// SPDX-License-Identifier: GPL-2.0 /* * Vidtv serves as a reference DVB driver and helps validate the existing APIs * in the media subsystem. It can also aid developers working on userspace * applications. * * This file contains the code for an AES3 (also known as AES/EBU) encoder. * It is based on EBU Tech 3250 and SMPTE 302M technical documents. * * This encoder currently supports 16bit AES3 subframes using 16bit signed * integers. * * Note: AU stands for Access Unit, and AAU stands for Audio Access Unit * * Copyright (C) 2020 Daniel W. S. Almeida */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s, %d: " fmt, __func__, __LINE__ #include #include #include #include #include #include #include #include #include #include #include #include #include "vidtv_common.h" #include "vidtv_encoder.h" #include "vidtv_s302m.h" #define S302M_SAMPLING_RATE_HZ 48000 #define PES_PRIVATE_STREAM_1 0xbd /* PES: private_stream_1 */ #define S302M_BLOCK_SZ 192 #define S302M_SIN_LUT_NUM_ELEM 1024 /* these are retrieved empirically from ffmpeg/libavcodec */ #define FF_S302M_DEFAULT_NUM_FRAMES 1115 #define FF_S302M_DEFAULT_PTS_INCREMENT 2090 #define FF_S302M_DEFAULT_PTS_OFFSET 100000 /* Used by the tone generator: number of samples for PI */ #define PI 180 static const u8 reverse[256] = { /* from ffmpeg */ 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF, }; struct tone_duration { enum musical_notes note; int duration; }; #define COMPASS 100 /* beats per minute */ static const struct tone_duration beethoven_fur_elise[] = { { NOTE_SILENT, 512}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_B_5, 128}, { NOTE_D_6, 128}, { NOTE_C_6, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_C_5, 128}, { NOTE_E_5, 128}, { NOTE_A_5, 128}, { NOTE_E_3, 128}, { NOTE_E_4, 128}, { NOTE_GS_4, 128}, { NOTE_E_5, 128}, { NOTE_GS_5, 128}, { NOTE_B_5, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_E_5, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_B_5, 128}, { NOTE_D_6, 128}, { NOTE_C_6, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_C_5, 128}, { NOTE_E_5, 128}, { NOTE_A_5, 128}, { NOTE_E_3, 128}, { NOTE_E_4, 128}, { NOTE_GS_4, 128}, { NOTE_E_5, 128}, { NOTE_C_6, 128}, { NOTE_B_5, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_SILENT, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_B_5, 128}, { NOTE_D_6, 128}, { NOTE_C_6, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_C_5, 128}, { NOTE_E_5, 128}, { NOTE_A_5, 128}, { NOTE_E_3, 128}, { NOTE_E_4, 128}, { NOTE_GS_4, 128}, { NOTE_E_5, 128}, { NOTE_GS_5, 128}, { NOTE_B_5, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_E_5, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_B_5, 128}, { NOTE_D_6, 128}, { NOTE_C_6, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_C_5, 128}, { NOTE_E_5, 128}, { NOTE_A_5, 128}, { NOTE_E_3, 128}, { NOTE_E_4, 128}, { NOTE_GS_4, 128}, { NOTE_E_5, 128}, { NOTE_C_6, 128}, { NOTE_B_5, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_B_4, 128}, { NOTE_C_5, 128}, { NOTE_D_5, 128}, { NOTE_C_4, 128}, { NOTE_G_4, 128}, { NOTE_C_5, 128}, { NOTE_G_4, 128}, { NOTE_F_5, 128}, { NOTE_E_5, 128}, { NOTE_G_3, 128}, { NOTE_G_4, 128}, { NOTE_B_3, 128}, { NOTE_F_4, 128}, { NOTE_E_5, 128}, { NOTE_D_5, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_E_4, 128}, { NOTE_D_5, 128}, { NOTE_C_5, 128}, { NOTE_E_3, 128}, { NOTE_E_4, 128}, { NOTE_E_5, 128}, { NOTE_E_5, 128}, { NOTE_E_6, 128}, { NOTE_E_5, 128}, { NOTE_E_6, 128}, { NOTE_E_5, 128}, { NOTE_E_5, 128}, { NOTE_DS_5, 128}, { NOTE_E_5, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_5, 128}, { NOTE_E_5, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_B_5, 128}, { NOTE_D_6, 128}, { NOTE_C_6, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_C_5, 128}, { NOTE_E_5, 128}, { NOTE_A_5, 128}, { NOTE_E_3, 128}, { NOTE_E_4, 128}, { NOTE_GS_4, 128}, { NOTE_E_5, 128}, { NOTE_GS_5, 128}, { NOTE_B_5, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_E_5, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_DS_6, 128}, { NOTE_E_6, 128}, { NOTE_B_5, 128}, { NOTE_D_6, 128}, { NOTE_C_6, 128}, { NOTE_A_3, 128}, { NOTE_E_4, 128}, { NOTE_A_4, 128}, { NOTE_C_5, 128}, { NOTE_E_5, 128}, { NOTE_A_5, 128}, { NOTE_E_3, 128}, { NOTE_E_4, 128}, { NOTE_GS_4, 128}, { NOTE_E_5, 128}, { NOTE_C_6, 128}, { NOTE_B_5, 128}, { NOTE_A_5, 512}, { NOTE_SILENT, 256}, }; static struct vidtv_access_unit *vidtv_s302m_access_unit_init(struct vidtv_access_unit *head) { struct vidtv_access_unit *au; au = kzalloc(sizeof(*au), GFP_KERNEL); if (!au) return NULL; if (head) { while (head->next) head = head->next; head->next = au; } return au; } static void vidtv_s302m_access_unit_destroy(struct vidtv_encoder *e) { struct vidtv_access_unit *head = e->access_units; struct vidtv_access_unit *tmp = NULL; while (head) { tmp = head; head = head->next; kfree(tmp); } e->access_units = NULL; } static void vidtv_s302m_alloc_au(struct vidtv_encoder *e) { struct vidtv_access_unit *sync_au = NULL; struct vidtv_access_unit *temp = NULL; if (e->sync && e->sync->is_video_encoder) { sync_au = e->sync->access_units; while (sync_au) { temp = vidtv_s302m_access_unit_init(e->access_units); if (!e->access_units) e->access_units = temp; sync_au = sync_au->next; } return; } e->access_units = vidtv_s302m_access_unit_init(NULL); } static void vidtv_s302m_compute_sample_count_from_video(struct vidtv_encoder *e) { struct vidtv_access_unit *sync_au = e->sync->access_units; struct vidtv_access_unit *au = e->access_units; u32 sample_duration_usecs; u32 vau_duration_usecs; u32 s; vau_duration_usecs = USEC_PER_SEC / e->sync->sampling_rate_hz; sample_duration_usecs = USEC_PER_SEC / e->sampling_rate_hz; while (au && sync_au) { s = DIV_ROUND_UP(vau_duration_usecs, sample_duration_usecs); au->num_samples = s; au = au->next; sync_au = sync_au->next; } } static void vidtv_s302m_compute_pts_from_video(struct vidtv_encoder *e) { struct vidtv_access_unit *au = e->access_units; struct vidtv_access_unit *sync_au = e->sync->access_units; /* use the same pts from the video access unit*/ while (au && sync_au) { au->pts = sync_au->pts; au = au->next; sync_au = sync_au->next; } } static u16 vidtv_s302m_get_sample(struct vidtv_encoder *e) { u16 sample; int pos; struct vidtv_s302m_ctx *ctx = e->ctx; if (!e->src_buf) { /* * Simple tone generator: play the tones at the * beethoven_fur_elise array. */ if (ctx->last_duration <= 0) { if (e->src_buf_offset >= ARRAY_SIZE(beethoven_fur_elise)) e->src_buf_offset = 0; ctx->last_tone = beethoven_fur_elise[e->src_buf_offset].note; ctx->last_duration = beethoven_fur_elise[e->src_buf_offset].duration * S302M_SAMPLING_RATE_HZ / COMPASS / 5; e->src_buf_offset++; ctx->note_offset = 0; } else { ctx->last_duration--; } /* Handle pause notes */ if (!ctx->last_tone) return 0x8000; pos = (2 * PI * ctx->note_offset * ctx->last_tone) / S302M_SAMPLING_RATE_HZ; ctx->note_offset++; return (fixp_sin32(pos % (2 * PI)) >> 16) + 0x8000; } /* bug somewhere */ if (e->src_buf_offset > e->src_buf_sz) { pr_err_ratelimited("overflow detected: %d > %d, wrapping.\n", e->src_buf_offset, e->src_buf_sz); e->src_buf_offset = 0; } if (e->src_buf_offset >= e->src_buf_sz) { /* let the source know we are out of data */ if (e->last_sample_cb) e->last_sample_cb(e->sample_count); e->src_buf_offset = 0; } sample = *(u16 *)(e->src_buf + e->src_buf_offset); return sample; } static u32 vidtv_s302m_write_frame(struct vidtv_encoder *e, u16 sample) { struct vidtv_s302m_ctx *ctx = e->ctx; struct vidtv_s302m_frame_16 f = {}; u32 nbytes = 0; /* from ffmpeg: see s302enc.c */ u8 vucf = ctx->frame_index == 0 ? 0x10 : 0; f.data[0] = sample & 0xFF; f.data[1] = (sample & 0xFF00) >> 8; f.data[2] = ((sample & 0x0F) << 4) | vucf; f.data[3] = (sample & 0x0FF0) >> 4; f.data[4] = (sample & 0xF000) >> 12; f.data[0] = reverse[f.data[0]]; f.data[1] = reverse[f.data[1]]; f.data[2] = reverse[f.data[2]]; f.data[3] = reverse[f.data[3]]; f.data[4] = reverse[f.data[4]]; nbytes += vidtv_memcpy(e->encoder_buf, e->encoder_buf_offset, VIDTV_S302M_BUF_SZ, &f, sizeof(f)); e->encoder_buf_offset += nbytes; ctx->frame_index++; if (ctx->frame_index >= S302M_BLOCK_SZ) ctx->frame_index = 0; return nbytes; } static u32 vidtv_s302m_write_h(struct vidtv_encoder *e, u32 p_sz) { struct vidtv_smpte_s302m_es h = {}; u32 nbytes = 0; /* 2 channels, ident: 0, 16 bits per sample */ h.bitfield = cpu_to_be32((p_sz << 16)); nbytes += vidtv_memcpy(e->encoder_buf, e->encoder_buf_offset, e->encoder_buf_sz, &h, sizeof(h)); e->encoder_buf_offset += nbytes; return nbytes; } static void vidtv_s302m_write_frames(struct vidtv_encoder *e) { struct vidtv_access_unit *au = e->access_units; struct vidtv_s302m_ctx *ctx = e->ctx; u32 nbytes_per_unit = 0; u32 nbytes = 0; u32 au_sz = 0; u16 sample; u32 j; while (au) { au_sz = au->num_samples * sizeof(struct vidtv_s302m_frame_16); nbytes_per_unit = vidtv_s302m_write_h(e, au_sz); for (j = 0; j < au->num_samples; ++j) { sample = vidtv_s302m_get_sample(e); nbytes_per_unit += vidtv_s302m_write_frame(e, sample); if (e->src_buf) e->src_buf_offset += sizeof(u16); e->sample_count++; } au->nbytes = nbytes_per_unit; if (au_sz + sizeof(struct vidtv_smpte_s302m_es) != nbytes_per_unit) { pr_warn_ratelimited("write size was %u, expected %zu\n", nbytes_per_unit, au_sz + sizeof(struct vidtv_smpte_s302m_es)); } nbytes += nbytes_per_unit; au->offset = nbytes - nbytes_per_unit; nbytes_per_unit = 0; ctx->au_count++; au = au->next; } } static void *vidtv_s302m_encode(struct vidtv_encoder *e) { struct vidtv_s302m_ctx *ctx = e->ctx; /* * According to SMPTE 302M, an audio access unit is specified as those * AES3 words that are associated with a corresponding video frame. * Therefore, there is one audio access unit for every video access unit * in the corresponding video encoder ('sync'), using the same values * for PTS as used by the video encoder. * * Assuming that it is also possible to send audio without any * associated video, as in a radio-like service, a single audio access unit * is created with values for 'num_samples' and 'pts' taken empirically from * ffmpeg */ vidtv_s302m_access_unit_destroy(e); vidtv_s302m_alloc_au(e); if (e->sync && e->sync->is_video_encoder) { vidtv_s302m_compute_sample_count_from_video(e); vidtv_s302m_compute_pts_from_video(e); } else { e->access_units->num_samples = FF_S302M_DEFAULT_NUM_FRAMES; e->access_units->pts = (ctx->au_count * FF_S302M_DEFAULT_PTS_INCREMENT) + FF_S302M_DEFAULT_PTS_OFFSET; } vidtv_s302m_write_frames(e); return e->encoder_buf; } static u32 vidtv_s302m_clear(struct vidtv_encoder *e) { struct vidtv_access_unit *au = e->access_units; u32 count = 0; while (au) { count++; au = au->next; } vidtv_s302m_access_unit_destroy(e); memset(e->encoder_buf, 0, VIDTV_S302M_BUF_SZ); e->encoder_buf_offset = 0; return count; } struct vidtv_encoder *vidtv_s302m_encoder_init(struct vidtv_s302m_encoder_init_args args) { u32 priv_sz = sizeof(struct vidtv_s302m_ctx); struct vidtv_s302m_ctx *ctx; struct vidtv_encoder *e; e = kzalloc(sizeof(*e), GFP_KERNEL); if (!e) return NULL; e->id = S302M; if (args.name) e->name = kstrdup(args.name, GFP_KERNEL); e->encoder_buf = vzalloc(VIDTV_S302M_BUF_SZ); e->encoder_buf_sz = VIDTV_S302M_BUF_SZ; e->encoder_buf_offset = 0; e->sample_count = 0; e->src_buf = (args.src_buf) ? args.src_buf : NULL; e->src_buf_sz = (args.src_buf) ? args.src_buf_sz : 0; e->src_buf_offset = 0; e->is_video_encoder = false; ctx = kzalloc(priv_sz, GFP_KERNEL); if (!ctx) { kfree(e); return NULL; } e->ctx = ctx; ctx->last_duration = 0; e->encode = vidtv_s302m_encode; e->clear = vidtv_s302m_clear; e->es_pid = cpu_to_be16(args.es_pid); e->stream_id = cpu_to_be16(PES_PRIVATE_STREAM_1); e->sync = args.sync; e->sampling_rate_hz = S302M_SAMPLING_RATE_HZ; e->last_sample_cb = args.last_sample_cb; e->destroy = vidtv_s302m_encoder_destroy; if (args.head) { while (args.head->next) args.head = args.head->next; args.head->next = e; } e->next = NULL; return e; } void vidtv_s302m_encoder_destroy(struct vidtv_encoder *e) { if (e->id != S302M) { pr_err_ratelimited("Encoder type mismatch, skipping.\n"); return; } vidtv_s302m_access_unit_destroy(e); kfree(e->name); vfree(e->encoder_buf); kfree(e->ctx); kfree(e); }