/* * Support for IDE interfaces on PowerMacs. * * These IDE interfaces are memory-mapped and have a DBDMA channel * for doing DMA. * * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Some code taken from drivers/ide/ide-dma.c: * * Copyright (c) 1995-1998 Mark Lord * * TODO: - Use pre-calculated (kauai) timing tables all the time and * get rid of the "rounded" tables used previously, so we have the * same table format for all controllers and can then just have one * big table * */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/ide.h> #include <linux/notifier.h> #include <linux/module.h> #include <linux/reboot.h> #include <linux/pci.h> #include <linux/adb.h> #include <linux/pmu.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <asm/prom.h> #include <asm/io.h> #include <asm/dbdma.h> #include <asm/ide.h> #include <asm/machdep.h> #include <asm/pmac_feature.h> #include <asm/sections.h> #include <asm/irq.h> #include <asm/mediabay.h> #define DRV_NAME "ide-pmac" #undef IDE_PMAC_DEBUG #define DMA_WAIT_TIMEOUT 50 typedef struct pmac_ide_hwif { unsigned long regbase; int irq; int kind; int aapl_bus_id; unsigned broken_dma : 1; unsigned broken_dma_warn : 1; struct device_node* node; struct macio_dev *mdev; u32 timings[4]; volatile u32 __iomem * *kauai_fcr; ide_hwif_t *hwif; /* Those fields are duplicating what is in hwif. We currently * can't use the hwif ones because of some assumptions that are * beeing done by the generic code about the kind of dma controller * and format of the dma table. This will have to be fixed though. */ volatile struct dbdma_regs __iomem * dma_regs; struct dbdma_cmd* dma_table_cpu; } pmac_ide_hwif_t; enum { controller_ohare, /* OHare based */ controller_heathrow, /* Heathrow/Paddington */ controller_kl_ata3, /* KeyLargo ATA-3 */ controller_kl_ata4, /* KeyLargo ATA-4 */ controller_un_ata6, /* UniNorth2 ATA-6 */ controller_k2_ata6, /* K2 ATA-6 */ controller_sh_ata6, /* Shasta ATA-6 */ }; static const char* model_name[] = { "OHare ATA", /* OHare based */ "Heathrow ATA", /* Heathrow/Paddington */ "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */ "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */ "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */ "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */ "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */ }; /* * Extra registers, both 32-bit little-endian */ #define IDE_TIMING_CONFIG 0x200 #define IDE_INTERRUPT 0x300 /* Kauai (U2) ATA has different register setup */ #define IDE_KAUAI_PIO_CONFIG 0x200 #define IDE_KAUAI_ULTRA_CONFIG 0x210 #define IDE_KAUAI_POLL_CONFIG 0x220 /* * Timing configuration register definitions */ /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */ #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS) #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS) #define IDE_SYSCLK_NS 30 /* 33Mhz cell */ #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */ /* 133Mhz cell, found in shasta. * See comments about 100 Mhz Uninorth 2... * Note that PIO_MASK and MDMA_MASK seem to overlap */ #define TR_133_PIOREG_PIO_MASK 0xff000fff #define TR_133_PIOREG_MDMA_MASK 0x00fff800 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff #define TR_133_UDMAREG_UDMA_EN 0x00000001 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about * this one yet, it appears as a pci device (106b/0033) on uninorth * internal PCI bus and it's clock is controlled like gem or fw. It * appears to be an evolution of keylargo ATA4 with a timing register * extended to 2 32bits registers and a similar DBDMA channel. Other * registers seem to exist but I can't tell much about them. * * So far, I'm using pre-calculated tables for this extracted from * the values used by the MacOS X driver. * * The "PIO" register controls PIO and MDMA timings, the "ULTRA" * register controls the UDMA timings. At least, it seems bit 0 * of this one enables UDMA vs. MDMA, and bits 4..7 are the * cycle time in units of 10ns. Bits 8..15 are used by I don't * know their meaning yet */ #define TR_100_PIOREG_PIO_MASK 0xff000fff #define TR_100_PIOREG_MDMA_MASK 0x00fff000 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff #define TR_100_UDMAREG_UDMA_EN 0x00000001 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on * 40 connector cable and to 4 on 80 connector one. * Clock unit is 15ns (66Mhz) * * 3 Values can be programmed: * - Write data setup, which appears to match the cycle time. They * also call it DIOW setup. * - Ready to pause time (from spec) * - Address setup. That one is weird. I don't see where exactly * it fits in UDMA cycles, I got it's name from an obscure piece * of commented out code in Darwin. They leave it to 0, we do as * well, despite a comment that would lead to think it has a * min value of 45ns. * Apple also add 60ns to the write data setup (or cycle time ?) on * reads. */ #define TR_66_UDMA_MASK 0xfff00000 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */ #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */ #define TR_66_UDMA_ADDRSETUP_SHIFT 29 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */ #define TR_66_UDMA_RDY2PAUS_SHIFT 25 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */ #define TR_66_UDMA_WRDATASETUP_SHIFT 21 #define TR_66_MDMA_MASK 0x000ffc00 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000 #define TR_66_MDMA_RECOVERY_SHIFT 15 #define TR_66_MDMA_ACCESS_MASK 0x00007c00 #define TR_66_MDMA_ACCESS_SHIFT 10 #define TR_66_PIO_MASK 0x000003ff #define TR_66_PIO_RECOVERY_MASK 0x000003e0 #define TR_66_PIO_RECOVERY_SHIFT 5 #define TR_66_PIO_ACCESS_MASK 0x0000001f #define TR_66_PIO_ACCESS_SHIFT 0 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo * Can do pio & mdma modes, clock unit is 30ns (33Mhz) * * The access time and recovery time can be programmed. Some older * Darwin code base limit OHare to 150ns cycle time. I decided to do * the same here fore safety against broken old hardware ;) * The HalfTick bit, when set, adds half a clock (15ns) to the access * time and removes one from recovery. It's not supported on KeyLargo * implementation afaik. The E bit appears to be set for PIO mode 0 and * is used to reach long timings used in this mode. */ #define TR_33_MDMA_MASK 0x003ff800 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000 #define TR_33_MDMA_RECOVERY_SHIFT 16 #define TR_33_MDMA_ACCESS_MASK 0x0000f800 #define TR_33_MDMA_ACCESS_SHIFT 11 #define TR_33_MDMA_HALFTICK 0x00200000 #define TR_33_PIO_MASK 0x000007ff #define TR_33_PIO_E 0x00000400 #define TR_33_PIO_RECOVERY_MASK 0x000003e0 #define TR_33_PIO_RECOVERY_SHIFT 5 #define TR_33_PIO_ACCESS_MASK 0x0000001f #define TR_33_PIO_ACCESS_SHIFT 0 /* * Interrupt register definitions */ #define IDE_INTR_DMA 0x80000000 #define IDE_INTR_DEVICE 0x40000000 /* * FCR Register on Kauai. Not sure what bit 0x4 is ... */ #define KAUAI_FCR_UATA_MAGIC 0x00000004 #define KAUAI_FCR_UATA_RESET_N 0x00000002 #define KAUAI_FCR_UATA_ENABLE 0x00000001 /* Rounded Multiword DMA timings * * I gave up finding a generic formula for all controller * types and instead, built tables based on timing values * used by Apple in Darwin's implementation. */ struct mdma_timings_t { int accessTime; int recoveryTime; int cycleTime; }; struct mdma_timings_t mdma_timings_33[] = { { 240, 240, 480 }, { 180, 180, 360 }, { 135, 135, 270 }, { 120, 120, 240 }, { 105, 105, 210 }, { 90, 90, 180 }, { 75, 75, 150 }, { 75, 45, 120 }, { 0, 0, 0 } }; struct mdma_timings_t mdma_timings_33k[] = { { 240, 240, 480 }, { 180, 180, 360 }, { 150, 150, 300 }, { 120, 120, 240 }, { 90, 120, 210 }, { 90, 90, 180 }, { 90, 60, 150 }, { 90, 30, 120 }, { 0, 0, 0 } }; struct mdma_timings_t mdma_timings_66[] = { { 240, 240, 480 }, { 180, 180, 360 }, { 135, 135, 270 }, { 120, 120, 240 }, { 105, 105, 210 }, { 90, 90, 180 }, { 90, 75, 165 }, { 75, 45, 120 }, { 0, 0, 0 } }; /* KeyLargo ATA-4 Ultra DMA timings (rounded) */ struct { int addrSetup; /* ??? */ int rdy2pause; int wrDataSetup; } kl66_udma_timings[] = { { 0, 180, 120 }, /* Mode 0 */ { 0, 150, 90 }, /* 1 */ { 0, 120, 60 }, /* 2 */ { 0, 90, 45 }, /* 3 */ { 0, 90, 30 } /* 4 */ }; /* UniNorth 2 ATA/100 timings */ struct kauai_timing { int cycle_time; u32 timing_reg; }; static struct kauai_timing kauai_pio_timings[] = { { 930 , 0x08000fff }, { 600 , 0x08000a92 }, { 383 , 0x0800060f }, { 360 , 0x08000492 }, { 330 , 0x0800048f }, { 300 , 0x080003cf }, { 270 , 0x080003cc }, { 240 , 0x0800038b }, { 239 , 0x0800030c }, { 180 , 0x05000249 }, { 120 , 0x04000148 }, { 0 , 0 }, }; static struct kauai_timing kauai_mdma_timings[] = { { 1260 , 0x00fff000 }, { 480 , 0x00618000 }, { 360 , 0x00492000 }, { 270 , 0x0038e000 }, { 240 , 0x0030c000 }, { 210 , 0x002cb000 }, { 180 , 0x00249000 }, { 150 , 0x00209000 }, { 120 , 0x00148000 }, { 0 , 0 }, }; static struct kauai_timing kauai_udma_timings[] = { { 120 , 0x000070c0 }, { 90 , 0x00005d80 }, { 60 , 0x00004a60 }, { 45 , 0x00003a50 }, { 30 , 0x00002a30 }, { 20 , 0x00002921 }, { 0 , 0 }, }; static struct kauai_timing shasta_pio_timings[] = { { 930 , 0x08000fff }, { 600 , 0x0A000c97 }, { 383 , 0x07000712 }, { 360 , 0x040003cd }, { 330 , 0x040003cd }, { 300 , 0x040003cd }, { 270 , 0x040003cd }, { 240 , 0x040003cd }, { 239 , 0x040003cd }, { 180 , 0x0400028b }, { 120 , 0x0400010a }, { 0 , 0 }, }; static struct kauai_timing shasta_mdma_timings[] = { { 1260 , 0x00fff000 }, { 480 , 0x00820800 }, { 360 , 0x00820800 }, { 270 , 0x00820800 }, { 240 , 0x00820800 }, { 210 , 0x00820800 }, { 180 , 0x00820800 }, { 150 , 0x0028b000 }, { 120 , 0x001ca000 }, { 0 , 0 }, }; static struct kauai_timing shasta_udma133_timings[] = { { 120 , 0x00035901, }, { 90 , 0x000348b1, }, { 60 , 0x00033881, }, { 45 , 0x00033861, }, { 30 , 0x00033841, }, { 20 , 0x00033031, }, { 15 , 0x00033021, }, { 0 , 0 }, }; static inline u32 kauai_lookup_timing(struct kauai_timing* table, int cycle_time) { int i; for (i=0; table[i].cycle_time; i++) if (cycle_time > table[i+1].cycle_time) return table[i].timing_reg; BUG(); return 0; } /* allow up to 256 DBDMA commands per xfer */ #define MAX_DCMDS 256 /* * Wait 1s for disk to answer on IDE bus after a hard reset * of the device (via GPIO/FCR). * * Some devices seem to "pollute" the bus even after dropping * the BSY bit (typically some combo drives slave on the UDMA * bus) after a hard reset. Since we hard reset all drives on * KeyLargo ATA66, we have to keep that delay around. I may end * up not hard resetting anymore on these and keep the delay only * for older interfaces instead (we have to reset when coming * from MacOS...) --BenH. */ #define IDE_WAKEUP_DELAY (1*HZ) static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *); #define PMAC_IDE_REG(x) \ ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x))) /* * Apply the timings of the proper unit (master/slave) to the shared * timing register when selecting that unit. This version is for * ASICs with a single timing register */ static void pmac_ide_apply_timings(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); if (drive->dn & 1) writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG)); else writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG)); (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); } /* * Apply the timings of the proper unit (master/slave) to the shared * timing register when selecting that unit. This version is for * ASICs with a dual timing register (Kauai) */ static void pmac_ide_kauai_apply_timings(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); if (drive->dn & 1) { writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); } else { writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); } (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); } /* * Force an update of controller timing values for a given drive */ static void pmac_ide_do_update_timings(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); if (pmif->kind == controller_sh_ata6 || pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6) pmac_ide_kauai_apply_timings(drive); else pmac_ide_apply_timings(drive); } static void pmac_dev_select(ide_drive_t *drive) { pmac_ide_apply_timings(drive); writeb(drive->select | ATA_DEVICE_OBS, (void __iomem *)drive->hwif->io_ports.device_addr); } static void pmac_kauai_dev_select(ide_drive_t *drive) { pmac_ide_kauai_apply_timings(drive); writeb(drive->select | ATA_DEVICE_OBS, (void __iomem *)drive->hwif->io_ports.device_addr); } static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd) { writeb(cmd, (void __iomem *)hwif->io_ports.command_addr); (void)readl((void __iomem *)(hwif->io_ports.data_addr + IDE_TIMING_CONFIG)); } static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl) { writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr); (void)readl((void __iomem *)(hwif->io_ports.data_addr + IDE_TIMING_CONFIG)); } /* * Old tuning functions (called on hdparm -p), sets up drive PIO timings */ static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive) { pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); const u8 pio = drive->pio_mode - XFER_PIO_0; struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio); u32 *timings, t; unsigned accessTicks, recTicks; unsigned accessTime, recTime; unsigned int cycle_time; /* which drive is it ? */ timings = &pmif->timings[drive->dn & 1]; t = *timings; cycle_time = ide_pio_cycle_time(drive, pio); switch (pmif->kind) { case controller_sh_ata6: { /* 133Mhz cell */ u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time); t = (t & ~TR_133_PIOREG_PIO_MASK) | tr; break; } case controller_un_ata6: case controller_k2_ata6: { /* 100Mhz cell */ u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time); t = (t & ~TR_100_PIOREG_PIO_MASK) | tr; break; } case controller_kl_ata4: /* 66Mhz cell */ recTime = cycle_time - tim->active - tim->setup; recTime = max(recTime, 150U); accessTime = tim->active; accessTime = max(accessTime, 150U); accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = min(accessTicks, 0x1fU); recTicks = SYSCLK_TICKS_66(recTime); recTicks = min(recTicks, 0x1fU); t = (t & ~TR_66_PIO_MASK) | (accessTicks << TR_66_PIO_ACCESS_SHIFT) | (recTicks << TR_66_PIO_RECOVERY_SHIFT); break; default: { /* 33Mhz cell */ int ebit = 0; recTime = cycle_time - tim->active - tim->setup; recTime = max(recTime, 150U); accessTime = tim->active; accessTime = max(accessTime, 150U); accessTicks = SYSCLK_TICKS(accessTime); accessTicks = min(accessTicks, 0x1fU); accessTicks = max(accessTicks, 4U); recTicks = SYSCLK_TICKS(recTime); recTicks = min(recTicks, 0x1fU); recTicks = max(recTicks, 5U) - 4; if (recTicks > 9) { recTicks--; /* guess, but it's only for PIO0, so... */ ebit = 1; } t = (t & ~TR_33_PIO_MASK) | (accessTicks << TR_33_PIO_ACCESS_SHIFT) | (recTicks << TR_33_PIO_RECOVERY_SHIFT); if (ebit) t |= TR_33_PIO_E; break; } } #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n", drive->name, pio, *timings); #endif *timings = t; pmac_ide_do_update_timings(drive); } /* * Calculate KeyLargo ATA/66 UDMA timings */ static int set_timings_udma_ata4(u32 *timings, u8 speed) { unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks; if (speed > XFER_UDMA_4) return 1; rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause); wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup); addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup); *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) | (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) | (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) | TR_66_UDMA_EN; #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n", speed & 0xf, *timings); #endif return 0; } /* * Calculate Kauai ATA/100 UDMA timings */ static int set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed) { struct ide_timing *t = ide_timing_find_mode(speed); u32 tr; if (speed > XFER_UDMA_5 || t == NULL) return 1; tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma); *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr; *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN; return 0; } /* * Calculate Shasta ATA/133 UDMA timings */ static int set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed) { struct ide_timing *t = ide_timing_find_mode(speed); u32 tr; if (speed > XFER_UDMA_6 || t == NULL) return 1; tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma); *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr; *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN; return 0; } /* * Calculate MDMA timings for all cells */ static void set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2, u8 speed) { u16 *id = drive->id; int cycleTime, accessTime = 0, recTime = 0; unsigned accessTicks, recTicks; struct mdma_timings_t* tm = NULL; int i; /* Get default cycle time for mode */ switch(speed & 0xf) { case 0: cycleTime = 480; break; case 1: cycleTime = 150; break; case 2: cycleTime = 120; break; default: BUG(); break; } /* Check if drive provides explicit DMA cycle time */ if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME]) cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime); /* OHare limits according to some old Apple sources */ if ((intf_type == controller_ohare) && (cycleTime < 150)) cycleTime = 150; /* Get the proper timing array for this controller */ switch(intf_type) { case controller_sh_ata6: case controller_un_ata6: case controller_k2_ata6: break; case controller_kl_ata4: tm = mdma_timings_66; break; case controller_kl_ata3: tm = mdma_timings_33k; break; default: tm = mdma_timings_33; break; } if (tm != NULL) { /* Lookup matching access & recovery times */ i = -1; for (;;) { if (tm[i+1].cycleTime < cycleTime) break; i++; } cycleTime = tm[i].cycleTime; accessTime = tm[i].accessTime; recTime = tm[i].recoveryTime; #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n", drive->name, cycleTime, accessTime, recTime); #endif } switch(intf_type) { case controller_sh_ata6: { /* 133Mhz cell */ u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime); *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr; *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN; } break; case controller_un_ata6: case controller_k2_ata6: { /* 100Mhz cell */ u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime); *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr; *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN; } break; case controller_kl_ata4: /* 66Mhz cell */ accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = min(accessTicks, 0x1fU); accessTicks = max(accessTicks, 0x1U); recTicks = SYSCLK_TICKS_66(recTime); recTicks = min(recTicks, 0x1fU); recTicks = max(recTicks, 0x3U); /* Clear out mdma bits and disable udma */ *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) | (accessTicks << TR_66_MDMA_ACCESS_SHIFT) | (recTicks << TR_66_MDMA_RECOVERY_SHIFT); break; case controller_kl_ata3: /* 33Mhz cell on KeyLargo */ accessTicks = SYSCLK_TICKS(accessTime); accessTicks = max(accessTicks, 1U); accessTicks = min(accessTicks, 0x1fU); accessTime = accessTicks * IDE_SYSCLK_NS; recTicks = SYSCLK_TICKS(recTime); recTicks = max(recTicks, 1U); recTicks = min(recTicks, 0x1fU); *timings = ((*timings) & ~TR_33_MDMA_MASK) | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); break; default: { /* 33Mhz cell on others */ int halfTick = 0; int origAccessTime = accessTime; int origRecTime = recTime; accessTicks = SYSCLK_TICKS(accessTime); accessTicks = max(accessTicks, 1U); accessTicks = min(accessTicks, 0x1fU); accessTime = accessTicks * IDE_SYSCLK_NS; recTicks = SYSCLK_TICKS(recTime); recTicks = max(recTicks, 2U) - 1; recTicks = min(recTicks, 0x1fU); recTime = (recTicks + 1) * IDE_SYSCLK_NS; if ((accessTicks > 1) && ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) && ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) { halfTick = 1; accessTicks--; } *timings = ((*timings) & ~TR_33_MDMA_MASK) | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); if (halfTick) *timings |= TR_33_MDMA_HALFTICK; } } #ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n", drive->name, speed & 0xf, *timings); #endif } static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive) { pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); int ret = 0; u32 *timings, *timings2, tl[2]; u8 unit = drive->dn & 1; const u8 speed = drive->dma_mode; timings = &pmif->timings[unit]; timings2 = &pmif->timings[unit+2]; /* Copy timings to local image */ tl[0] = *timings; tl[1] = *timings2; if (speed >= XFER_UDMA_0) { if (pmif->kind == controller_kl_ata4) ret = set_timings_udma_ata4(&tl[0], speed); else if (pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6) ret = set_timings_udma_ata6(&tl[0], &tl[1], speed); else if (pmif->kind == controller_sh_ata6) ret = set_timings_udma_shasta(&tl[0], &tl[1], speed); else ret = -1; } else set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed); if (ret) return; /* Apply timings to controller */ *timings = tl[0]; *timings2 = tl[1]; pmac_ide_do_update_timings(drive); } /* * Blast some well known "safe" values to the timing registers at init or * wakeup from sleep time, before we do real calculation */ static void sanitize_timings(pmac_ide_hwif_t *pmif) { unsigned int value, value2 = 0; switch(pmif->kind) { case controller_sh_ata6: value = 0x0a820c97; value2 = 0x00033031; break; case controller_un_ata6: case controller_k2_ata6: value = 0x08618a92; value2 = 0x00002921; break; case controller_kl_ata4: value = 0x0008438c; break; case controller_kl_ata3: value = 0x00084526; break; case controller_heathrow: case controller_ohare: default: value = 0x00074526; break; } pmif->timings[0] = pmif->timings[1] = value; pmif->timings[2] = pmif->timings[3] = value2; } static int on_media_bay(pmac_ide_hwif_t *pmif) { return pmif->mdev && pmif->mdev->media_bay != NULL; } /* Suspend call back, should be called after the child devices * have actually been suspended */ static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif) { /* We clear the timings */ pmif->timings[0] = 0; pmif->timings[1] = 0; disable_irq(pmif->irq); /* The media bay will handle itself just fine */ if (on_media_bay(pmif)) return 0; /* Kauai has bus control FCRs directly here */ if (pmif->kauai_fcr) { u32 fcr = readl(pmif->kauai_fcr); fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE); writel(fcr, pmif->kauai_fcr); } /* Disable the bus on older machines and the cell on kauai */ ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 0); return 0; } /* Resume call back, should be called before the child devices * are resumed */ static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif) { /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */ if (!on_media_bay(pmif)) { ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1); ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1); msleep(10); ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0); /* Kauai has it different */ if (pmif->kauai_fcr) { u32 fcr = readl(pmif->kauai_fcr); fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE; writel(fcr, pmif->kauai_fcr); } msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); } /* Sanitize drive timings */ sanitize_timings(pmif); enable_irq(pmif->irq); return 0; } static u8 pmac_ide_cable_detect(ide_hwif_t *hwif) { pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); struct device_node *np = pmif->node; const char *cable = of_get_property(np, "cable-type", NULL); struct device_node *root = of_find_node_by_path("/"); const char *model = of_get_property(root, "model", NULL); /* Get cable type from device-tree. */ if (cable && !strncmp(cable, "80-", 3)) { /* Some drives fail to detect 80c cable in PowerBook */ /* These machine use proprietary short IDE cable anyway */ if (!strncmp(model, "PowerBook", 9)) return ATA_CBL_PATA40_SHORT; else return ATA_CBL_PATA80; } /* * G5's seem to have incorrect cable type in device-tree. * Let's assume they have a 80 conductor cable, this seem * to be always the case unless the user mucked around. */ if (of_device_is_compatible(np, "K2-UATA") || of_device_is_compatible(np, "shasta-ata")) return ATA_CBL_PATA80; return ATA_CBL_PATA40; } static void pmac_ide_init_dev(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); if (on_media_bay(pmif)) { if (check_media_bay(pmif->mdev->media_bay) == MB_CD) { drive->dev_flags &= ~IDE_DFLAG_NOPROBE; return; } drive->dev_flags |= IDE_DFLAG_NOPROBE; } } static const struct ide_tp_ops pmac_tp_ops = { .exec_command = pmac_exec_command, .read_status = ide_read_status, .read_altstatus = ide_read_altstatus, .write_devctl = pmac_write_devctl, .dev_select = pmac_dev_select, .tf_load = ide_tf_load, .tf_read = ide_tf_read, .input_data = ide_input_data, .output_data = ide_output_data, }; static const struct ide_tp_ops pmac_ata6_tp_ops = { .exec_command = pmac_exec_command, .read_status = ide_read_status, .read_altstatus = ide_read_altstatus, .write_devctl = pmac_write_devctl, .dev_select = pmac_kauai_dev_select, .tf_load = ide_tf_load, .tf_read = ide_tf_read, .input_data = ide_input_data, .output_data = ide_output_data, }; static const struct ide_port_ops pmac_ide_ata4_port_ops = { .init_dev = pmac_ide_init_dev, .set_pio_mode = pmac_ide_set_pio_mode, .set_dma_mode = pmac_ide_set_dma_mode, .cable_detect = pmac_ide_cable_detect, }; static const struct ide_port_ops pmac_ide_port_ops = { .init_dev = pmac_ide_init_dev, .set_pio_mode = pmac_ide_set_pio_mode, .set_dma_mode = pmac_ide_set_dma_mode, }; static const struct ide_dma_ops pmac_dma_ops; static const struct ide_port_info pmac_port_info = { .name = DRV_NAME, .init_dma = pmac_ide_init_dma, .chipset = ide_pmac, .tp_ops = &pmac_tp_ops, .port_ops = &pmac_ide_port_ops, .dma_ops = &pmac_dma_ops, .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA | IDE_HFLAG_POST_SET_MODE | IDE_HFLAG_MMIO | IDE_HFLAG_UNMASK_IRQS, .pio_mask = ATA_PIO4, .mwdma_mask = ATA_MWDMA2, }; /* * Setup, register & probe an IDE channel driven by this driver, this is * called by one of the 2 probe functions (macio or PCI). */ static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw) { struct device_node *np = pmif->node; const int *bidp; struct ide_host *host; ide_hwif_t *hwif; struct ide_hw *hws[] = { hw }; struct ide_port_info d = pmac_port_info; int rc; pmif->broken_dma = pmif->broken_dma_warn = 0; if (of_device_is_compatible(np, "shasta-ata")) { pmif->kind = controller_sh_ata6; d.tp_ops = &pmac_ata6_tp_ops; d.port_ops = &pmac_ide_ata4_port_ops; d.udma_mask = ATA_UDMA6; } else if (of_device_is_compatible(np, "kauai-ata")) { pmif->kind = controller_un_ata6; d.tp_ops = &pmac_ata6_tp_ops; d.port_ops = &pmac_ide_ata4_port_ops; d.udma_mask = ATA_UDMA5; } else if (of_device_is_compatible(np, "K2-UATA")) { pmif->kind = controller_k2_ata6; d.tp_ops = &pmac_ata6_tp_ops; d.port_ops = &pmac_ide_ata4_port_ops; d.udma_mask = ATA_UDMA5; } else if (of_device_is_compatible(np, "keylargo-ata")) { if (strcmp(np->name, "ata-4") == 0) { pmif->kind = controller_kl_ata4; d.port_ops = &pmac_ide_ata4_port_ops; d.udma_mask = ATA_UDMA4; } else pmif->kind = controller_kl_ata3; } else if (of_device_is_compatible(np, "heathrow-ata")) { pmif->kind = controller_heathrow; } else { pmif->kind = controller_ohare; pmif->broken_dma = 1; } bidp = of_get_property(np, "AAPL,bus-id", NULL); pmif->aapl_bus_id = bidp ? *bidp : 0; /* On Kauai-type controllers, we make sure the FCR is correct */ if (pmif->kauai_fcr) writel(KAUAI_FCR_UATA_MAGIC | KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr); /* Make sure we have sane timings */ sanitize_timings(pmif); /* If we are on a media bay, wait for it to settle and lock it */ if (pmif->mdev) lock_media_bay(pmif->mdev->media_bay); host = ide_host_alloc(&d, hws, 1); if (host == NULL) { rc = -ENOMEM; goto bail; } hwif = pmif->hwif = host->ports[0]; if (on_media_bay(pmif)) { /* Fixup bus ID for media bay */ if (!bidp) pmif->aapl_bus_id = 1; } else if (pmif->kind == controller_ohare) { /* The code below is having trouble on some ohare machines * (timing related ?). Until I can put my hand on one of these * units, I keep the old way */ ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1); } else { /* This is necessary to enable IDE when net-booting */ ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1); ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1); msleep(10); ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0); msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); } printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), " "bus ID %d%s, irq %d\n", model_name[pmif->kind], pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id, on_media_bay(pmif) ? " (mediabay)" : "", hw->irq); rc = ide_host_register(host, &d, hws); if (rc) pmif->hwif = NULL; if (pmif->mdev) unlock_media_bay(pmif->mdev->media_bay); bail: if (rc && host) ide_host_free(host); return rc; } static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base) { int i; for (i = 0; i < 8; ++i) hw->io_ports_array[i] = base + i * 0x10; hw->io_ports.ctl_addr = base + 0x160; } /* * Attach to a macio probed interface */ static int pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match) { void __iomem *base; unsigned long regbase; pmac_ide_hwif_t *pmif; int irq, rc; struct ide_hw hw; pmif = kzalloc(sizeof(*pmif), GFP_KERNEL); if (pmif == NULL) return -ENOMEM; if (macio_resource_count(mdev) == 0) { printk(KERN_WARNING "ide-pmac: no address for %s\n", mdev->ofdev.dev.of_node->full_name); rc = -ENXIO; goto out_free_pmif; } /* Request memory resource for IO ports */ if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) { printk(KERN_ERR "ide-pmac: can't request MMIO resource for " "%s!\n", mdev->ofdev.dev.of_node->full_name); rc = -EBUSY; goto out_free_pmif; } /* XXX This is bogus. Should be fixed in the registry by checking * the kind of host interrupt controller, a bit like gatwick * fixes in irq.c. That works well enough for the single case * where that happens though... */ if (macio_irq_count(mdev) == 0) { printk(KERN_WARNING "ide-pmac: no intrs for device %s, using " "13\n", mdev->ofdev.dev.of_node->full_name); irq = irq_create_mapping(NULL, 13); } else irq = macio_irq(mdev, 0); base = ioremap(macio_resource_start(mdev, 0), 0x400); regbase = (unsigned long) base; pmif->mdev = mdev; pmif->node = mdev->ofdev.dev.of_node; pmif->regbase = regbase; pmif->irq = irq; pmif->kauai_fcr = NULL; if (macio_resource_count(mdev) >= 2) { if (macio_request_resource(mdev, 1, "ide-pmac (dma)")) printk(KERN_WARNING "ide-pmac: can't request DMA " "resource for %s!\n", mdev->ofdev.dev.of_node->full_name); else pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000); } else pmif->dma_regs = NULL; dev_set_drvdata(&mdev->ofdev.dev, pmif); memset(&hw, 0, sizeof(hw)); pmac_ide_init_ports(&hw, pmif->regbase); hw.irq = irq; hw.dev = &mdev->bus->pdev->dev; hw.parent = &mdev->ofdev.dev; rc = pmac_ide_setup_device(pmif, &hw); if (rc != 0) { /* The inteface is released to the common IDE layer */ dev_set_drvdata(&mdev->ofdev.dev, NULL); iounmap(base); if (pmif->dma_regs) { iounmap(pmif->dma_regs); macio_release_resource(mdev, 1); } macio_release_resource(mdev, 0); kfree(pmif); } return rc; out_free_pmif: kfree(pmif); return rc; } static int pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg) { pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev); int rc = 0; if (mesg.event != mdev->ofdev.dev.power.power_state.event && (mesg.event & PM_EVENT_SLEEP)) { rc = pmac_ide_do_suspend(pmif); if (rc == 0) mdev->ofdev.dev.power.power_state = mesg; } return rc; } static int pmac_ide_macio_resume(struct macio_dev *mdev) { pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev); int rc = 0; if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) { rc = pmac_ide_do_resume(pmif); if (rc == 0) mdev->ofdev.dev.power.power_state = PMSG_ON; } return rc; } /* * Attach to a PCI probed interface */ static int pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id) { struct device_node *np; pmac_ide_hwif_t *pmif; void __iomem *base; unsigned long rbase, rlen; int rc; struct ide_hw hw; np = pci_device_to_OF_node(pdev); if (np == NULL) { printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n"); return -ENODEV; } pmif = kzalloc(sizeof(*pmif), GFP_KERNEL); if (pmif == NULL) return -ENOMEM; if (pci_enable_device(pdev)) { printk(KERN_WARNING "ide-pmac: Can't enable PCI device for " "%s\n", np->full_name); rc = -ENXIO; goto out_free_pmif; } pci_set_master(pdev); if (pci_request_regions(pdev, "Kauai ATA")) { printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for " "%s\n", np->full_name); rc = -ENXIO; goto out_free_pmif; } pmif->mdev = NULL; pmif->node = np; rbase = pci_resource_start(pdev, 0); rlen = pci_resource_len(pdev, 0); base = ioremap(rbase, rlen); pmif->regbase = (unsigned long) base + 0x2000; pmif->dma_regs = base + 0x1000; pmif->kauai_fcr = base; pmif->irq = pdev->irq; pci_set_drvdata(pdev, pmif); memset(&hw, 0, sizeof(hw)); pmac_ide_init_ports(&hw, pmif->regbase); hw.irq = pdev->irq; hw.dev = &pdev->dev; rc = pmac_ide_setup_device(pmif, &hw); if (rc != 0) { /* The inteface is released to the common IDE layer */ iounmap(base); pci_release_regions(pdev); kfree(pmif); } return rc; out_free_pmif: kfree(pmif); return rc; } static int pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg) { pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev); int rc = 0; if (mesg.event != pdev->dev.power.power_state.event && (mesg.event & PM_EVENT_SLEEP)) { rc = pmac_ide_do_suspend(pmif); if (rc == 0) pdev->dev.power.power_state = mesg; } return rc; } static int pmac_ide_pci_resume(struct pci_dev *pdev) { pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev); int rc = 0; if (pdev->dev.power.power_state.event != PM_EVENT_ON) { rc = pmac_ide_do_resume(pmif); if (rc == 0) pdev->dev.power.power_state = PMSG_ON; } return rc; } #ifdef CONFIG_PMAC_MEDIABAY static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state) { pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev); switch(mb_state) { case MB_CD: if (!pmif->hwif->present) ide_port_scan(pmif->hwif); break; default: if (pmif->hwif->present) ide_port_unregister_devices(pmif->hwif); } } #endif /* CONFIG_PMAC_MEDIABAY */ static struct of_device_id pmac_ide_macio_match[] = { { .name = "IDE", }, { .name = "ATA", }, { .type = "ide", }, { .type = "ata", }, {}, }; static struct macio_driver pmac_ide_macio_driver = { .driver = { .name = "ide-pmac", .owner = THIS_MODULE, .of_match_table = pmac_ide_macio_match, }, .probe = pmac_ide_macio_attach, .suspend = pmac_ide_macio_suspend, .resume = pmac_ide_macio_resume, #ifdef CONFIG_PMAC_MEDIABAY .mediabay_event = pmac_ide_macio_mb_event, #endif }; static const struct pci_device_id pmac_ide_pci_match[] = { { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 }, { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 }, { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 }, { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 }, { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 }, {}, }; static struct pci_driver pmac_ide_pci_driver = { .name = "ide-pmac", .id_table = pmac_ide_pci_match, .probe = pmac_ide_pci_attach, .suspend = pmac_ide_pci_suspend, .resume = pmac_ide_pci_resume, }; MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match); int __init pmac_ide_probe(void) { int error; if (!machine_is(powermac)) return -ENODEV; #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST error = pci_register_driver(&pmac_ide_pci_driver); if (error) goto out; error = macio_register_driver(&pmac_ide_macio_driver); if (error) { pci_unregister_driver(&pmac_ide_pci_driver); goto out; } #else error = macio_register_driver(&pmac_ide_macio_driver); if (error) goto out; error = pci_register_driver(&pmac_ide_pci_driver); if (error) { macio_unregister_driver(&pmac_ide_macio_driver); goto out; } #endif out: return error; } /* * pmac_ide_build_dmatable builds the DBDMA command list * for a transfer and sets the DBDMA channel to point to it. */ static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); struct dbdma_cmd *table; volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; struct scatterlist *sg; int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE); int i = cmd->sg_nents, count = 0; /* DMA table is already aligned */ table = (struct dbdma_cmd *) pmif->dma_table_cpu; /* Make sure DMA controller is stopped (necessary ?) */ writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control); while (readl(&dma->status) & RUN) udelay(1); /* Build DBDMA commands list */ sg = hwif->sg_table; while (i && sg_dma_len(sg)) { u32 cur_addr; u32 cur_len; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) { if (pmif->broken_dma_warn == 0) { printk(KERN_WARNING "%s: DMA on non aligned address, " "switching to PIO on Ohare chipset\n", drive->name); pmif->broken_dma_warn = 1; } return 0; } while (cur_len) { unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00; if (count++ >= MAX_DCMDS) { printk(KERN_WARNING "%s: DMA table too small\n", drive->name); return 0; } table->command = cpu_to_le16(wr? OUTPUT_MORE: INPUT_MORE); table->req_count = cpu_to_le16(tc); table->phy_addr = cpu_to_le32(cur_addr); table->cmd_dep = 0; table->xfer_status = 0; table->res_count = 0; cur_addr += tc; cur_len -= tc; ++table; } sg = sg_next(sg); i--; } /* convert the last command to an input/output last command */ if (count) { table[-1].command = cpu_to_le16(wr? OUTPUT_LAST: INPUT_LAST); /* add the stop command to the end of the list */ memset(table, 0, sizeof(struct dbdma_cmd)); table->command = cpu_to_le16(DBDMA_STOP); mb(); writel(hwif->dmatable_dma, &dma->cmdptr); return 1; } printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name); return 0; /* revert to PIO for this request */ } /* * Prepare a DMA transfer. We build the DMA table, adjust the timings for * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion */ static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4); u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE); if (pmac_ide_build_dmatable(drive, cmd) == 0) return 1; /* Apple adds 60ns to wrDataSetup on reads */ if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) { writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL), PMAC_IDE_REG(IDE_TIMING_CONFIG)); (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); } return 0; } /* * Kick the DMA controller into life after the DMA command has been issued * to the drive. */ static void pmac_ide_dma_start(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); volatile struct dbdma_regs __iomem *dma; dma = pmif->dma_regs; writel((RUN << 16) | RUN, &dma->control); /* Make sure it gets to the controller right now */ (void)readl(&dma->control); } /* * After a DMA transfer, make sure the controller is stopped */ static int pmac_ide_dma_end (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; u32 dstat; dstat = readl(&dma->status); writel(((RUN|WAKE|DEAD) << 16), &dma->control); /* verify good dma status. we don't check for ACTIVE beeing 0. We should... * in theory, but with ATAPI decices doing buffer underruns, that would * cause us to disable DMA, which isn't what we want */ return (dstat & (RUN|DEAD)) != RUN; } /* * Check out that the interrupt we got was for us. We can't always know this * for sure with those Apple interfaces (well, we could on the recent ones but * that's not implemented yet), on the other hand, we don't have shared interrupts * so it's not really a problem */ static int pmac_ide_dma_test_irq (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; unsigned long status, timeout; /* We have to things to deal with here: * * - The dbdma won't stop if the command was started * but completed with an error without transferring all * datas. This happens when bad blocks are met during * a multi-block transfer. * * - The dbdma fifo hasn't yet finished flushing to * to system memory when the disk interrupt occurs. * */ /* If ACTIVE is cleared, the STOP command have passed and * transfer is complete. */ status = readl(&dma->status); if (!(status & ACTIVE)) return 1; /* If dbdma didn't execute the STOP command yet, the * active bit is still set. We consider that we aren't * sharing interrupts (which is hopefully the case with * those controllers) and so we just try to flush the * channel for pending data in the fifo */ udelay(1); writel((FLUSH << 16) | FLUSH, &dma->control); timeout = 0; for (;;) { udelay(1); status = readl(&dma->status); if ((status & FLUSH) == 0) break; if (++timeout > 100) { printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n", hwif->index); break; } } return 1; } static void pmac_ide_dma_host_set(ide_drive_t *drive, int on) { } static void pmac_ide_dma_lost_irq (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; unsigned long status = readl(&dma->status); printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status); } static const struct ide_dma_ops pmac_dma_ops = { .dma_host_set = pmac_ide_dma_host_set, .dma_setup = pmac_ide_dma_setup, .dma_start = pmac_ide_dma_start, .dma_end = pmac_ide_dma_end, .dma_test_irq = pmac_ide_dma_test_irq, .dma_lost_irq = pmac_ide_dma_lost_irq, }; /* * Allocate the data structures needed for using DMA with an interface * and fill the proper list of functions pointers */ static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d) { pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); struct pci_dev *dev = to_pci_dev(hwif->dev); /* We won't need pci_dev if we switch to generic consistent * DMA routines ... */ if (dev == NULL || pmif->dma_regs == 0) return -ENODEV; /* * Allocate space for the DBDMA commands. * The +2 is +1 for the stop command and +1 to allow for * aligning the start address to a multiple of 16 bytes. */ pmif->dma_table_cpu = dma_alloc_coherent(&dev->dev, (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd), &hwif->dmatable_dma, GFP_KERNEL); if (pmif->dma_table_cpu == NULL) { printk(KERN_ERR "%s: unable to allocate DMA command list\n", hwif->name); return -ENOMEM; } hwif->sg_max_nents = MAX_DCMDS; return 0; } module_init(pmac_ide_probe); MODULE_LICENSE("GPL");