// SPDX-License-Identifier: GPL-2.0-only /* * V4L2 asynchronous subdevice registration API * * Copyright (C) 2012-2013, Guennadi Liakhovetski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int v4l2_async_nf_call_bound(struct v4l2_async_notifier *n, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { if (!n->ops || !n->ops->bound) return 0; return n->ops->bound(n, subdev, asd); } static void v4l2_async_nf_call_unbind(struct v4l2_async_notifier *n, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { if (!n->ops || !n->ops->unbind) return; n->ops->unbind(n, subdev, asd); } static int v4l2_async_nf_call_complete(struct v4l2_async_notifier *n) { if (!n->ops || !n->ops->complete) return 0; return n->ops->complete(n); } static bool match_i2c(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_subdev *asd) { #if IS_ENABLED(CONFIG_I2C) struct i2c_client *client = i2c_verify_client(sd->dev); return client && asd->match.i2c.adapter_id == client->adapter->nr && asd->match.i2c.address == client->addr; #else return false; #endif } static bool match_fwnode(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_subdev *asd) { struct fwnode_handle *other_fwnode; struct fwnode_handle *dev_fwnode; bool asd_fwnode_is_ep; bool sd_fwnode_is_ep; struct device *dev; /* * Both the subdev and the async subdev can provide either an endpoint * fwnode or a device fwnode. Start with the simple case of direct * fwnode matching. */ if (sd->fwnode == asd->match.fwnode) return true; /* * Check the same situation for any possible secondary assigned to the * subdev's fwnode */ if (!IS_ERR_OR_NULL(sd->fwnode->secondary) && sd->fwnode->secondary == asd->match.fwnode) return true; /* * Otherwise, check if the sd fwnode and the asd fwnode refer to an * endpoint or a device. If they're of the same type, there's no match. * Technically speaking this checks if the nodes refer to a connected * endpoint, which is the simplest check that works for both OF and * ACPI. This won't make a difference, as drivers should not try to * match unconnected endpoints. */ sd_fwnode_is_ep = fwnode_graph_is_endpoint(sd->fwnode); asd_fwnode_is_ep = fwnode_graph_is_endpoint(asd->match.fwnode); if (sd_fwnode_is_ep == asd_fwnode_is_ep) return false; /* * The sd and asd fwnodes are of different types. Get the device fwnode * parent of the endpoint fwnode, and compare it with the other fwnode. */ if (sd_fwnode_is_ep) { dev_fwnode = fwnode_graph_get_port_parent(sd->fwnode); other_fwnode = asd->match.fwnode; } else { dev_fwnode = fwnode_graph_get_port_parent(asd->match.fwnode); other_fwnode = sd->fwnode; } fwnode_handle_put(dev_fwnode); if (dev_fwnode != other_fwnode) return false; /* * We have a heterogeneous match. Retrieve the struct device of the side * that matched on a device fwnode to print its driver name. */ if (sd_fwnode_is_ep) dev = notifier->v4l2_dev ? notifier->v4l2_dev->dev : notifier->sd->dev; else dev = sd->dev; if (dev && dev->driver) { if (sd_fwnode_is_ep) dev_warn(dev, "Driver %s uses device fwnode, incorrect match may occur\n", dev->driver->name); dev_notice(dev, "Consider updating driver %s to match on endpoints\n", dev->driver->name); } return true; } static LIST_HEAD(subdev_list); static LIST_HEAD(notifier_list); static DEFINE_MUTEX(list_lock); static struct v4l2_async_subdev * v4l2_async_find_match(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd) { bool (*match)(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_subdev *asd); struct v4l2_async_subdev *asd; list_for_each_entry(asd, ¬ifier->waiting, list) { /* bus_type has been verified valid before */ switch (asd->match_type) { case V4L2_ASYNC_MATCH_I2C: match = match_i2c; break; case V4L2_ASYNC_MATCH_FWNODE: match = match_fwnode; break; default: /* Cannot happen, unless someone breaks us */ WARN_ON(true); return NULL; } /* match cannot be NULL here */ if (match(notifier, sd, asd)) return asd; } return NULL; } /* Compare two async sub-device descriptors for equivalence */ static bool asd_equal(struct v4l2_async_subdev *asd_x, struct v4l2_async_subdev *asd_y) { if (asd_x->match_type != asd_y->match_type) return false; switch (asd_x->match_type) { case V4L2_ASYNC_MATCH_I2C: return asd_x->match.i2c.adapter_id == asd_y->match.i2c.adapter_id && asd_x->match.i2c.address == asd_y->match.i2c.address; case V4L2_ASYNC_MATCH_FWNODE: return asd_x->match.fwnode == asd_y->match.fwnode; default: break; } return false; } /* Find the sub-device notifier registered by a sub-device driver. */ static struct v4l2_async_notifier * v4l2_async_find_subdev_notifier(struct v4l2_subdev *sd) { struct v4l2_async_notifier *n; list_for_each_entry(n, ¬ifier_list, list) if (n->sd == sd) return n; return NULL; } /* Get v4l2_device related to the notifier if one can be found. */ static struct v4l2_device * v4l2_async_nf_find_v4l2_dev(struct v4l2_async_notifier *notifier) { while (notifier->parent) notifier = notifier->parent; return notifier->v4l2_dev; } /* * Return true if all child sub-device notifiers are complete, false otherwise. */ static bool v4l2_async_nf_can_complete(struct v4l2_async_notifier *notifier) { struct v4l2_subdev *sd; if (!list_empty(¬ifier->waiting)) return false; list_for_each_entry(sd, ¬ifier->done, async_list) { struct v4l2_async_notifier *subdev_notifier = v4l2_async_find_subdev_notifier(sd); if (subdev_notifier && !v4l2_async_nf_can_complete(subdev_notifier)) return false; } return true; } /* * Complete the master notifier if possible. This is done when all async * sub-devices have been bound; v4l2_device is also available then. */ static int v4l2_async_nf_try_complete(struct v4l2_async_notifier *notifier) { /* Quick check whether there are still more sub-devices here. */ if (!list_empty(¬ifier->waiting)) return 0; /* Check the entire notifier tree; find the root notifier first. */ while (notifier->parent) notifier = notifier->parent; /* This is root if it has v4l2_dev. */ if (!notifier->v4l2_dev) return 0; /* Is everything ready? */ if (!v4l2_async_nf_can_complete(notifier)) return 0; return v4l2_async_nf_call_complete(notifier); } static int v4l2_async_nf_try_all_subdevs(struct v4l2_async_notifier *notifier); static int v4l2_async_create_ancillary_links(struct v4l2_async_notifier *n, struct v4l2_subdev *sd) { struct media_link *link = NULL; #if IS_ENABLED(CONFIG_MEDIA_CONTROLLER) if (sd->entity.function != MEDIA_ENT_F_LENS && sd->entity.function != MEDIA_ENT_F_FLASH) return 0; link = media_create_ancillary_link(&n->sd->entity, &sd->entity); #endif return IS_ERR(link) ? PTR_ERR(link) : 0; } static int v4l2_async_match_notify(struct v4l2_async_notifier *notifier, struct v4l2_device *v4l2_dev, struct v4l2_subdev *sd, struct v4l2_async_subdev *asd) { struct v4l2_async_notifier *subdev_notifier; int ret; ret = v4l2_device_register_subdev(v4l2_dev, sd); if (ret < 0) return ret; ret = v4l2_async_nf_call_bound(notifier, sd, asd); if (ret < 0) { v4l2_device_unregister_subdev(sd); return ret; } /* * Depending of the function of the entities involved, we may want to * create links between them (for example between a sensor and its lens * or between a sensor's source pad and the connected device's sink * pad). */ ret = v4l2_async_create_ancillary_links(notifier, sd); if (ret) { v4l2_async_nf_call_unbind(notifier, sd, asd); v4l2_device_unregister_subdev(sd); return ret; } /* Remove from the waiting list */ list_del(&asd->list); sd->asd = asd; sd->notifier = notifier; /* Move from the global subdevice list to notifier's done */ list_move(&sd->async_list, ¬ifier->done); /* * See if the sub-device has a notifier. If not, return here. */ subdev_notifier = v4l2_async_find_subdev_notifier(sd); if (!subdev_notifier || subdev_notifier->parent) return 0; /* * Proceed with checking for the sub-device notifier's async * sub-devices, and return the result. The error will be handled by the * caller. */ subdev_notifier->parent = notifier; return v4l2_async_nf_try_all_subdevs(subdev_notifier); } /* Test all async sub-devices in a notifier for a match. */ static int v4l2_async_nf_try_all_subdevs(struct v4l2_async_notifier *notifier) { struct v4l2_device *v4l2_dev = v4l2_async_nf_find_v4l2_dev(notifier); struct v4l2_subdev *sd; if (!v4l2_dev) return 0; again: list_for_each_entry(sd, &subdev_list, async_list) { struct v4l2_async_subdev *asd; int ret; asd = v4l2_async_find_match(notifier, sd); if (!asd) continue; ret = v4l2_async_match_notify(notifier, v4l2_dev, sd, asd); if (ret < 0) return ret; /* * v4l2_async_match_notify() may lead to registering a * new notifier and thus changing the async subdevs * list. In order to proceed safely from here, restart * parsing the list from the beginning. */ goto again; } return 0; } static void v4l2_async_cleanup(struct v4l2_subdev *sd) { v4l2_device_unregister_subdev(sd); /* * Subdevice driver will reprobe and put the subdev back * onto the list */ list_del_init(&sd->async_list); sd->asd = NULL; } /* Unbind all sub-devices in the notifier tree. */ static void v4l2_async_nf_unbind_all_subdevs(struct v4l2_async_notifier *notifier) { struct v4l2_subdev *sd, *tmp; list_for_each_entry_safe(sd, tmp, ¬ifier->done, async_list) { struct v4l2_async_notifier *subdev_notifier = v4l2_async_find_subdev_notifier(sd); if (subdev_notifier) v4l2_async_nf_unbind_all_subdevs(subdev_notifier); v4l2_async_nf_call_unbind(notifier, sd, sd->asd); v4l2_async_cleanup(sd); list_move(&sd->async_list, &subdev_list); } notifier->parent = NULL; } /* See if an async sub-device can be found in a notifier's lists. */ static bool __v4l2_async_nf_has_async_subdev(struct v4l2_async_notifier *notifier, struct v4l2_async_subdev *asd) { struct v4l2_async_subdev *asd_y; struct v4l2_subdev *sd; list_for_each_entry(asd_y, ¬ifier->waiting, list) if (asd_equal(asd, asd_y)) return true; list_for_each_entry(sd, ¬ifier->done, async_list) { if (WARN_ON(!sd->asd)) continue; if (asd_equal(asd, sd->asd)) return true; } return false; } /* * Find out whether an async sub-device was set up already or * whether it exists in a given notifier before @this_index. * If @this_index < 0, search the notifier's entire @asd_list. */ static bool v4l2_async_nf_has_async_subdev(struct v4l2_async_notifier *notifier, struct v4l2_async_subdev *asd, int this_index) { struct v4l2_async_subdev *asd_y; int j = 0; lockdep_assert_held(&list_lock); /* Check that an asd is not being added more than once. */ list_for_each_entry(asd_y, ¬ifier->asd_list, asd_list) { if (this_index >= 0 && j++ >= this_index) break; if (asd_equal(asd, asd_y)) return true; } /* Check that an asd does not exist in other notifiers. */ list_for_each_entry(notifier, ¬ifier_list, list) if (__v4l2_async_nf_has_async_subdev(notifier, asd)) return true; return false; } static int v4l2_async_nf_asd_valid(struct v4l2_async_notifier *notifier, struct v4l2_async_subdev *asd, int this_index) { struct device *dev = notifier->v4l2_dev ? notifier->v4l2_dev->dev : NULL; if (!asd) return -EINVAL; switch (asd->match_type) { case V4L2_ASYNC_MATCH_I2C: case V4L2_ASYNC_MATCH_FWNODE: if (v4l2_async_nf_has_async_subdev(notifier, asd, this_index)) { dev_dbg(dev, "subdev descriptor already listed in this or other notifiers\n"); return -EEXIST; } break; default: dev_err(dev, "Invalid match type %u on %p\n", asd->match_type, asd); return -EINVAL; } return 0; } void v4l2_async_nf_init(struct v4l2_async_notifier *notifier) { INIT_LIST_HEAD(¬ifier->asd_list); } EXPORT_SYMBOL(v4l2_async_nf_init); static int __v4l2_async_nf_register(struct v4l2_async_notifier *notifier) { struct v4l2_async_subdev *asd; int ret, i = 0; INIT_LIST_HEAD(¬ifier->waiting); INIT_LIST_HEAD(¬ifier->done); mutex_lock(&list_lock); list_for_each_entry(asd, ¬ifier->asd_list, asd_list) { ret = v4l2_async_nf_asd_valid(notifier, asd, i++); if (ret) goto err_unlock; list_add_tail(&asd->list, ¬ifier->waiting); } ret = v4l2_async_nf_try_all_subdevs(notifier); if (ret < 0) goto err_unbind; ret = v4l2_async_nf_try_complete(notifier); if (ret < 0) goto err_unbind; /* Keep also completed notifiers on the list */ list_add(¬ifier->list, ¬ifier_list); mutex_unlock(&list_lock); return 0; err_unbind: /* * On failure, unbind all sub-devices registered through this notifier. */ v4l2_async_nf_unbind_all_subdevs(notifier); err_unlock: mutex_unlock(&list_lock); return ret; } int v4l2_async_nf_register(struct v4l2_device *v4l2_dev, struct v4l2_async_notifier *notifier) { int ret; if (WARN_ON(!v4l2_dev || notifier->sd)) return -EINVAL; notifier->v4l2_dev = v4l2_dev; ret = __v4l2_async_nf_register(notifier); if (ret) notifier->v4l2_dev = NULL; return ret; } EXPORT_SYMBOL(v4l2_async_nf_register); int v4l2_async_subdev_nf_register(struct v4l2_subdev *sd, struct v4l2_async_notifier *notifier) { int ret; if (WARN_ON(!sd || notifier->v4l2_dev)) return -EINVAL; notifier->sd = sd; ret = __v4l2_async_nf_register(notifier); if (ret) notifier->sd = NULL; return ret; } EXPORT_SYMBOL(v4l2_async_subdev_nf_register); static void __v4l2_async_nf_unregister(struct v4l2_async_notifier *notifier) { if (!notifier || (!notifier->v4l2_dev && !notifier->sd)) return; v4l2_async_nf_unbind_all_subdevs(notifier); notifier->sd = NULL; notifier->v4l2_dev = NULL; list_del(¬ifier->list); } void v4l2_async_nf_unregister(struct v4l2_async_notifier *notifier) { mutex_lock(&list_lock); __v4l2_async_nf_unregister(notifier); mutex_unlock(&list_lock); } EXPORT_SYMBOL(v4l2_async_nf_unregister); static void __v4l2_async_nf_cleanup(struct v4l2_async_notifier *notifier) { struct v4l2_async_subdev *asd, *tmp; if (!notifier || !notifier->asd_list.next) return; list_for_each_entry_safe(asd, tmp, ¬ifier->asd_list, asd_list) { switch (asd->match_type) { case V4L2_ASYNC_MATCH_FWNODE: fwnode_handle_put(asd->match.fwnode); break; default: break; } list_del(&asd->asd_list); kfree(asd); } } void v4l2_async_nf_cleanup(struct v4l2_async_notifier *notifier) { mutex_lock(&list_lock); __v4l2_async_nf_cleanup(notifier); mutex_unlock(&list_lock); } EXPORT_SYMBOL_GPL(v4l2_async_nf_cleanup); int __v4l2_async_nf_add_subdev(struct v4l2_async_notifier *notifier, struct v4l2_async_subdev *asd) { int ret; mutex_lock(&list_lock); ret = v4l2_async_nf_asd_valid(notifier, asd, -1); if (ret) goto unlock; list_add_tail(&asd->asd_list, ¬ifier->asd_list); unlock: mutex_unlock(&list_lock); return ret; } EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_subdev); struct v4l2_async_subdev * __v4l2_async_nf_add_fwnode(struct v4l2_async_notifier *notifier, struct fwnode_handle *fwnode, unsigned int asd_struct_size) { struct v4l2_async_subdev *asd; int ret; asd = kzalloc(asd_struct_size, GFP_KERNEL); if (!asd) return ERR_PTR(-ENOMEM); asd->match_type = V4L2_ASYNC_MATCH_FWNODE; asd->match.fwnode = fwnode_handle_get(fwnode); ret = __v4l2_async_nf_add_subdev(notifier, asd); if (ret) { fwnode_handle_put(fwnode); kfree(asd); return ERR_PTR(ret); } return asd; } EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_fwnode); struct v4l2_async_subdev * __v4l2_async_nf_add_fwnode_remote(struct v4l2_async_notifier *notif, struct fwnode_handle *endpoint, unsigned int asd_struct_size) { struct v4l2_async_subdev *asd; struct fwnode_handle *remote; remote = fwnode_graph_get_remote_endpoint(endpoint); if (!remote) return ERR_PTR(-ENOTCONN); asd = __v4l2_async_nf_add_fwnode(notif, remote, asd_struct_size); /* * Calling __v4l2_async_nf_add_fwnode grabs a refcount, * so drop the one we got in fwnode_graph_get_remote_port_parent. */ fwnode_handle_put(remote); return asd; } EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_fwnode_remote); struct v4l2_async_subdev * __v4l2_async_nf_add_i2c(struct v4l2_async_notifier *notifier, int adapter_id, unsigned short address, unsigned int asd_struct_size) { struct v4l2_async_subdev *asd; int ret; asd = kzalloc(asd_struct_size, GFP_KERNEL); if (!asd) return ERR_PTR(-ENOMEM); asd->match_type = V4L2_ASYNC_MATCH_I2C; asd->match.i2c.adapter_id = adapter_id; asd->match.i2c.address = address; ret = __v4l2_async_nf_add_subdev(notifier, asd); if (ret) { kfree(asd); return ERR_PTR(ret); } return asd; } EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_i2c); int v4l2_async_register_subdev(struct v4l2_subdev *sd) { struct v4l2_async_notifier *subdev_notifier; struct v4l2_async_notifier *notifier; int ret; /* * No reference taken. The reference is held by the device * (struct v4l2_subdev.dev), and async sub-device does not * exist independently of the device at any point of time. */ if (!sd->fwnode && sd->dev) sd->fwnode = dev_fwnode(sd->dev); mutex_lock(&list_lock); INIT_LIST_HEAD(&sd->async_list); list_for_each_entry(notifier, ¬ifier_list, list) { struct v4l2_device *v4l2_dev = v4l2_async_nf_find_v4l2_dev(notifier); struct v4l2_async_subdev *asd; if (!v4l2_dev) continue; asd = v4l2_async_find_match(notifier, sd); if (!asd) continue; ret = v4l2_async_match_notify(notifier, v4l2_dev, sd, asd); if (ret) goto err_unbind; ret = v4l2_async_nf_try_complete(notifier); if (ret) goto err_unbind; goto out_unlock; } /* None matched, wait for hot-plugging */ list_add(&sd->async_list, &subdev_list); out_unlock: mutex_unlock(&list_lock); return 0; err_unbind: /* * Complete failed. Unbind the sub-devices bound through registering * this async sub-device. */ subdev_notifier = v4l2_async_find_subdev_notifier(sd); if (subdev_notifier) v4l2_async_nf_unbind_all_subdevs(subdev_notifier); if (sd->asd) v4l2_async_nf_call_unbind(notifier, sd, sd->asd); v4l2_async_cleanup(sd); mutex_unlock(&list_lock); return ret; } EXPORT_SYMBOL(v4l2_async_register_subdev); void v4l2_async_unregister_subdev(struct v4l2_subdev *sd) { if (!sd->async_list.next) return; mutex_lock(&list_lock); __v4l2_async_nf_unregister(sd->subdev_notifier); __v4l2_async_nf_cleanup(sd->subdev_notifier); kfree(sd->subdev_notifier); sd->subdev_notifier = NULL; if (sd->asd) { struct v4l2_async_notifier *notifier = sd->notifier; list_add(&sd->asd->list, ¬ifier->waiting); v4l2_async_nf_call_unbind(notifier, sd, sd->asd); } v4l2_async_cleanup(sd); mutex_unlock(&list_lock); } EXPORT_SYMBOL(v4l2_async_unregister_subdev); static void print_waiting_subdev(struct seq_file *s, struct v4l2_async_subdev *asd) { switch (asd->match_type) { case V4L2_ASYNC_MATCH_I2C: seq_printf(s, " [i2c] dev=%d-%04x\n", asd->match.i2c.adapter_id, asd->match.i2c.address); break; case V4L2_ASYNC_MATCH_FWNODE: { struct fwnode_handle *devnode, *fwnode = asd->match.fwnode; devnode = fwnode_graph_is_endpoint(fwnode) ? fwnode_graph_get_port_parent(fwnode) : fwnode_handle_get(fwnode); seq_printf(s, " [fwnode] dev=%s, node=%pfw\n", devnode->dev ? dev_name(devnode->dev) : "nil", fwnode); fwnode_handle_put(devnode); break; } } } static const char * v4l2_async_nf_name(struct v4l2_async_notifier *notifier) { if (notifier->v4l2_dev) return notifier->v4l2_dev->name; else if (notifier->sd) return notifier->sd->name; else return "nil"; } static int pending_subdevs_show(struct seq_file *s, void *data) { struct v4l2_async_notifier *notif; struct v4l2_async_subdev *asd; mutex_lock(&list_lock); list_for_each_entry(notif, ¬ifier_list, list) { seq_printf(s, "%s:\n", v4l2_async_nf_name(notif)); list_for_each_entry(asd, ¬if->waiting, list) print_waiting_subdev(s, asd); } mutex_unlock(&list_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(pending_subdevs); static struct dentry *v4l2_async_debugfs_dir; static int __init v4l2_async_init(void) { v4l2_async_debugfs_dir = debugfs_create_dir("v4l2-async", NULL); debugfs_create_file("pending_async_subdevices", 0444, v4l2_async_debugfs_dir, NULL, &pending_subdevs_fops); return 0; } static void __exit v4l2_async_exit(void) { debugfs_remove_recursive(v4l2_async_debugfs_dir); } subsys_initcall(v4l2_async_init); module_exit(v4l2_async_exit); MODULE_AUTHOR("Guennadi Liakhovetski "); MODULE_AUTHOR("Sakari Ailus "); MODULE_AUTHOR("Ezequiel Garcia "); MODULE_LICENSE("GPL");