/* * vt8231.c - Part of lm_sensors, Linux kernel modules * for hardware monitoring * * Copyright (c) 2005 Roger Lucas * Copyright (c) 2002 Mark D. Studebaker * Aaron M. Marsh * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Supports VIA VT8231 South Bridge embedded sensors */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include static int force_addr; module_param(force_addr, int, 0); MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors"); static struct platform_device *pdev; #define VT8231_EXTENT 0x80 #define VT8231_BASE_REG 0x70 #define VT8231_ENABLE_REG 0x74 /* * The VT8231 registers * * The reset value for the input channel configuration is used (Reg 0x4A=0x07) * which sets the selected inputs marked with '*' below if multiple options are * possible: * * Voltage Mode Temperature Mode * Sensor Linux Id Linux Id VIA Id * -------- -------- -------- ------ * CPU Diode N/A temp1 0 * UIC1 in0 temp2 * 1 * UIC2 in1 * temp3 2 * UIC3 in2 * temp4 3 * UIC4 in3 * temp5 4 * UIC5 in4 * temp6 5 * 3.3V in5 N/A * * Note that the BIOS may set the configuration register to a different value * to match the motherboard configuration. */ /* fans numbered 0-1 */ #define VT8231_REG_FAN_MIN(nr) (0x3b + (nr)) #define VT8231_REG_FAN(nr) (0x29 + (nr)) /* Voltage inputs numbered 0-5 */ static const u8 regvolt[] = { 0x21, 0x22, 0x23, 0x24, 0x25, 0x26 }; static const u8 regvoltmax[] = { 0x3d, 0x2b, 0x2d, 0x2f, 0x31, 0x33 }; static const u8 regvoltmin[] = { 0x3e, 0x2c, 0x2e, 0x30, 0x32, 0x34 }; /* * Temperatures are numbered 1-6 according to the Linux kernel specification. * * In the VIA datasheet, however, the temperatures are numbered from zero. * Since it is important that this driver can easily be compared to the VIA * datasheet, we will use the VIA numbering within this driver and map the * kernel sysfs device name to the VIA number in the sysfs callback. */ #define VT8231_REG_TEMP_LOW01 0x49 #define VT8231_REG_TEMP_LOW25 0x4d static const u8 regtemp[] = { 0x1f, 0x21, 0x22, 0x23, 0x24, 0x25 }; static const u8 regtempmax[] = { 0x39, 0x3d, 0x2b, 0x2d, 0x2f, 0x31 }; static const u8 regtempmin[] = { 0x3a, 0x3e, 0x2c, 0x2e, 0x30, 0x32 }; #define TEMP_FROM_REG(reg) (((253 * 4 - (reg)) * 550 + 105) / 210) #define TEMP_MAXMIN_FROM_REG(reg) (((253 - (reg)) * 2200 + 105) / 210) #define TEMP_MAXMIN_TO_REG(val) (253 - ((val) * 210 + 1100) / 2200) #define VT8231_REG_CONFIG 0x40 #define VT8231_REG_ALARM1 0x41 #define VT8231_REG_ALARM2 0x42 #define VT8231_REG_FANDIV 0x47 #define VT8231_REG_UCH_CONFIG 0x4a #define VT8231_REG_TEMP1_CONFIG 0x4b #define VT8231_REG_TEMP2_CONFIG 0x4c /* * temps 0-5 as numbered in VIA datasheet - see later for mapping to Linux * numbering */ #define ISTEMP(i, ch_config) ((i) == 0 ? 1 : \ ((ch_config) >> ((i)+1)) & 0x01) /* voltages 0-5 */ #define ISVOLT(i, ch_config) ((i) == 5 ? 1 : \ !(((ch_config) >> ((i)+2)) & 0x01)) #define DIV_FROM_REG(val) (1 << (val)) /* * NB The values returned here are NOT temperatures. The calibration curves * for the thermistor curves are board-specific and must go in the * sensors.conf file. Temperature sensors are actually ten bits, but the * VIA datasheet only considers the 8 MSBs obtained from the regtemp[] * register. The temperature value returned should have a magnitude of 3, * so we use the VIA scaling as the "true" scaling and use the remaining 2 * LSBs as fractional precision. * * All the on-chip hardware temperature comparisons for the alarms are only * 8-bits wide, and compare against the 8 MSBs of the temperature. The bits * in the registers VT8231_REG_TEMP_LOW01 and VT8231_REG_TEMP_LOW25 are * ignored. */ /* ****** FAN RPM CONVERSIONS ******** * This chip saturates back at 0, not at 255 like many the other chips. * So, 0 means 0 RPM */ static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 0; return SENSORS_LIMIT(1310720 / (rpm * div), 1, 255); } #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : 1310720 / ((val) * (div))) struct vt8231_data { unsigned short addr; const char *name; struct mutex update_lock; struct device *hwmon_dev; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[6]; /* Register value */ u8 in_max[6]; /* Register value */ u8 in_min[6]; /* Register value */ u16 temp[6]; /* Register value 10 bit, right aligned */ u8 temp_max[6]; /* Register value */ u8 temp_min[6]; /* Register value */ u8 fan[2]; /* Register value */ u8 fan_min[2]; /* Register value */ u8 fan_div[2]; /* Register encoding, shifted right */ u16 alarms; /* Register encoding */ u8 uch_config; }; static struct pci_dev *s_bridge; static int vt8231_probe(struct platform_device *pdev); static int __devexit vt8231_remove(struct platform_device *pdev); static struct vt8231_data *vt8231_update_device(struct device *dev); static void vt8231_init_device(struct vt8231_data *data); static inline int vt8231_read_value(struct vt8231_data *data, u8 reg) { return inb_p(data->addr + reg); } static inline void vt8231_write_value(struct vt8231_data *data, u8 reg, u8 value) { outb_p(value, data->addr + reg); } /* following are the sysfs callback functions */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", ((data->in[nr] - 3) * 10000) / 958); } static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", ((data->in_min[nr] - 3) * 10000) / 958); } static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in_max[nr] - 3) * 10000) / 958)); } static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255); vt8231_write_value(data, regvoltmin[nr], data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255); vt8231_write_value(data, regvoltmax[nr], data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } /* Special case for input 5 as this has 3.3V scaling built into the chip */ static ssize_t show_in5(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in[5] - 3) * 10000 * 54) / (958 * 34))); } static ssize_t show_in5_min(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in_min[5] - 3) * 10000 * 54) / (958 * 34))); } static ssize_t show_in5_max(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in_max[5] - 3) * 10000 * 54) / (958 * 34))); } static ssize_t set_in5_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vt8231_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3, 0, 255); vt8231_write_value(data, regvoltmin[5], data->in_min[5]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in5_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vt8231_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3, 0, 255); vt8231_write_value(data, regvoltmax[5], data->in_max[5]); mutex_unlock(&data->update_lock); return count; } #define define_voltage_sysfs(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset) define_voltage_sysfs(0); define_voltage_sysfs(1); define_voltage_sysfs(2); define_voltage_sysfs(3); define_voltage_sysfs(4); static DEVICE_ATTR(in5_input, S_IRUGO, show_in5, NULL); static DEVICE_ATTR(in5_min, S_IRUGO | S_IWUSR, show_in5_min, set_in5_min); static DEVICE_ATTR(in5_max, S_IRUGO | S_IWUSR, show_in5_max, set_in5_max); /* Temperatures */ static ssize_t show_temp0(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->temp[0] * 250); } static ssize_t show_temp0_max(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->temp_max[0] * 1000); } static ssize_t show_temp0_min(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->temp_min[0] * 1000); } static ssize_t set_temp0_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vt8231_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_max[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255); vt8231_write_value(data, regtempmax[0], data->temp_max[0]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp0_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vt8231_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_min[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255); vt8231_write_value(data, regtempmin[0], data->temp_min[0]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr])); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_max[nr])); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_min[nr])); } static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_max[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255); vt8231_write_value(data, regtempmax[nr], data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_min[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255); vt8231_write_value(data, regtempmin[nr], data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } /* * Note that these map the Linux temperature sensor numbering (1-6) to the VIA * temperature sensor numbering (0-5) */ #define define_temperature_sysfs(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ show_temp, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ show_temp_max, set_temp_max, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \ show_temp_min, set_temp_min, offset - 1) static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp0, NULL); static DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp0_max, set_temp0_max); static DEVICE_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp0_min, set_temp0_min); define_temperature_sysfs(2); define_temperature_sysfs(3); define_temperature_sysfs(4); define_temperature_sysfs(5); define_temperature_sysfs(6); /* Fans */ static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vt8231_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); unsigned long val; int nr = sensor_attr->index; int old = vt8231_read_value(data, VT8231_REG_FANDIV); long min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); switch (val) { case 1: data->fan_div[nr] = 0; break; case 2: data->fan_div[nr] = 1; break; case 4: data->fan_div[nr] = 2; break; case 8: data->fan_div[nr] = 3; break; default: dev_err(dev, "fan_div value %ld not supported. " "Choose one of 1, 2, 4 or 8!\n", val); mutex_unlock(&data->update_lock); return -EINVAL; } /* Correct the fan minimum speed */ data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]); old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); vt8231_write_value(data, VT8231_REG_FANDIV, old); mutex_unlock(&data->update_lock); return count; } #define define_fan_sysfs(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_div, set_fan_div, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1) define_fan_sysfs(1); define_fan_sysfs(2); /* Alarms */ static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(temp4_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp5_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(temp6_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); static ssize_t show_name(struct device *dev, struct device_attribute *devattr, char *buf) { struct vt8231_data *data = dev_get_drvdata(dev); return sprintf(buf, "%s\n", data->name); } static DEVICE_ATTR(name, S_IRUGO, show_name, NULL); static struct attribute *vt8231_attributes_temps[6][5] = { { &dev_attr_temp1_input.attr, &dev_attr_temp1_max_hyst.attr, &dev_attr_temp1_max.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp4_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_temp5_input.dev_attr.attr, &sensor_dev_attr_temp5_max_hyst.dev_attr.attr, &sensor_dev_attr_temp5_max.dev_attr.attr, &sensor_dev_attr_temp5_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_temp6_input.dev_attr.attr, &sensor_dev_attr_temp6_max_hyst.dev_attr.attr, &sensor_dev_attr_temp6_max.dev_attr.attr, &sensor_dev_attr_temp6_alarm.dev_attr.attr, NULL } }; static const struct attribute_group vt8231_group_temps[6] = { { .attrs = vt8231_attributes_temps[0] }, { .attrs = vt8231_attributes_temps[1] }, { .attrs = vt8231_attributes_temps[2] }, { .attrs = vt8231_attributes_temps[3] }, { .attrs = vt8231_attributes_temps[4] }, { .attrs = vt8231_attributes_temps[5] }, }; static struct attribute *vt8231_attributes_volts[6][5] = { { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, NULL }, { &dev_attr_in5_input.attr, &dev_attr_in5_min.attr, &dev_attr_in5_max.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, NULL } }; static const struct attribute_group vt8231_group_volts[6] = { { .attrs = vt8231_attributes_volts[0] }, { .attrs = vt8231_attributes_volts[1] }, { .attrs = vt8231_attributes_volts[2] }, { .attrs = vt8231_attributes_volts[3] }, { .attrs = vt8231_attributes_volts[4] }, { .attrs = vt8231_attributes_volts[5] }, }; static struct attribute *vt8231_attributes[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_name.attr, NULL }; static const struct attribute_group vt8231_group = { .attrs = vt8231_attributes, }; static struct platform_driver vt8231_driver = { .driver = { .owner = THIS_MODULE, .name = "vt8231", }, .probe = vt8231_probe, .remove = vt8231_remove, }; static DEFINE_PCI_DEVICE_TABLE(vt8231_pci_ids) = { { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8231_4) }, { 0, } }; MODULE_DEVICE_TABLE(pci, vt8231_pci_ids); static int __devinit vt8231_pci_probe(struct pci_dev *dev, const struct pci_device_id *id); static struct pci_driver vt8231_pci_driver = { .name = "vt8231", .id_table = vt8231_pci_ids, .probe = vt8231_pci_probe, }; static int vt8231_probe(struct platform_device *pdev) { struct resource *res; struct vt8231_data *data; int err = 0, i; /* Reserve the ISA region */ res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (!devm_request_region(&pdev->dev, res->start, VT8231_EXTENT, vt8231_driver.driver.name)) { dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n", (unsigned long)res->start, (unsigned long)res->end); return -ENODEV; } data = devm_kzalloc(&pdev->dev, sizeof(struct vt8231_data), GFP_KERNEL); if (!data) return -ENOMEM; platform_set_drvdata(pdev, data); data->addr = res->start; data->name = "vt8231"; mutex_init(&data->update_lock); vt8231_init_device(data); /* Register sysfs hooks */ err = sysfs_create_group(&pdev->dev.kobj, &vt8231_group); if (err) return err; /* Must update device information to find out the config field */ data->uch_config = vt8231_read_value(data, VT8231_REG_UCH_CONFIG); for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++) { if (ISTEMP(i, data->uch_config)) { err = sysfs_create_group(&pdev->dev.kobj, &vt8231_group_temps[i]); if (err) goto exit_remove_files; } } for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++) { if (ISVOLT(i, data->uch_config)) { err = sysfs_create_group(&pdev->dev.kobj, &vt8231_group_volts[i]); if (err) goto exit_remove_files; } } data->hwmon_dev = hwmon_device_register(&pdev->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove_files; } return 0; exit_remove_files: for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++) sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]); for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++) sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]); sysfs_remove_group(&pdev->dev.kobj, &vt8231_group); return err; } static int __devexit vt8231_remove(struct platform_device *pdev) { struct vt8231_data *data = platform_get_drvdata(pdev); int i; hwmon_device_unregister(data->hwmon_dev); for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++) sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]); for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++) sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]); sysfs_remove_group(&pdev->dev.kobj, &vt8231_group); return 0; } static void vt8231_init_device(struct vt8231_data *data) { vt8231_write_value(data, VT8231_REG_TEMP1_CONFIG, 0); vt8231_write_value(data, VT8231_REG_TEMP2_CONFIG, 0); } static struct vt8231_data *vt8231_update_device(struct device *dev) { struct vt8231_data *data = dev_get_drvdata(dev); int i; u16 low; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { for (i = 0; i < 6; i++) { if (ISVOLT(i, data->uch_config)) { data->in[i] = vt8231_read_value(data, regvolt[i]); data->in_min[i] = vt8231_read_value(data, regvoltmin[i]); data->in_max[i] = vt8231_read_value(data, regvoltmax[i]); } } for (i = 0; i < 2; i++) { data->fan[i] = vt8231_read_value(data, VT8231_REG_FAN(i)); data->fan_min[i] = vt8231_read_value(data, VT8231_REG_FAN_MIN(i)); } low = vt8231_read_value(data, VT8231_REG_TEMP_LOW01); low = (low >> 6) | ((low & 0x30) >> 2) | (vt8231_read_value(data, VT8231_REG_TEMP_LOW25) << 4); for (i = 0; i < 6; i++) { if (ISTEMP(i, data->uch_config)) { data->temp[i] = (vt8231_read_value(data, regtemp[i]) << 2) | ((low >> (2 * i)) & 0x03); data->temp_max[i] = vt8231_read_value(data, regtempmax[i]); data->temp_min[i] = vt8231_read_value(data, regtempmin[i]); } } i = vt8231_read_value(data, VT8231_REG_FANDIV); data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = i >> 6; data->alarms = vt8231_read_value(data, VT8231_REG_ALARM1) | (vt8231_read_value(data, VT8231_REG_ALARM2) << 8); /* Set alarm flags correctly */ if (!data->fan[0] && data->fan_min[0]) data->alarms |= 0x40; else if (data->fan[0] && !data->fan_min[0]) data->alarms &= ~0x40; if (!data->fan[1] && data->fan_min[1]) data->alarms |= 0x80; else if (data->fan[1] && !data->fan_min[1]) data->alarms &= ~0x80; data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __devinit vt8231_device_add(unsigned short address) { struct resource res = { .start = address, .end = address + VT8231_EXTENT - 1, .name = "vt8231", .flags = IORESOURCE_IO, }; int err; err = acpi_check_resource_conflict(&res); if (err) goto exit; pdev = platform_device_alloc("vt8231", address); if (!pdev) { err = -ENOMEM; pr_err("Device allocation failed\n"); goto exit; } err = platform_device_add_resources(pdev, &res, 1); if (err) { pr_err("Device resource addition failed (%d)\n", err); goto exit_device_put; } err = platform_device_add(pdev); if (err) { pr_err("Device addition failed (%d)\n", err); goto exit_device_put; } return 0; exit_device_put: platform_device_put(pdev); exit: return err; } static int __devinit vt8231_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { u16 address, val; if (force_addr) { address = force_addr & 0xff00; dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(dev, VT8231_BASE_REG, address | 1)) return -ENODEV; } if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_BASE_REG, &val)) return -ENODEV; address = val & ~(VT8231_EXTENT - 1); if (address == 0) { dev_err(&dev->dev, "base address not set - upgrade BIOS or use force_addr=0xaddr\n"); return -ENODEV; } if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_ENABLE_REG, &val)) return -ENODEV; if (!(val & 0x0001)) { dev_warn(&dev->dev, "enabling sensors\n"); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(dev, VT8231_ENABLE_REG, val | 0x0001)) return -ENODEV; } if (platform_driver_register(&vt8231_driver)) goto exit; /* Sets global pdev as a side effect */ if (vt8231_device_add(address)) goto exit_unregister; /* * Always return failure here. This is to allow other drivers to bind * to this pci device. We don't really want to have control over the * pci device, we only wanted to read as few register values from it. */ /* * We do, however, mark ourselves as using the PCI device to stop it * getting unloaded. */ s_bridge = pci_dev_get(dev); return -ENODEV; exit_unregister: platform_driver_unregister(&vt8231_driver); exit: return -ENODEV; } static int __init sm_vt8231_init(void) { return pci_register_driver(&vt8231_pci_driver); } static void __exit sm_vt8231_exit(void) { pci_unregister_driver(&vt8231_pci_driver); if (s_bridge != NULL) { platform_device_unregister(pdev); platform_driver_unregister(&vt8231_driver); pci_dev_put(s_bridge); s_bridge = NULL; } } MODULE_AUTHOR("Roger Lucas "); MODULE_DESCRIPTION("VT8231 sensors"); MODULE_LICENSE("GPL"); module_init(sm_vt8231_init); module_exit(sm_vt8231_exit);