initialization was done. We need this because VM * initialization might be skipped during device initialization. */ struct hl_vm { struct gen_pool *dram_pg_pool; struct kref dram_pg_pool_refcount; spinlock_t idr_lock; struct idr phys_pg_pack_handles; u8 init_done; }; /* * DEBUG, PROFILING STRUCTURE */ /** * struct hl_debug_params - Coresight debug parameters. * @input: pointer to component specific input parameters. * @output: pointer to component specific output parameters. * @output_size: size of output buffer. * @reg_idx: relevant register ID. * @op: component operation to execute. * @enable: true if to enable component debugging, false otherwise. */ struct hl_debug_params { void *input; void *output; u32 output_size; u32 reg_idx; u32 op; bool enable; }; /* * FILE PRIVATE STRUCTURE */ /** * struct hl_fpriv - process information stored in FD private data. * @hdev: habanalabs device structure. * @filp: pointer to the given file structure. * @taskpid: current process ID. * @ctx: current executing context. TODO: remove for multiple ctx per process * @ctx_mgr: context manager to handle multiple context for this FD. * @cb_mgr: command buffer manager to handle multiple buffers for this FD. * @debugfs_list: list of relevant ASIC debugfs. * @dev_node: node in the device list of file private data * @refcount: number of related contexts. * @restore_phase_mutex: lock for context switch and restore phase. * @is_control: true for control device, false otherwise */ struct hl_fpriv { struct hl_device *hdev; struct file *filp; struct pid *taskpid; struct hl_ctx *ctx; struct hl_ctx_mgr ctx_mgr; struct hl_cb_mgr cb_mgr; struct list_head debugfs_list; struct list_head dev_node; struct kref refcount; struct mutex restore_phase_mutex; u8 is_control; }; /* * DebugFS */ /** * struct hl_info_list - debugfs file ops. * @name: file name. * @show: function to output information. * @write: function to write to the file. */ struct hl_info_list { const char *name; int (*show)(struct seq_file *s, void *data); ssize_t (*write)(struct file *file, const char __user *buf, size_t count, loff_t *f_pos); }; /** * struct hl_debugfs_entry - debugfs dentry wrapper. * @dent: base debugfs entry structure. * @info_ent: dentry realted ops. * @dev_entry: ASIC specific debugfs manager. */ struct hl_debugfs_entry { struct dentry *dent; const struct hl_info_list *info_ent; struct hl_dbg_device_entry *dev_entry; }; /** * struct hl_dbg_device_entry - ASIC specific debugfs manager. * @root: root dentry. * @hdev: habanalabs device structure. * @entry_arr: array of available hl_debugfs_entry. * @file_list: list of available debugfs files. * @file_mutex: protects file_list. * @cb_list: list of available CBs. * @cb_spinlock: protects cb_list. * @cs_list: list of available CSs. * @cs_spinlock: protects cs_list. * @cs_job_list: list of available CB jobs. * @cs_job_spinlock: protects cs_job_list. * @userptr_list: list of available userptrs (virtual memory chunk descriptor). * @userptr_spinlock: protects userptr_list. * @ctx_mem_hash_list: list of available contexts with MMU mappings. * @ctx_mem_hash_spinlock: protects cb_list. * @addr: next address to read/write from/to in read/write32. * @mmu_addr: next virtual address to translate to physical address in mmu_show. * @mmu_asid: ASID to use while translating in mmu_show. * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read. * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read. */ struct hl_dbg_device_entry { struct dentry *root; struct hl_device *hdev; struct hl_debugfs_entry *entry_arr; struct list_head file_list; struct mutex file_mutex; struct list_head cb_list; spinlock_t cb_spinlock; struct list_head cs_list; spinlock_t cs_spinlock; struct list_head cs_job_list; spinlock_t cs_job_spinlock; struct list_head userptr_list; spinlock_t userptr_spinlock; struct list_head ctx_mem_hash_list; spinlock_t ctx_mem_hash_spinlock; u64 addr; u64 mmu_addr; u32 mmu_asid; u8 i2c_bus; u8 i2c_addr; u8 i2c_reg; }; /* * DEVICES */ /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. */ #define HL_MAX_MINORS 256 /* * Registers read & write functions. */ u32 hl_rreg(struct hl_device *hdev, u32 reg); void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ hdev->asic_funcs->rreg(hdev, (reg))) #define WREG32_P(reg, val, mask) \ do { \ u32 tmp_ = RREG32(reg); \ tmp_ &= (mask); \ tmp_ |= ((val) & ~(mask)); \ WREG32(reg, tmp_); \ } while (0) #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK #define WREG32_FIELD(reg, offset, field, val) \ WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ ~REG_FIELD_MASK(reg, field)) | \ (val) << REG_FIELD_SHIFT(reg, field)) /* Timeout should be longer when working with simulator but cap the * increased timeout to some maximum */ #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ ({ \ ktime_t __timeout; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ (val) = RREG32(addr); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = RREG32(addr); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) /* * address in this macro points always to a memory location in the * host's (server's) memory. That location is updated asynchronously * either by the direct access of the device or by another core. * * To work both in LE and BE architectures, we need to distinguish between the * two states (device or another core updates the memory location). Therefore, * if mem_written_by_device is true, the host memory being polled will be * updated directly by the device. If false, the host memory being polled will * be updated by host CPU. Required so host knows whether or not the memory * might need to be byte-swapped before returning value to caller. */ #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ mem_written_by_device) \ ({ \ ktime_t __timeout; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ /* Verify we read updates done by other cores or by device */ \ mb(); \ (val) = *((u32 *) (uintptr_t) (addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = *((u32 *) (uintptr_t) (addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \ timeout_us) \ ({ \ ktime_t __timeout; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ (val) = readl(addr); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = readl(addr); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) struct hwmon_chip_info; /** * struct hl_device_reset_work - reset workqueue task wrapper. * @reset_work: reset work to be done. * @hdev: habanalabs device structure. */ struct hl_device_reset_work { struct work_struct reset_work; struct hl_device *hdev; }; /** * struct hl_device_idle_busy_ts - used for calculating device utilization rate. * @idle_to_busy_ts: timestamp where device changed from idle to busy. * @busy_to_idle_ts: timestamp where device changed from busy to idle. */ struct hl_device_idle_busy_ts { ktime_t idle_to_busy_ts; ktime_t busy_to_idle_ts; }; /** * struct hl_device - habanalabs device structure. * @pdev: pointer to PCI device, can be NULL in case of simulator device. * @pcie_bar: array of available PCIe bars. * @rmmio: configuration area address on SRAM. * @cdev: related char device. * @cdev_ctrl: char device for control operations only (INFO IOCTL) * @dev: related kernel basic device structure. * @dev_ctrl: related kernel device structure for the control device * @work_freq: delayed work to lower device frequency if possible. * @work_heartbeat: delayed work for ArmCP is-alive check. * @asic_name: ASIC specific nmae. * @asic_type: ASIC specific type. * @completion_queue: array of hl_cq. * @cq_wq: work queue of completion queues for executing work in process context * @eq_wq: work queue of event queue for executing work in process context. * @kernel_ctx: Kernel driver context structure. * @kernel_queues: array of hl_hw_queue. * @hw_queues_mirror_list: CS mirror list for TDR. * @hw_queues_mirror_lock: protects hw_queues_mirror_list. * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs. * @event_queue: event queue for IRQ from ArmCP. * @dma_pool: DMA pool for small allocations. * @cpu_accessible_dma_mem: Host <-> ArmCP shared memory CPU address. * @cpu_accessible_dma_address: Host <-> ArmCP shared memory DMA address. * @cpu_accessible_dma_pool: Host <-> ArmCP shared memory pool. * @asid_bitmap: holds used/available ASIDs. * @asid_mutex: protects asid_bitmap. * @send_cpu_message_lock: enforces only one message in Host <-> ArmCP queue. * @debug_lock: protects critical section of setting debug mode for device * @asic_prop: ASIC specific immutable properties. * @asic_funcs: ASIC specific functions. * @asic_specific: ASIC specific information to use only from ASIC files. * @mmu_pgt_pool: pool of available MMU hops. * @vm: virtual memory manager for MMU. * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context. * @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone. * @hwmon_dev: H/W monitor device. * @pm_mng_profile: current power management profile. * @hl_chip_info: ASIC's sensors information. * @hl_debugfs: device's debugfs manager. * @cb_pool: list of preallocated CBs. * @cb_pool_lock: protects the CB pool. * @fpriv_list: list of file private data structures. Each structure is created * when a user opens the device * @fpriv_list_lock: protects the fpriv_list * @compute_ctx: current compute context executing. * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy * and vice-versa * @dram_used_mem: current DRAM memory consumption. * @timeout_jiffies: device CS timeout value. * @max_power: the max power of the device, as configured by the sysadmin. This * value is saved so in case of hard-reset, the driver will restore * this value and update the F/W after the re-initialization * @in_reset: is device in reset flow. * @curr_pll_profile: current PLL profile. * @cs_active_cnt: number of active command submissions on this device (active * means already in H/W queues) * @major: habanalabs kernel driver major. * @high_pll: high PLL profile frequency. * @soft_reset_cnt: number of soft reset since the driver was loaded. * @hard_reset_cnt: number of hard reset since the driver was loaded. * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr * @id: device minor. * @id_control: minor of the control device * @disabled: is device disabled. * @late_init_done: is late init stage was done during initialization. * @hwmon_initialized: is H/W monitor sensors was initialized. * @hard_reset_pending: is there a hard reset work pending. * @heartbeat: is heartbeat sanity check towards ArmCP enabled. * @reset_on_lockup: true if a reset should be done in case of stuck CS, false * otherwise. * @dram_supports_virtual_memory: is MMU enabled towards DRAM. * @dram_default_page_mapping: is DRAM default page mapping enabled. * @pmmu_huge_range: is a different virtual addresses range used for PMMU with * huge pages. * @init_done: is the initialization of the device done. * @mmu_enable: is MMU enabled. * @device_cpu_disabled: is the device CPU disabled (due to timeouts) * @dma_mask: the dma mask that was set for this device * @in_debug: is device under debug. This, together with fpriv_list, enforces * that only a single user is configuring the debug infrastructure. * @cdev_sysfs_created: were char devices and sysfs nodes created. */ struct hl_device { struct pci_dev *pdev; void __iomem *pcie_bar[6]; void __iomem *rmmio; struct cdev cdev; struct cdev cdev_ctrl; struct device *dev; struct device *dev_ctrl; struct delayed_work work_freq; struct delayed_work work_heartbeat; char asic_name[16]; enum hl_asic_type asic_type; struct hl_cq *completion_queue; struct workqueue_struct *cq_wq; struct workqueue_struct *eq_wq; struct hl_ctx *kernel_ctx; struct hl_hw_queue *kernel_queues; struct list_head hw_queues_mirror_list; spinlock_t hw_queues_mirror_lock; struct hl_cb_mgr kernel_cb_mgr; struct hl_eq event_queue; struct dma_pool *dma_pool; void *cpu_accessible_dma_mem; dma_addr_t cpu_accessible_dma_address; struct gen_pool *cpu_accessible_dma_pool; unsigned long *asid_bitmap; struct mutex asid_mutex; struct mutex send_cpu_message_lock; struct mutex debug_lock; struct asic_fixed_properties asic_prop; const struct hl_asic_funcs *asic_funcs; void *asic_specific; struct gen_pool *mmu_pgt_pool; struct hl_vm vm; struct mutex mmu_cache_lock; void *mmu_shadow_hop0; struct device *hwmon_dev; enum hl_pm_mng_profile pm_mng_profile; struct hwmon_chip_info *hl_chip_info; struct hl_dbg_device_entry hl_debugfs; struct list_head cb_pool; spinlock_t cb_pool_lock; struct list_head fpriv_list; struct mutex fpriv_list_lock; struct hl_ctx *compute_ctx; struct hl_device_idle_busy_ts *idle_busy_ts_arr; atomic64_t dram_used_mem; u64 timeout_jiffies; u64 max_power; atomic_t in_reset; enum hl_pll_frequency curr_pll_profile; int cs_active_cnt; u32 major; u32 high_pll; u32 soft_reset_cnt; u32 hard_reset_cnt; u32 idle_busy_ts_idx; u16 id; u16 id_control; u8 disabled; u8 late_init_done; u8 hwmon_initialized; u8 hard_reset_pending; u8 heartbeat; u8 reset_on_lockup; u8 dram_supports_virtual_memory; u8 dram_default_page_mapping; u8 pmmu_huge_range; u8 init_done; u8 device_cpu_disabled; u8 dma_mask; u8 in_debug; u8 cdev_sysfs_created; /* Parameters for bring-up */ u8 mmu_enable; u8 cpu_enable; u8 reset_pcilink; u8 cpu_queues_enable; u8 fw_loading; u8 pldm; }; /* * IOCTLs */ /** * typedef hl_ioctl_t - typedef for ioctl function in the driver * @hpriv: pointer to the FD's private data, which contains state of * user process * @data: pointer to the input/output arguments structure of the IOCTL * * Return: 0 for success, negative value for error */ typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); /** * struct hl_ioctl_desc - describes an IOCTL entry of the driver. * @cmd: the IOCTL code as created by the kernel macros. * @func: pointer to the driver's function that should be called for this IOCTL. */ struct hl_ioctl_desc { unsigned int cmd; hl_ioctl_t *func; }; /* * Kernel module functions that can be accessed by entire module */ /** * hl_mem_area_inside_range() - Checks whether address+size are inside a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area is inside the valid range, false otherwise. */ static inline bool hl_mem_area_inside_range(u64 address, u32 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size; if ((address >= range_start_address) && (end_address <= range_end_address) && (end_address > address)) return true; return false; } /** * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area overlaps part or all of the valid range, * false otherwise. */ static inline bool hl_mem_area_crosses_range(u64 address, u32 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size; if ((address >= range_start_address) && (address < range_end_address)) return true; if ((end_address >= range_start_address) && (end_address < range_end_address)) return true; if ((address < range_start_address) && (end_address >= range_end_address)) return true; return false; } int hl_device_open(struct inode *inode, struct file *filp); int hl_device_open_ctrl(struct inode *inode, struct file *filp); bool hl_device_disabled_or_in_reset(struct hl_device *hdev); enum hl_device_status hl_device_status(struct hl_device *hdev); int hl_device_set_debug_mode(struct hl_device *hdev, bool enable); int create_hdev(struct hl_device **dev, struct pci_dev *pdev, enum hl_asic_type asic_type, int minor); void destroy_hdev(struct hl_device *hdev); int hl_hw_queues_create(struct hl_device *hdev); void hl_hw_queues_destroy(struct hl_device *hdev); int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, u32 cb_size, u64 cb_ptr); int hl_hw_queue_schedule_cs(struct hl_cs *cs); u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); void hl_int_hw_queue_update_ci(struct hl_cs *cs); void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); irqreturn_t hl_irq_handler_cq(int irq, void *arg); irqreturn_t hl_irq_handler_eq(int irq, void *arg); u32 hl_cq_inc_ptr(u32 ptr); int hl_asid_init(struct hl_device *hdev); void hl_asid_fini(struct hl_device *hdev); unsigned long hl_asid_alloc(struct hl_device *hdev); void hl_asid_free(struct hl_device *hdev, unsigned long asid); int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); void hl_ctx_do_release(struct kref *ref); void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx); int hl_ctx_put(struct hl_ctx *ctx); struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); int hl_device_init(struct hl_device *hdev, struct class *hclass); void hl_device_fini(struct hl_device *hdev); int hl_device_suspend(struct hl_device *hdev); int hl_device_resume(struct hl_device *hdev); int hl_device_reset(struct hl_device *hdev, bool hard_reset, bool from_hard_reset_thread); void hl_hpriv_get(struct hl_fpriv *hpriv); void hl_hpriv_put(struct hl_fpriv *hpriv); int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq); uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms); int hl_build_hwmon_channel_info(struct hl_device *hdev, struct armcp_sensor *sensors_arr); int hl_sysfs_init(struct hl_device *hdev); void hl_sysfs_fini(struct hl_device *hdev); int hl_hwmon_init(struct hl_device *hdev); void hl_hwmon_fini(struct hl_device *hdev); int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size, u64 *handle, int ctx_id); int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle); int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 handle); void hl_cb_put(struct hl_cb *cb); void hl_cb_mgr_init(struct hl_cb_mgr *mgr); void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr); struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size); int hl_cb_pool_init(struct hl_device *hdev); int hl_cb_pool_fini(struct hl_device *hdev); void hl_cs_rollback_all(struct hl_device *hdev); struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, enum hl_queue_type queue_type, bool is_kernel_allocated_cb); void goya_set_asic_funcs(struct hl_device *hdev); int hl_vm_ctx_init(struct hl_ctx *ctx); void hl_vm_ctx_fini(struct hl_ctx *ctx); int hl_vm_init(struct hl_device *hdev); void hl_vm_fini(struct hl_device *hdev); int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, struct hl_userptr *userptr); void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); void hl_userptr_delete_list(struct hl_device *hdev, struct list_head *userptr_list); bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, struct list_head *userptr_list, struct hl_userptr **userptr); int hl_mmu_init(struct hl_device *hdev); void hl_mmu_fini(struct hl_device *hdev); int hl_mmu_ctx_init(struct hl_ctx *ctx); void hl_mmu_ctx_fini(struct hl_ctx *ctx); int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte); int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte); void hl_mmu_swap_out(struct hl_ctx *ctx); void hl_mmu_swap_in(struct hl_ctx *ctx); int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name, void __iomem *dst); int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode); int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, u16 len, u32 timeout, long *result); int hl_fw_test_cpu_queue(struct hl_device *hdev); void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); int hl_fw_send_heartbeat(struct hl_device *hdev); int hl_fw_armcp_info_get(struct hl_device *hdev); int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], bool is_wc[3]); int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar, u64 addr); int hl_pci_init_iatu(struct hl_device *hdev, u64 sram_base_address, u64 dram_base_address, u64 host_phys_base_address, u64 host_phys_size); int hl_pci_init(struct hl_device *hdev, u8 dma_mask); void hl_pci_fini(struct hl_device *hdev); int hl_pci_set_dma_mask(struct hl_device *hdev, u8 dma_mask); long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); u64 hl_get_max_power(struct hl_device *hdev); void hl_set_max_power(struct hl_device *hdev, u64 value); #ifdef CONFIG_DEBUG_FS void hl_debugfs_init(void); void hl_debugfs_fini(void); void hl_debugfs_add_device(struct hl_device *hdev); void hl_debugfs_remove_device(struct hl_device *hdev); void hl_debugfs_add_file(struct hl_fpriv *hpriv); void hl_debugfs_remove_file(struct hl_fpriv *hpriv); void hl_debugfs_add_cb(struct hl_cb *cb); void hl_debugfs_remove_cb(struct hl_cb *cb); void hl_debugfs_add_cs(struct hl_cs *cs); void hl_debugfs_remove_cs(struct hl_cs *cs); void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); #else static inline void __init hl_debugfs_init(void) { } static inline void hl_debugfs_fini(void) { } static inline void hl_debugfs_add_device(struct hl_device *hdev) { } static inline void hl_debugfs_remove_device(struct hl_device *hdev) { } static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_add_cb(struct hl_cb *cb) { } static inline void hl_debugfs_remove_cb(struct hl_cb *cb) { } static inline void hl_debugfs_add_cs(struct hl_cs *cs) { } static inline void hl_debugfs_remove_cs(struct hl_cs *cs) { } static inline void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } #endif /* IOCTLs */ long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data); int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); #endif /* HABANALABSP_H_ */