// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright The Asahi Linux Contributors * * Based on irq-lpc32xx: * Copyright 2015-2016 Vladimir Zapolskiy * Based on irq-bcm2836: * Copyright 2015 Broadcom */ /* * AIC is a fairly simple interrupt controller with the following features: * * - 896 level-triggered hardware IRQs * - Single mask bit per IRQ * - Per-IRQ affinity setting * - Automatic masking on event delivery (auto-ack) * - Software triggering (ORed with hw line) * - 2 per-CPU IPIs (meant as "self" and "other", but they are * interchangeable if not symmetric) * - Automatic prioritization (single event/ack register per CPU, lower IRQs = * higher priority) * - Automatic masking on ack * - Default "this CPU" register view and explicit per-CPU views * * In addition, this driver also handles FIQs, as these are routed to the same * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and * performance counters (TODO). * * Implementation notes: * * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs, * and one for IPIs. * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused). * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu. * - DT bindings use 3-cell form (like GIC): * - <0 nr flags> - hwirq #nr * - <1 nr flags> - FIQ #nr * - nr=0 Physical HV timer * - nr=1 Virtual HV timer * - nr=2 Physical guest timer * - nr=3 Virtual guest timer */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * AIC v1 registers (MMIO) */ #define AIC_INFO 0x0004 #define AIC_INFO_NR_IRQ GENMASK(15, 0) #define AIC_CONFIG 0x0010 #define AIC_WHOAMI 0x2000 #define AIC_EVENT 0x2004 #define AIC_EVENT_DIE GENMASK(31, 24) #define AIC_EVENT_TYPE GENMASK(23, 16) #define AIC_EVENT_NUM GENMASK(15, 0) #define AIC_EVENT_TYPE_FIQ 0 /* Software use */ #define AIC_EVENT_TYPE_IRQ 1 #define AIC_EVENT_TYPE_IPI 4 #define AIC_EVENT_IPI_OTHER 1 #define AIC_EVENT_IPI_SELF 2 #define AIC_IPI_SEND 0x2008 #define AIC_IPI_ACK 0x200c #define AIC_IPI_MASK_SET 0x2024 #define AIC_IPI_MASK_CLR 0x2028 #define AIC_IPI_SEND_CPU(cpu) BIT(cpu) #define AIC_IPI_OTHER BIT(0) #define AIC_IPI_SELF BIT(31) #define AIC_TARGET_CPU 0x3000 #define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7)) #define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7)) #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7)) #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7)) #define AIC_MAX_IRQ 0x400 /* * AIC v2 registers (MMIO) */ #define AIC2_VERSION 0x0000 #define AIC2_VERSION_VER GENMASK(7, 0) #define AIC2_INFO1 0x0004 #define AIC2_INFO1_NR_IRQ GENMASK(15, 0) #define AIC2_INFO1_LAST_DIE GENMASK(27, 24) #define AIC2_INFO2 0x0008 #define AIC2_INFO3 0x000c #define AIC2_INFO3_MAX_IRQ GENMASK(15, 0) #define AIC2_INFO3_MAX_DIE GENMASK(27, 24) #define AIC2_RESET 0x0010 #define AIC2_RESET_RESET BIT(0) #define AIC2_CONFIG 0x0014 #define AIC2_CONFIG_ENABLE BIT(0) #define AIC2_CONFIG_PREFER_PCPU BIT(28) #define AIC2_TIMEOUT 0x0028 #define AIC2_CLUSTER_PRIO 0x0030 #define AIC2_DELAY_GROUPS 0x0100 #define AIC2_IRQ_CFG 0x2000 /* * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG: * * Repeat for each die: * IRQ_CFG: u32 * MAX_IRQS * SW_SET: u32 * (MAX_IRQS / 32) * SW_CLR: u32 * (MAX_IRQS / 32) * MASK_SET: u32 * (MAX_IRQS / 32) * MASK_CLR: u32 * (MAX_IRQS / 32) * HW_STATE: u32 * (MAX_IRQS / 32) * * This is followed by a set of event registers, each 16K page aligned. * The first one is the AP event register we will use. Unfortunately, * the actual implemented die count is not specified anywhere in the * capability registers, so we have to explicitly specify the event * register as a second reg entry in the device tree to remain * forward-compatible. */ #define AIC2_IRQ_CFG_TARGET GENMASK(3, 0) #define AIC2_IRQ_CFG_DELAY_IDX GENMASK(7, 5) #define MASK_REG(x) (4 * ((x) >> 5)) #define MASK_BIT(x) BIT((x) & GENMASK(4, 0)) /* * IMP-DEF sysregs that control FIQ sources */ /* IPI request registers */ #define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0) #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1) #define IPI_RR_CPU GENMASK(7, 0) /* Cluster only used for the GLOBAL register */ #define IPI_RR_CLUSTER GENMASK(23, 16) #define IPI_RR_TYPE GENMASK(29, 28) #define IPI_RR_IMMEDIATE 0 #define IPI_RR_RETRACT 1 #define IPI_RR_DEFERRED 2 #define IPI_RR_NOWAKE 3 /* IPI status register */ #define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1) #define IPI_SR_PENDING BIT(0) /* Guest timer FIQ enable register */ #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3) #define VM_TMR_FIQ_ENABLE_V BIT(0) #define VM_TMR_FIQ_ENABLE_P BIT(1) /* Deferred IPI countdown register */ #define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1) /* Uncore PMC control register */ #define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4) #define UPMCR0_IMODE GENMASK(18, 16) #define UPMCR0_IMODE_OFF 0 #define UPMCR0_IMODE_AIC 2 #define UPMCR0_IMODE_HALT 3 #define UPMCR0_IMODE_FIQ 4 /* Uncore PMC status register */ #define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4) #define UPMSR_IACT BIT(0) /* MPIDR fields */ #define MPIDR_CPU(x) MPIDR_AFFINITY_LEVEL(x, 0) #define MPIDR_CLUSTER(x) MPIDR_AFFINITY_LEVEL(x, 1) #define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \ FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \ FIELD_PREP(AIC_EVENT_NUM, irq)) #define AIC_FIQ_HWIRQ(x) (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \ FIELD_PREP(AIC_EVENT_NUM, x)) #define AIC_HWIRQ_IRQ(x) FIELD_GET(AIC_EVENT_NUM, x) #define AIC_HWIRQ_DIE(x) FIELD_GET(AIC_EVENT_DIE, x) #define AIC_NR_FIQ 6 #define AIC_NR_SWIPI 32 /* * FIQ hwirq index definitions: FIQ sources use the DT binding defines * directly, except that timers are special. At the irqchip level, the * two timer types are represented by their access method: _EL0 registers * or _EL02 registers. In the DT binding, the timers are represented * by their purpose (HV or guest). This mapping is for when the kernel is * running at EL2 (with VHE). When the kernel is running at EL1, the * mapping differs and aic_irq_domain_translate() performs the remapping. */ #define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS #define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT #define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS #define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT static DEFINE_STATIC_KEY_TRUE(use_fast_ipi); struct aic_info { int version; /* Register offsets */ u32 event; u32 target_cpu; u32 irq_cfg; u32 sw_set; u32 sw_clr; u32 mask_set; u32 mask_clr; u32 die_stride; /* Features */ bool fast_ipi; }; static const struct aic_info aic1_info __initconst = { .version = 1, .event = AIC_EVENT, .target_cpu = AIC_TARGET_CPU, }; static const struct aic_info aic1_fipi_info __initconst = { .version = 1, .event = AIC_EVENT, .target_cpu = AIC_TARGET_CPU, .fast_ipi = true, }; static const struct aic_info aic2_info __initconst = { .version = 2, .irq_cfg = AIC2_IRQ_CFG, .fast_ipi = true, }; static const struct of_device_id aic_info_match[] = { { .compatible = "apple,t8103-aic", .data = &aic1_fipi_info, }, { .compatible = "apple,aic", .data = &aic1_info, }, { .compatible = "apple,aic2", .data = &aic2_info, }, {} }; struct aic_irq_chip { void __iomem *base; void __iomem *event; struct irq_domain *hw_domain; struct irq_domain *ipi_domain; struct { cpumask_t aff; } *fiq_aff[AIC_NR_FIQ]; int nr_irq; int max_irq; int nr_die; int max_die; struct aic_info info; }; static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked); static DEFINE_PER_CPU(atomic_t, aic_vipi_flag); static DEFINE_PER_CPU(atomic_t, aic_vipi_enable); static struct aic_irq_chip *aic_irqc; static void aic_handle_ipi(struct pt_regs *regs); static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg) { return readl_relaxed(ic->base + reg); } static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val) { writel_relaxed(val, ic->base + reg); } /* * IRQ irqchip */ static void aic_irq_mask(struct irq_data *d) { irq_hw_number_t hwirq = irqd_to_hwirq(d); struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride; u32 irq = AIC_HWIRQ_IRQ(hwirq); aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq)); } static void aic_irq_unmask(struct irq_data *d) { irq_hw_number_t hwirq = irqd_to_hwirq(d); struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride; u32 irq = AIC_HWIRQ_IRQ(hwirq); aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq)); } static void aic_irq_eoi(struct irq_data *d) { /* * Reading the interrupt reason automatically acknowledges and masks * the IRQ, so we just unmask it here if needed. */ if (!irqd_irq_masked(d)) aic_irq_unmask(d); } static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs) { struct aic_irq_chip *ic = aic_irqc; u32 event, type, irq; do { /* * We cannot use a relaxed read here, as reads from DMA buffers * need to be ordered after the IRQ fires. */ event = readl(ic->event + ic->info.event); type = FIELD_GET(AIC_EVENT_TYPE, event); irq = FIELD_GET(AIC_EVENT_NUM, event); if (type == AIC_EVENT_TYPE_IRQ) generic_handle_domain_irq(aic_irqc->hw_domain, event); else if (type == AIC_EVENT_TYPE_IPI && irq == 1) aic_handle_ipi(regs); else if (event != 0) pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq); } while (event); /* * vGIC maintenance interrupts end up here too, so we need to check * for them separately. This should never trigger if KVM is working * properly, because it will have already taken care of clearing it * on guest exit before this handler runs. */ if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) && read_sysreg_s(SYS_ICH_MISR_EL2) != 0) { pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n"); sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); } } static int aic_irq_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { irq_hw_number_t hwirq = irqd_to_hwirq(d); struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); int cpu; BUG_ON(!ic->info.target_cpu); if (force) cpu = cpumask_first(mask_val); else cpu = cpumask_any_and(mask_val, cpu_online_mask); aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu)); irq_data_update_effective_affinity(d, cpumask_of(cpu)); return IRQ_SET_MASK_OK; } static int aic_irq_set_type(struct irq_data *d, unsigned int type) { /* * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't * have a way to find out the type of any given IRQ, so just allow both. */ return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL; } static struct irq_chip aic_chip = { .name = "AIC", .irq_mask = aic_irq_mask, .irq_unmask = aic_irq_unmask, .irq_eoi = aic_irq_eoi, .irq_set_affinity = aic_irq_set_affinity, .irq_set_type = aic_irq_set_type, }; static struct irq_chip aic2_chip = { .name = "AIC2", .irq_mask = aic_irq_mask, .irq_unmask = aic_irq_unmask, .irq_eoi = aic_irq_eoi, .irq_set_type = aic_irq_set_type, }; /* * FIQ irqchip */ static unsigned long aic_fiq_get_idx(struct irq_data *d) { return AIC_HWIRQ_IRQ(irqd_to_hwirq(d)); } static void aic_fiq_set_mask(struct irq_data *d) { /* Only the guest timers have real mask bits, unfortunately. */ switch (aic_fiq_get_idx(d)) { case AIC_TMR_EL02_PHYS: sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0); isb(); break; case AIC_TMR_EL02_VIRT: sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0); isb(); break; default: break; } } static void aic_fiq_clear_mask(struct irq_data *d) { switch (aic_fiq_get_idx(d)) { case AIC_TMR_EL02_PHYS: sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P); isb(); break; case AIC_TMR_EL02_VIRT: sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V); isb(); break; default: break; } } static void aic_fiq_mask(struct irq_data *d) { aic_fiq_set_mask(d); __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d))); } static void aic_fiq_unmask(struct irq_data *d) { aic_fiq_clear_mask(d); __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d))); } static void aic_fiq_eoi(struct irq_data *d) { /* We mask to ack (where we can), so we need to unmask at EOI. */ if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d))) aic_fiq_clear_mask(d); } #define TIMER_FIRING(x) \ (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \ ARCH_TIMER_CTRL_IT_STAT)) == \ (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT)) static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs) { /* * It would be really nice if we had a system register that lets us get * the FIQ source state without having to peek down into sources... * but such a register does not seem to exist. * * So, we have these potential sources to test for: * - Fast IPIs (not yet used) * - The 4 timers (CNTP, CNTV for each of HV and guest) * - Per-core PMCs (not yet supported) * - Per-cluster uncore PMCs (not yet supported) * * Since not dealing with any of these results in a FIQ storm, * we check for everything here, even things we don't support yet. */ if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) { if (static_branch_likely(&use_fast_ipi)) { aic_handle_ipi(regs); } else { pr_err_ratelimited("Fast IPI fired. Acking.\n"); write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); } } if (TIMER_FIRING(read_sysreg(cntp_ctl_el0))) generic_handle_domain_irq(aic_irqc->hw_domain, AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS)); if (TIMER_FIRING(read_sysreg(cntv_ctl_el0))) generic_handle_domain_irq(aic_irqc->hw_domain, AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT)); if (is_kernel_in_hyp_mode()) { uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2); if ((enabled & VM_TMR_FIQ_ENABLE_P) && TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02))) generic_handle_domain_irq(aic_irqc->hw_domain, AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS)); if ((enabled & VM_TMR_FIQ_ENABLE_V) && TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02))) generic_handle_domain_irq(aic_irqc->hw_domain, AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT)); } if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) { int irq; if (cpumask_test_cpu(smp_processor_id(), &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff)) irq = AIC_CPU_PMU_P; else irq = AIC_CPU_PMU_E; generic_handle_domain_irq(aic_irqc->hw_domain, AIC_FIQ_HWIRQ(irq)); } if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ && (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) { /* Same story with uncore PMCs */ pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n"); sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); } } static int aic_fiq_set_type(struct irq_data *d, unsigned int type) { return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL; } static struct irq_chip fiq_chip = { .name = "AIC-FIQ", .irq_mask = aic_fiq_mask, .irq_unmask = aic_fiq_unmask, .irq_ack = aic_fiq_set_mask, .irq_eoi = aic_fiq_eoi, .irq_set_type = aic_fiq_set_type, }; /* * Main IRQ domain */ static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq, irq_hw_number_t hw) { struct aic_irq_chip *ic = id->host_data; u32 type = FIELD_GET(AIC_EVENT_TYPE, hw); struct irq_chip *chip = &aic_chip; if (ic->info.version == 2) chip = &aic2_chip; if (type == AIC_EVENT_TYPE_IRQ) { irq_domain_set_info(id, irq, hw, chip, id->host_data, handle_fasteoi_irq, NULL, NULL); irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq))); } else { int fiq = FIELD_GET(AIC_EVENT_NUM, hw); switch (fiq) { case AIC_CPU_PMU_P: case AIC_CPU_PMU_E: irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff); break; default: irq_set_percpu_devid(irq); break; } irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data, handle_percpu_devid_irq, NULL, NULL); } return 0; } static int aic_irq_domain_translate(struct irq_domain *id, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { struct aic_irq_chip *ic = id->host_data; u32 *args; u32 die = 0; if (fwspec->param_count < 3 || fwspec->param_count > 4 || !is_of_node(fwspec->fwnode)) return -EINVAL; args = &fwspec->param[1]; if (fwspec->param_count == 4) { die = args[0]; args++; } switch (fwspec->param[0]) { case AIC_IRQ: if (die >= ic->nr_die) return -EINVAL; if (args[0] >= ic->nr_irq) return -EINVAL; *hwirq = AIC_IRQ_HWIRQ(die, args[0]); break; case AIC_FIQ: if (die != 0) return -EINVAL; if (args[0] >= AIC_NR_FIQ) return -EINVAL; *hwirq = AIC_FIQ_HWIRQ(args[0]); /* * In EL1 the non-redirected registers are the guest's, * not EL2's, so remap the hwirqs to match. */ if (!is_kernel_in_hyp_mode()) { switch (args[0]) { case AIC_TMR_GUEST_PHYS: *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS); break; case AIC_TMR_GUEST_VIRT: *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT); break; case AIC_TMR_HV_PHYS: case AIC_TMR_HV_VIRT: return -ENOENT; default: break; } } break; default: return -EINVAL; } *type = args[1] & IRQ_TYPE_SENSE_MASK; return 0; } static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { unsigned int type = IRQ_TYPE_NONE; struct irq_fwspec *fwspec = arg; irq_hw_number_t hwirq; int i, ret; ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) { ret = aic_irq_domain_map(domain, virq + i, hwirq + i); if (ret) return ret; } return 0; } static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { int i; for (i = 0; i < nr_irqs; i++) { struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); irq_set_handler(virq + i, NULL); irq_domain_reset_irq_data(d); } } static const struct irq_domain_ops aic_irq_domain_ops = { .translate = aic_irq_domain_translate, .alloc = aic_irq_domain_alloc, .free = aic_irq_domain_free, }; /* * IPI irqchip */ static void aic_ipi_send_fast(int cpu) { u64 mpidr = cpu_logical_map(cpu); u64 my_mpidr = read_cpuid_mpidr(); u64 cluster = MPIDR_CLUSTER(mpidr); u64 idx = MPIDR_CPU(mpidr); if (MPIDR_CLUSTER(my_mpidr) == cluster) write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx), SYS_IMP_APL_IPI_RR_LOCAL_EL1); else write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster), SYS_IMP_APL_IPI_RR_GLOBAL_EL1); isb(); } static void aic_ipi_mask(struct irq_data *d) { u32 irq_bit = BIT(irqd_to_hwirq(d)); /* No specific ordering requirements needed here. */ atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable)); } static void aic_ipi_unmask(struct irq_data *d) { struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); u32 irq_bit = BIT(irqd_to_hwirq(d)); atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable)); /* * The atomic_or() above must complete before the atomic_read() * below to avoid racing aic_ipi_send_mask(). */ smp_mb__after_atomic(); /* * If a pending vIPI was unmasked, raise a HW IPI to ourselves. * No barriers needed here since this is a self-IPI. */ if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) { if (static_branch_likely(&use_fast_ipi)) aic_ipi_send_fast(smp_processor_id()); else aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id())); } } static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) { struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); u32 irq_bit = BIT(irqd_to_hwirq(d)); u32 send = 0; int cpu; unsigned long pending; for_each_cpu(cpu, mask) { /* * This sequence is the mirror of the one in aic_ipi_unmask(); * see the comment there. Additionally, release semantics * ensure that the vIPI flag set is ordered after any shared * memory accesses that precede it. This therefore also pairs * with the atomic_fetch_andnot in aic_handle_ipi(). */ pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu)); /* * The atomic_fetch_or_release() above must complete before the * atomic_read() below to avoid racing aic_ipi_unmask(). */ smp_mb__after_atomic(); if (!(pending & irq_bit) && (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) { if (static_branch_likely(&use_fast_ipi)) aic_ipi_send_fast(cpu); else send |= AIC_IPI_SEND_CPU(cpu); } } /* * The flag writes must complete before the physical IPI is issued * to another CPU. This is implied by the control dependency on * the result of atomic_read_acquire() above, which is itself * already ordered after the vIPI flag write. */ if (send) aic_ic_write(ic, AIC_IPI_SEND, send); } static struct irq_chip ipi_chip = { .name = "AIC-IPI", .irq_mask = aic_ipi_mask, .irq_unmask = aic_ipi_unmask, .ipi_send_mask = aic_ipi_send_mask, }; /* * IPI IRQ domain */ static void aic_handle_ipi(struct pt_regs *regs) { int i; unsigned long enabled, firing; /* * Ack the IPI. We need to order this after the AIC event read, but * that is enforced by normal MMIO ordering guarantees. * * For the Fast IPI case, this needs to be ordered before the vIPI * handling below, so we need to isb(); */ if (static_branch_likely(&use_fast_ipi)) { write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); isb(); } else { aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER); } /* * The mask read does not need to be ordered. Only we can change * our own mask anyway, so no races are possible here, as long as * we are properly in the interrupt handler (which is covered by * the barrier that is part of the top-level AIC handler's readl()). */ enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable)); /* * Clear the IPIs we are about to handle. This pairs with the * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and * before IPI handling code (to avoid races handling vIPIs before they * are signaled). The former is taken care of by the release semantics * of the write portion, while the latter is taken care of by the * acquire semantics of the read portion. */ firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled; for_each_set_bit(i, &firing, AIC_NR_SWIPI) generic_handle_domain_irq(aic_irqc->ipi_domain, i); /* * No ordering needed here; at worst this just changes the timing of * when the next IPI will be delivered. */ if (!static_branch_likely(&use_fast_ipi)) aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); } static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs, void *args) { int i; for (i = 0; i < nr_irqs; i++) { irq_set_percpu_devid(virq + i); irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data, handle_percpu_devid_irq, NULL, NULL); } return 0; } static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) { /* Not freeing IPIs */ } static const struct irq_domain_ops aic_ipi_domain_ops = { .alloc = aic_ipi_alloc, .free = aic_ipi_free, }; static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node) { struct irq_domain *ipi_domain; int base_ipi; ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI, &aic_ipi_domain_ops, irqc); if (WARN_ON(!ipi_domain)) return -ENODEV; ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE; irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI); base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI, NUMA_NO_NODE, NULL, false, NULL); if (WARN_ON(!base_ipi)) { irq_domain_remove(ipi_domain); return -ENODEV; } set_smp_ipi_range(base_ipi, AIC_NR_SWIPI); irqc->ipi_domain = ipi_domain; return 0; } static int aic_init_cpu(unsigned int cpu) { /* Mask all hard-wired per-CPU IRQ/FIQ sources */ /* Pending Fast IPI FIQs */ write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); /* Timer FIQs */ sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); /* EL2-only (VHE mode) IRQ sources */ if (is_kernel_in_hyp_mode()) { /* Guest timers */ sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0); /* vGIC maintenance IRQ */ sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); } /* PMC FIQ */ sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); /* Uncore PMC FIQ */ sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); /* Commit all of the above */ isb(); if (aic_irqc->info.version == 1) { /* * Make sure the kernel's idea of logical CPU order is the same as AIC's * If we ever end up with a mismatch here, we will have to introduce * a mapping table similar to what other irqchip drivers do. */ WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id()); /* * Always keep IPIs unmasked at the hardware level (except auto-masking * by AIC during processing). We manage masks at the vIPI level. * These registers only exist on AICv1, AICv2 always uses fast IPIs. */ aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER); if (static_branch_likely(&use_fast_ipi)) { aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER); } else { aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF); aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); } } /* Initialize the local mask state */ __this_cpu_write(aic_fiq_unmasked, 0); return 0; } static struct gic_kvm_info vgic_info __initdata = { .type = GIC_V3, .no_maint_irq_mask = true, .no_hw_deactivation = true, }; static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff) { int i, n; u32 fiq; if (of_property_read_u32(aff, "apple,fiq-index", &fiq) || WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq]) return; n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32)); if (WARN_ON(n < 0)) return; ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL); if (!ic->fiq_aff[fiq]) return; for (i = 0; i < n; i++) { struct device_node *cpu_node; u32 cpu_phandle; int cpu; if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle)) continue; cpu_node = of_find_node_by_phandle(cpu_phandle); if (WARN_ON(!cpu_node)) continue; cpu = of_cpu_node_to_id(cpu_node); of_node_put(cpu_node); if (WARN_ON(cpu < 0)) continue; cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff); } } static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent) { int i, die; u32 off, start_off; void __iomem *regs; struct aic_irq_chip *irqc; struct device_node *affs; const struct of_device_id *match; regs = of_iomap(node, 0); if (WARN_ON(!regs)) return -EIO; irqc = kzalloc(sizeof(*irqc), GFP_KERNEL); if (!irqc) { iounmap(regs); return -ENOMEM; } irqc->base = regs; match = of_match_node(aic_info_match, node); if (!match) goto err_unmap; irqc->info = *(struct aic_info *)match->data; aic_irqc = irqc; switch (irqc->info.version) { case 1: { u32 info; info = aic_ic_read(irqc, AIC_INFO); irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info); irqc->max_irq = AIC_MAX_IRQ; irqc->nr_die = irqc->max_die = 1; off = start_off = irqc->info.target_cpu; off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */ irqc->event = irqc->base; break; } case 2: { u32 info1, info3; info1 = aic_ic_read(irqc, AIC2_INFO1); info3 = aic_ic_read(irqc, AIC2_INFO3); irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1); irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3); irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1; irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3); off = start_off = irqc->info.irq_cfg; off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */ irqc->event = of_iomap(node, 1); if (WARN_ON(!irqc->event)) goto err_unmap; break; } } irqc->info.sw_set = off; off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */ irqc->info.sw_clr = off; off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */ irqc->info.mask_set = off; off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */ irqc->info.mask_clr = off; off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */ off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */ if (irqc->info.fast_ipi) static_branch_enable(&use_fast_ipi); else static_branch_disable(&use_fast_ipi); irqc->info.die_stride = off - start_off; irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node), &aic_irq_domain_ops, irqc); if (WARN_ON(!irqc->hw_domain)) goto err_unmap; irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED); if (aic_init_smp(irqc, node)) goto err_remove_domain; affs = of_get_child_by_name(node, "affinities"); if (affs) { struct device_node *chld; for_each_child_of_node(affs, chld) build_fiq_affinity(irqc, chld); } of_node_put(affs); set_handle_irq(aic_handle_irq); set_handle_fiq(aic_handle_fiq); off = 0; for (die = 0; die < irqc->nr_die; die++) { for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++) aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX); for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++) aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX); if (irqc->info.target_cpu) for (i = 0; i < irqc->nr_irq; i++) aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1); off += irqc->info.die_stride; } if (irqc->info.version == 2) { u32 config = aic_ic_read(irqc, AIC2_CONFIG); config |= AIC2_CONFIG_ENABLE; aic_ic_write(irqc, AIC2_CONFIG, config); } if (!is_kernel_in_hyp_mode()) pr_info("Kernel running in EL1, mapping interrupts"); if (static_branch_likely(&use_fast_ipi)) pr_info("Using Fast IPIs"); cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING, "irqchip/apple-aic/ipi:starting", aic_init_cpu, NULL); vgic_set_kvm_info(&vgic_info); pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs", irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI); return 0; err_remove_domain: irq_domain_remove(irqc->hw_domain); err_unmap: if (irqc->event && irqc->event != irqc->base) iounmap(irqc->event); iounmap(irqc->base); kfree(irqc); return -ENODEV; } IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init); IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);