// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 plane module * * Each DRM plane is a layer of pixels being scanned out by the HVS. * * At atomic modeset check time, we compute the HVS display element * state that would be necessary for displaying the plane (giving us a * chance to figure out if a plane configuration is invalid), then at * atomic flush time the CRTC will ask us to write our element state * into the region of the HVS that it has allocated for us. */ #include #include #include #include #include #include #include #include "uapi/drm/vc4_drm.h" #include "vc4_drv.h" #include "vc4_regs.h" static const struct hvs_format { u32 drm; /* DRM_FORMAT_* */ u32 hvs; /* HVS_FORMAT_* */ u32 pixel_order; u32 pixel_order_hvs5; } hvs_formats[] = { { .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ABGR, .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB, }, { .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ABGR, .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB, }, { .drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ARGB, .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR, }, { .drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ARGB, .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR, }, { .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565, .pixel_order = HVS_PIXEL_ORDER_XRGB, }, { .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565, .pixel_order = HVS_PIXEL_ORDER_XBGR, }, { .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, .pixel_order = HVS_PIXEL_ORDER_ABGR, }, { .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, .pixel_order = HVS_PIXEL_ORDER_ABGR, }, { .drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888, .pixel_order = HVS_PIXEL_ORDER_XRGB, }, { .drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888, .pixel_order = HVS_PIXEL_ORDER_XBGR, }, { .drm = DRM_FORMAT_YUV422, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCBCR, }, { .drm = DRM_FORMAT_YVU422, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCRCB, }, { .drm = DRM_FORMAT_YUV420, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCBCR, }, { .drm = DRM_FORMAT_YVU420, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCRCB, }, { .drm = DRM_FORMAT_NV12, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCBCR, }, { .drm = DRM_FORMAT_NV21, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCRCB, }, { .drm = DRM_FORMAT_NV16, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCBCR, }, { .drm = DRM_FORMAT_NV61, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, .pixel_order = HVS_PIXEL_ORDER_XYCRCB, }, }; static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) { unsigned i; for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { if (hvs_formats[i].drm == drm_format) return &hvs_formats[i]; } return NULL; } static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst) { if (dst == src) return VC4_SCALING_NONE; if (3 * dst >= 2 * src) return VC4_SCALING_PPF; else return VC4_SCALING_TPZ; } static bool plane_enabled(struct drm_plane_state *state) { return state->fb && !WARN_ON(!state->crtc); } static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane) { struct vc4_plane_state *vc4_state; if (WARN_ON(!plane->state)) return NULL; vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return NULL; memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm)); vc4_state->dlist_initialized = 0; __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); if (vc4_state->dlist) { vc4_state->dlist = kmemdup(vc4_state->dlist, vc4_state->dlist_count * 4, GFP_KERNEL); if (!vc4_state->dlist) { kfree(vc4_state); return NULL; } vc4_state->dlist_size = vc4_state->dlist_count; } return &vc4_state->base; } static void vc4_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_dev *vc4 = to_vc4_dev(plane->dev); struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); if (drm_mm_node_allocated(&vc4_state->lbm)) { unsigned long irqflags; spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); drm_mm_remove_node(&vc4_state->lbm); spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); } kfree(vc4_state->dlist); __drm_atomic_helper_plane_destroy_state(&vc4_state->base); kfree(state); } /* Called during init to allocate the plane's atomic state. */ static void vc4_plane_reset(struct drm_plane *plane) { struct vc4_plane_state *vc4_state; WARN_ON(plane->state); vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return; __drm_atomic_helper_plane_reset(plane, &vc4_state->base); } static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val) { if (vc4_state->dlist_count == vc4_state->dlist_size) { u32 new_size = max(4u, vc4_state->dlist_count * 2); u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL); if (!new_dlist) return; memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4); kfree(vc4_state->dlist); vc4_state->dlist = new_dlist; vc4_state->dlist_size = new_size; } vc4_state->dlist[vc4_state->dlist_count++] = val; } /* Returns the scl0/scl1 field based on whether the dimensions need to * be up/down/non-scaled. * * This is a replication of a table from the spec. */ static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) { case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF: return SCALER_CTL0_SCL_H_PPF_V_PPF; case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF: return SCALER_CTL0_SCL_H_TPZ_V_PPF; case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ: return SCALER_CTL0_SCL_H_PPF_V_TPZ; case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ: return SCALER_CTL0_SCL_H_TPZ_V_TPZ; case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE: return SCALER_CTL0_SCL_H_PPF_V_NONE; case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF: return SCALER_CTL0_SCL_H_NONE_V_PPF; case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ: return SCALER_CTL0_SCL_H_NONE_V_TPZ; case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE: return SCALER_CTL0_SCL_H_TPZ_V_NONE; default: case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE: /* The unity case is independently handled by * SCALER_CTL0_UNITY. */ return 0; } } static int vc4_plane_margins_adj(struct drm_plane_state *pstate) { struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate); unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay; struct drm_crtc_state *crtc_state; crtc_state = drm_atomic_get_new_crtc_state(pstate->state, pstate->crtc); vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom); if (!left && !right && !top && !bottom) return 0; if (left + right >= crtc_state->mode.hdisplay || top + bottom >= crtc_state->mode.vdisplay) return -EINVAL; adjhdisplay = crtc_state->mode.hdisplay - (left + right); vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x * adjhdisplay, crtc_state->mode.hdisplay); vc4_pstate->crtc_x += left; if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left) vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left; adjvdisplay = crtc_state->mode.vdisplay - (top + bottom); vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y * adjvdisplay, crtc_state->mode.vdisplay); vc4_pstate->crtc_y += top; if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top) vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top; vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w * adjhdisplay, crtc_state->mode.hdisplay); vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h * adjvdisplay, crtc_state->mode.vdisplay); if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h) return -EINVAL; return 0; } static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); struct drm_framebuffer *fb = state->fb; struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); u32 subpixel_src_mask = (1 << 16) - 1; int num_planes = fb->format->num_planes; struct drm_crtc_state *crtc_state; u32 h_subsample = fb->format->hsub; u32 v_subsample = fb->format->vsub; int i, ret; crtc_state = drm_atomic_get_existing_crtc_state(state->state, state->crtc); if (!crtc_state) { DRM_DEBUG_KMS("Invalid crtc state\n"); return -EINVAL; } ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1, INT_MAX, true, true); if (ret) return ret; for (i = 0; i < num_planes; i++) vc4_state->offsets[i] = bo->paddr + fb->offsets[i]; /* We don't support subpixel source positioning for scaling. */ if ((state->src.x1 & subpixel_src_mask) || (state->src.x2 & subpixel_src_mask) || (state->src.y1 & subpixel_src_mask) || (state->src.y2 & subpixel_src_mask)) { return -EINVAL; } vc4_state->src_x = state->src.x1 >> 16; vc4_state->src_y = state->src.y1 >> 16; vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16; vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16; vc4_state->crtc_x = state->dst.x1; vc4_state->crtc_y = state->dst.y1; vc4_state->crtc_w = state->dst.x2 - state->dst.x1; vc4_state->crtc_h = state->dst.y2 - state->dst.y1; ret = vc4_plane_margins_adj(state); if (ret) return ret; vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0], vc4_state->crtc_w); vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0], vc4_state->crtc_h); vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE && vc4_state->y_scaling[0] == VC4_SCALING_NONE); if (num_planes > 1) { vc4_state->is_yuv = true; vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample; vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample; vc4_state->x_scaling[1] = vc4_get_scaling_mode(vc4_state->src_w[1], vc4_state->crtc_w); vc4_state->y_scaling[1] = vc4_get_scaling_mode(vc4_state->src_h[1], vc4_state->crtc_h); /* YUV conversion requires that horizontal scaling be enabled * on the UV plane even if vc4_get_scaling_mode() returned * VC4_SCALING_NONE (which can happen when the down-scaling * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this * case. */ if (vc4_state->x_scaling[1] == VC4_SCALING_NONE) vc4_state->x_scaling[1] = VC4_SCALING_PPF; } else { vc4_state->is_yuv = false; vc4_state->x_scaling[1] = VC4_SCALING_NONE; vc4_state->y_scaling[1] = VC4_SCALING_NONE; } return 0; } static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst) { u32 scale, recip; scale = (1 << 16) * src / dst; /* The specs note that while the reciprocal would be defined * as (1<<32)/scale, ~0 is close enough. */ recip = ~0 / scale; vc4_dlist_write(vc4_state, VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) | VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE)); vc4_dlist_write(vc4_state, VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP)); } static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst) { u32 scale = (1 << 16) * src / dst; vc4_dlist_write(vc4_state, SCALER_PPF_AGC | VC4_SET_FIELD(scale, SCALER_PPF_SCALE) | VC4_SET_FIELD(0, SCALER_PPF_IPHASE)); } static u32 vc4_lbm_size(struct drm_plane_state *state) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); u32 pix_per_line; u32 lbm; /* LBM is not needed when there's no vertical scaling. */ if (vc4_state->y_scaling[0] == VC4_SCALING_NONE && vc4_state->y_scaling[1] == VC4_SCALING_NONE) return 0; /* * This can be further optimized in the RGB/YUV444 case if the PPF * decimation factor is between 0.5 and 1.0 by using crtc_w. * * It's not an issue though, since in that case since src_w[0] is going * to be greater than or equal to crtc_w. */ if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ) pix_per_line = vc4_state->crtc_w; else pix_per_line = vc4_state->src_w[0]; if (!vc4_state->is_yuv) { if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ) lbm = pix_per_line * 8; else { /* In special cases, this multiplier might be 12. */ lbm = pix_per_line * 16; } } else { /* There are cases for this going down to a multiplier * of 2, but according to the firmware source, the * table in the docs is somewhat wrong. */ lbm = pix_per_line * 16; } lbm = roundup(lbm, 32); return lbm; } static void vc4_write_scaling_parameters(struct drm_plane_state *state, int channel) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); /* Ch0 H-PPF Word 0: Scaling Parameters */ if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) { vc4_write_ppf(vc4_state, vc4_state->src_w[channel], vc4_state->crtc_w); } /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */ if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) { vc4_write_ppf(vc4_state, vc4_state->src_h[channel], vc4_state->crtc_h); vc4_dlist_write(vc4_state, 0xc0c0c0c0); } /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */ if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) { vc4_write_tpz(vc4_state, vc4_state->src_w[channel], vc4_state->crtc_w); } /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */ if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) { vc4_write_tpz(vc4_state, vc4_state->src_h[channel], vc4_state->crtc_h); vc4_dlist_write(vc4_state, 0xc0c0c0c0); } } static void vc4_plane_calc_load(struct drm_plane_state *state) { unsigned int hvs_load_shift, vrefresh, i; struct drm_framebuffer *fb = state->fb; struct vc4_plane_state *vc4_state; struct drm_crtc_state *crtc_state; unsigned int vscale_factor; struct vc4_dev *vc4; vc4 = to_vc4_dev(state->plane->dev); if (!vc4->load_tracker_available) return; vc4_state = to_vc4_plane_state(state); crtc_state = drm_atomic_get_existing_crtc_state(state->state, state->crtc); vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode); /* The HVS is able to process 2 pixels/cycle when scaling the source, * 4 pixels/cycle otherwise. * Alpha blending step seems to be pipelined and it's always operating * at 4 pixels/cycle, so the limiting aspect here seems to be the * scaler block. * HVS load is expressed in clk-cycles/sec (AKA Hz). */ if (vc4_state->x_scaling[0] != VC4_SCALING_NONE || vc4_state->x_scaling[1] != VC4_SCALING_NONE || vc4_state->y_scaling[0] != VC4_SCALING_NONE || vc4_state->y_scaling[1] != VC4_SCALING_NONE) hvs_load_shift = 1; else hvs_load_shift = 2; vc4_state->membus_load = 0; vc4_state->hvs_load = 0; for (i = 0; i < fb->format->num_planes; i++) { /* Even if the bandwidth/plane required for a single frame is * * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh * * when downscaling, we have to read more pixels per line in * the time frame reserved for a single line, so the bandwidth * demand can be punctually higher. To account for that, we * calculate the down-scaling factor and multiply the plane * load by this number. We're likely over-estimating the read * demand, but that's better than under-estimating it. */ vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i], vc4_state->crtc_h); vc4_state->membus_load += vc4_state->src_w[i] * vc4_state->src_h[i] * vscale_factor * fb->format->cpp[i]; vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w; } vc4_state->hvs_load *= vrefresh; vc4_state->hvs_load >>= hvs_load_shift; vc4_state->membus_load *= vrefresh; } static int vc4_plane_allocate_lbm(struct drm_plane_state *state) { struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev); struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); unsigned long irqflags; u32 lbm_size; lbm_size = vc4_lbm_size(state); if (!lbm_size) return 0; if (WARN_ON(!vc4_state->lbm_offset)) return -EINVAL; /* Allocate the LBM memory that the HVS will use for temporary * storage due to our scaling/format conversion. */ if (!drm_mm_node_allocated(&vc4_state->lbm)) { int ret; spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm, &vc4_state->lbm, lbm_size, vc4->hvs->hvs5 ? 64 : 32, 0, 0); spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); if (ret) return ret; } else { WARN_ON_ONCE(lbm_size != vc4_state->lbm.size); } vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start; return 0; } /* Writes out a full display list for an active plane to the plane's * private dlist state. */ static int vc4_plane_mode_set(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_dev *vc4 = to_vc4_dev(plane->dev); struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); struct drm_framebuffer *fb = state->fb; u32 ctl0_offset = vc4_state->dlist_count; const struct hvs_format *format = vc4_get_hvs_format(fb->format->format); u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier); int num_planes = fb->format->num_planes; u32 h_subsample = fb->format->hsub; u32 v_subsample = fb->format->vsub; bool mix_plane_alpha; bool covers_screen; u32 scl0, scl1, pitch0; u32 tiling, src_y; u32 hvs_format = format->hvs; unsigned int rotation; int ret, i; if (vc4_state->dlist_initialized) return 0; ret = vc4_plane_setup_clipping_and_scaling(state); if (ret) return ret; /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB * and 4:4:4, scl1 should be set to scl0 so both channels of * the scaler do the same thing. For YUV, the Y plane needs * to be put in channel 1 and Cb/Cr in channel 0, so we swap * the scl fields here. */ if (num_planes == 1) { scl0 = vc4_get_scl_field(state, 0); scl1 = scl0; } else { scl0 = vc4_get_scl_field(state, 1); scl1 = vc4_get_scl_field(state, 0); } rotation = drm_rotation_simplify(state->rotation, DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y); /* We must point to the last line when Y reflection is enabled. */ src_y = vc4_state->src_y; if (rotation & DRM_MODE_REFLECT_Y) src_y += vc4_state->src_h[0] - 1; switch (base_format_mod) { case DRM_FORMAT_MOD_LINEAR: tiling = SCALER_CTL0_TILING_LINEAR; pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH); /* Adjust the base pointer to the first pixel to be scanned * out. */ for (i = 0; i < num_planes; i++) { vc4_state->offsets[i] += src_y / (i ? v_subsample : 1) * fb->pitches[i]; vc4_state->offsets[i] += vc4_state->src_x / (i ? h_subsample : 1) * fb->format->cpp[i]; } break; case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: { u32 tile_size_shift = 12; /* T tiles are 4kb */ /* Whole-tile offsets, mostly for setting the pitch. */ u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5; u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */ u32 tile_w_mask = (1 << tile_w_shift) - 1; /* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice * the height (in pixels) of a 4k tile. */ u32 tile_h_mask = (2 << tile_h_shift) - 1; /* For T-tiled, the FB pitch is "how many bytes from one row to * the next, such that * * pitch * tile_h == tile_size * tiles_per_row */ u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift); u32 tiles_l = vc4_state->src_x >> tile_w_shift; u32 tiles_r = tiles_w - tiles_l; u32 tiles_t = src_y >> tile_h_shift; /* Intra-tile offsets, which modify the base address (the * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that * base address). */ u32 tile_y = (src_y >> 4) & 1; u32 subtile_y = (src_y >> 2) & 3; u32 utile_y = src_y & 3; u32 x_off = vc4_state->src_x & tile_w_mask; u32 y_off = src_y & tile_h_mask; /* When Y reflection is requested we must set the * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines * after the initial one should be fetched in descending order, * which makes sense since we start from the last line and go * backward. * Don't know why we need y_off = max_y_off - y_off, but it's * definitely required (I guess it's also related to the "going * backward" situation). */ if (rotation & DRM_MODE_REFLECT_Y) { y_off = tile_h_mask - y_off; pitch0 = SCALER_PITCH0_TILE_LINE_DIR; } else { pitch0 = 0; } tiling = SCALER_CTL0_TILING_256B_OR_T; pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) | VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) | VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) | VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R)); vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift); vc4_state->offsets[0] += subtile_y << 8; vc4_state->offsets[0] += utile_y << 4; /* Rows of tiles alternate left-to-right and right-to-left. */ if (tiles_t & 1) { pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR; vc4_state->offsets[0] += (tiles_w - tiles_l) << tile_size_shift; vc4_state->offsets[0] -= (1 + !tile_y) << 10; } else { vc4_state->offsets[0] += tiles_l << tile_size_shift; vc4_state->offsets[0] += tile_y << 10; } break; } case DRM_FORMAT_MOD_BROADCOM_SAND64: case DRM_FORMAT_MOD_BROADCOM_SAND128: case DRM_FORMAT_MOD_BROADCOM_SAND256: { uint32_t param = fourcc_mod_broadcom_param(fb->modifier); u32 tile_w, tile, x_off, pix_per_tile; hvs_format = HVS_PIXEL_FORMAT_H264; switch (base_format_mod) { case DRM_FORMAT_MOD_BROADCOM_SAND64: tiling = SCALER_CTL0_TILING_64B; tile_w = 64; break; case DRM_FORMAT_MOD_BROADCOM_SAND128: tiling = SCALER_CTL0_TILING_128B; tile_w = 128; break; case DRM_FORMAT_MOD_BROADCOM_SAND256: tiling = SCALER_CTL0_TILING_256B_OR_T; tile_w = 256; break; default: break; } if (param > SCALER_TILE_HEIGHT_MASK) { DRM_DEBUG_KMS("SAND height too large (%d)\n", param); return -EINVAL; } pix_per_tile = tile_w / fb->format->cpp[0]; tile = vc4_state->src_x / pix_per_tile; x_off = vc4_state->src_x % pix_per_tile; /* Adjust the base pointer to the first pixel to be scanned * out. */ for (i = 0; i < num_planes; i++) { vc4_state->offsets[i] += param * tile_w * tile; vc4_state->offsets[i] += src_y / (i ? v_subsample : 1) * tile_w; vc4_state->offsets[i] += x_off / (i ? h_subsample : 1) * fb->format->cpp[i]; } pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT); break; } default: DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx", (long long)fb->modifier); return -EINVAL; } /* Don't waste cycles mixing with plane alpha if the set alpha * is opaque or there is no per-pixel alpha information. * In any case we use the alpha property value as the fixed alpha. */ mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE && fb->format->has_alpha; if (!vc4->hvs->hvs5) { /* Control word */ vc4_dlist_write(vc4_state, SCALER_CTL0_VALID | (rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) | (rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) | VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) | (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) | (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) | VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1)); /* Position Word 0: Image Positions and Alpha Value */ vc4_state->pos0_offset = vc4_state->dlist_count; vc4_dlist_write(vc4_state, VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) | VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y)); /* Position Word 1: Scaled Image Dimensions. */ if (!vc4_state->is_unity) { vc4_dlist_write(vc4_state, VC4_SET_FIELD(vc4_state->crtc_w, SCALER_POS1_SCL_WIDTH) | VC4_SET_FIELD(vc4_state->crtc_h, SCALER_POS1_SCL_HEIGHT)); } /* Position Word 2: Source Image Size, Alpha */ vc4_state->pos2_offset = vc4_state->dlist_count; vc4_dlist_write(vc4_state, VC4_SET_FIELD(fb->format->has_alpha ? SCALER_POS2_ALPHA_MODE_PIPELINE : SCALER_POS2_ALPHA_MODE_FIXED, SCALER_POS2_ALPHA_MODE) | (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) | (fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) | VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) | VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT)); /* Position Word 3: Context. Written by the HVS. */ vc4_dlist_write(vc4_state, 0xc0c0c0c0); } else { u32 hvs_pixel_order = format->pixel_order; if (format->pixel_order_hvs5) hvs_pixel_order = format->pixel_order_hvs5; /* Control word */ vc4_dlist_write(vc4_state, SCALER_CTL0_VALID | (hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) | (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) | (vc4_state->is_unity ? SCALER5_CTL0_UNITY : 0) | VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) | SCALER5_CTL0_ALPHA_EXPAND | SCALER5_CTL0_RGB_EXPAND); /* Position Word 0: Image Positions and Alpha Value */ vc4_state->pos0_offset = vc4_state->dlist_count; vc4_dlist_write(vc4_state, (rotation & DRM_MODE_REFLECT_Y ? SCALER5_POS0_VFLIP : 0) | VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | (rotation & DRM_MODE_REFLECT_X ? SCALER5_POS0_HFLIP : 0) | VC4_SET_FIELD(vc4_state->crtc_y, SCALER5_POS0_START_Y) ); /* Control Word 2 */ vc4_dlist_write(vc4_state, VC4_SET_FIELD(state->alpha >> 4, SCALER5_CTL2_ALPHA) | (fb->format->has_alpha ? SCALER5_CTL2_ALPHA_PREMULT : 0) | (mix_plane_alpha ? SCALER5_CTL2_ALPHA_MIX : 0) | VC4_SET_FIELD(fb->format->has_alpha ? SCALER5_CTL2_ALPHA_MODE_PIPELINE : SCALER5_CTL2_ALPHA_MODE_FIXED, SCALER5_CTL2_ALPHA_MODE) ); /* Position Word 1: Scaled Image Dimensions. */ if (!vc4_state->is_unity) { vc4_dlist_write(vc4_state, VC4_SET_FIELD(vc4_state->crtc_w, SCALER_POS1_SCL_WIDTH) | VC4_SET_FIELD(vc4_state->crtc_h, SCALER_POS1_SCL_HEIGHT)); } /* Position Word 2: Source Image Size */ vc4_state->pos2_offset = vc4_state->dlist_count; vc4_dlist_write(vc4_state, VC4_SET_FIELD(vc4_state->src_w[0], SCALER5_POS2_WIDTH) | VC4_SET_FIELD(vc4_state->src_h[0], SCALER5_POS2_HEIGHT)); /* Position Word 3: Context. Written by the HVS. */ vc4_dlist_write(vc4_state, 0xc0c0c0c0); } /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers * * The pointers may be any byte address. */ vc4_state->ptr0_offset = vc4_state->dlist_count; for (i = 0; i < num_planes; i++) vc4_dlist_write(vc4_state, vc4_state->offsets[i]); /* Pointer Context Word 0/1/2: Written by the HVS */ for (i = 0; i < num_planes; i++) vc4_dlist_write(vc4_state, 0xc0c0c0c0); /* Pitch word 0 */ vc4_dlist_write(vc4_state, pitch0); /* Pitch word 1/2 */ for (i = 1; i < num_planes; i++) { if (hvs_format != HVS_PIXEL_FORMAT_H264) { vc4_dlist_write(vc4_state, VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH)); } else { vc4_dlist_write(vc4_state, pitch0); } } /* Colorspace conversion words */ if (vc4_state->is_yuv) { vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5); vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5); vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5); } vc4_state->lbm_offset = 0; if (vc4_state->x_scaling[0] != VC4_SCALING_NONE || vc4_state->x_scaling[1] != VC4_SCALING_NONE || vc4_state->y_scaling[0] != VC4_SCALING_NONE || vc4_state->y_scaling[1] != VC4_SCALING_NONE) { /* Reserve a slot for the LBM Base Address. The real value will * be set when calling vc4_plane_allocate_lbm(). */ if (vc4_state->y_scaling[0] != VC4_SCALING_NONE || vc4_state->y_scaling[1] != VC4_SCALING_NONE) vc4_state->lbm_offset = vc4_state->dlist_count++; if (num_planes > 1) { /* Emit Cb/Cr as channel 0 and Y as channel * 1. This matches how we set up scl0/scl1 * above. */ vc4_write_scaling_parameters(state, 1); } vc4_write_scaling_parameters(state, 0); /* If any PPF setup was done, then all the kernel * pointers get uploaded. */ if (vc4_state->x_scaling[0] == VC4_SCALING_PPF || vc4_state->y_scaling[0] == VC4_SCALING_PPF || vc4_state->x_scaling[1] == VC4_SCALING_PPF || vc4_state->y_scaling[1] == VC4_SCALING_PPF) { u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start, SCALER_PPF_KERNEL_OFFSET); /* HPPF plane 0 */ vc4_dlist_write(vc4_state, kernel); /* VPPF plane 0 */ vc4_dlist_write(vc4_state, kernel); /* HPPF plane 1 */ vc4_dlist_write(vc4_state, kernel); /* VPPF plane 1 */ vc4_dlist_write(vc4_state, kernel); } } vc4_state->dlist[ctl0_offset] |= VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); /* crtc_* are already clipped coordinates. */ covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 && vc4_state->crtc_w == state->crtc->mode.hdisplay && vc4_state->crtc_h == state->crtc->mode.vdisplay; /* Background fill might be necessary when the plane has per-pixel * alpha content or a non-opaque plane alpha and could blend from the * background or does not cover the entire screen. */ vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen || state->alpha != DRM_BLEND_ALPHA_OPAQUE; /* Flag the dlist as initialized to avoid checking it twice in case * the async update check already called vc4_plane_mode_set() and * decided to fallback to sync update because async update was not * possible. */ vc4_state->dlist_initialized = 1; vc4_plane_calc_load(state); return 0; } /* If a modeset involves changing the setup of a plane, the atomic * infrastructure will call this to validate a proposed plane setup. * However, if a plane isn't getting updated, this (and the * corresponding vc4_plane_atomic_update) won't get called. Thus, we * compute the dlist here and have all active plane dlists get updated * in the CRTC's flush. */ static int vc4_plane_atomic_check(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); int ret; vc4_state->dlist_count = 0; if (!plane_enabled(state)) return 0; ret = vc4_plane_mode_set(plane, state); if (ret) return ret; return vc4_plane_allocate_lbm(state); } static void vc4_plane_atomic_update(struct drm_plane *plane, struct drm_plane_state *old_state) { /* No contents here. Since we don't know where in the CRTC's * dlist we should be stored, our dlist is uploaded to the * hardware with vc4_plane_write_dlist() at CRTC atomic_flush * time. */ } u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); int i; vc4_state->hw_dlist = dlist; /* Can't memcpy_toio() because it needs to be 32-bit writes. */ for (i = 0; i < vc4_state->dlist_count; i++) writel(vc4_state->dlist[i], &dlist[i]); return vc4_state->dlist_count; } u32 vc4_plane_dlist_size(const struct drm_plane_state *state) { const struct vc4_plane_state *vc4_state = container_of(state, typeof(*vc4_state), base); return vc4_state->dlist_count; } /* Updates the plane to immediately (well, once the FIFO needs * refilling) scan out from at a new framebuffer. */ void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); uint32_t addr; /* We're skipping the address adjustment for negative origin, * because this is only called on the primary plane. */ WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0); addr = bo->paddr + fb->offsets[0]; /* Write the new address into the hardware immediately. The * scanout will start from this address as soon as the FIFO * needs to refill with pixels. */ writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]); /* Also update the CPU-side dlist copy, so that any later * atomic updates that don't do a new modeset on our plane * also use our updated address. */ vc4_state->dlist[vc4_state->ptr0_offset] = addr; } static void vc4_plane_atomic_async_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct vc4_plane_state *vc4_state, *new_vc4_state; swap(plane->state->fb, new_plane_state->fb); plane->state->crtc_x = new_plane_state->crtc_x; plane->state->crtc_y = new_plane_state->crtc_y; plane->state->crtc_w = new_plane_state->crtc_w; plane->state->crtc_h = new_plane_state->crtc_h; plane->state->src_x = new_plane_state->src_x; plane->state->src_y = new_plane_state->src_y; plane->state->src_w = new_plane_state->src_w; plane->state->src_h = new_plane_state->src_h; plane->state->src_h = new_plane_state->src_h; plane->state->alpha = new_plane_state->alpha; plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode; plane->state->rotation = new_plane_state->rotation; plane->state->zpos = new_plane_state->zpos; plane->state->normalized_zpos = new_plane_state->normalized_zpos; plane->state->color_encoding = new_plane_state->color_encoding; plane->state->color_range = new_plane_state->color_range; plane->state->src = new_plane_state->src; plane->state->dst = new_plane_state->dst; plane->state->visible = new_plane_state->visible; new_vc4_state = to_vc4_plane_state(new_plane_state); vc4_state = to_vc4_plane_state(plane->state); vc4_state->crtc_x = new_vc4_state->crtc_x; vc4_state->crtc_y = new_vc4_state->crtc_y; vc4_state->crtc_h = new_vc4_state->crtc_h; vc4_state->crtc_w = new_vc4_state->crtc_w; vc4_state->src_x = new_vc4_state->src_x; vc4_state->src_y = new_vc4_state->src_y; memcpy(vc4_state->src_w, new_vc4_state->src_w, sizeof(vc4_state->src_w)); memcpy(vc4_state->src_h, new_vc4_state->src_h, sizeof(vc4_state->src_h)); memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling, sizeof(vc4_state->x_scaling)); memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling, sizeof(vc4_state->y_scaling)); vc4_state->is_unity = new_vc4_state->is_unity; vc4_state->is_yuv = new_vc4_state->is_yuv; memcpy(vc4_state->offsets, new_vc4_state->offsets, sizeof(vc4_state->offsets)); vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill; /* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */ vc4_state->dlist[vc4_state->pos0_offset] = new_vc4_state->dlist[vc4_state->pos0_offset]; vc4_state->dlist[vc4_state->pos2_offset] = new_vc4_state->dlist[vc4_state->pos2_offset]; vc4_state->dlist[vc4_state->ptr0_offset] = new_vc4_state->dlist[vc4_state->ptr0_offset]; /* Note that we can't just call vc4_plane_write_dlist() * because that would smash the context data that the HVS is * currently using. */ writel(vc4_state->dlist[vc4_state->pos0_offset], &vc4_state->hw_dlist[vc4_state->pos0_offset]); writel(vc4_state->dlist[vc4_state->pos2_offset], &vc4_state->hw_dlist[vc4_state->pos2_offset]); writel(vc4_state->dlist[vc4_state->ptr0_offset], &vc4_state->hw_dlist[vc4_state->ptr0_offset]); } static int vc4_plane_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct vc4_plane_state *old_vc4_state, *new_vc4_state; int ret; u32 i; ret = vc4_plane_mode_set(plane, new_plane_state); if (ret) return ret; old_vc4_state = to_vc4_plane_state(plane->state); new_vc4_state = to_vc4_plane_state(new_plane_state); if (old_vc4_state->dlist_count != new_vc4_state->dlist_count || old_vc4_state->pos0_offset != new_vc4_state->pos0_offset || old_vc4_state->pos2_offset != new_vc4_state->pos2_offset || old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset || vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state)) return -EINVAL; /* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update * if anything else has changed, fallback to a sync update. */ for (i = 0; i < new_vc4_state->dlist_count; i++) { if (i == new_vc4_state->pos0_offset || i == new_vc4_state->pos2_offset || i == new_vc4_state->ptr0_offset || (new_vc4_state->lbm_offset && i == new_vc4_state->lbm_offset)) continue; if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i]) return -EINVAL; } return 0; } static int vc4_prepare_fb(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_bo *bo; int ret; if (!state->fb) return 0; bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); drm_gem_plane_helper_prepare_fb(plane, state); if (plane->state->fb == state->fb) return 0; ret = vc4_bo_inc_usecnt(bo); if (ret) return ret; return 0; } static void vc4_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_bo *bo; if (plane->state->fb == state->fb || !state->fb) return; bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); vc4_bo_dec_usecnt(bo); } static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { .atomic_check = vc4_plane_atomic_check, .atomic_update = vc4_plane_atomic_update, .prepare_fb = vc4_prepare_fb, .cleanup_fb = vc4_cleanup_fb, .atomic_async_check = vc4_plane_atomic_async_check, .atomic_async_update = vc4_plane_atomic_async_update, }; static bool vc4_format_mod_supported(struct drm_plane *plane, uint32_t format, uint64_t modifier) { /* Support T_TILING for RGB formats only. */ switch (format) { case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_RGB565: case DRM_FORMAT_BGR565: case DRM_FORMAT_ARGB1555: case DRM_FORMAT_XRGB1555: switch (fourcc_mod_broadcom_mod(modifier)) { case DRM_FORMAT_MOD_LINEAR: case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: return true; default: return false; } case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: switch (fourcc_mod_broadcom_mod(modifier)) { case DRM_FORMAT_MOD_LINEAR: case DRM_FORMAT_MOD_BROADCOM_SAND64: case DRM_FORMAT_MOD_BROADCOM_SAND128: case DRM_FORMAT_MOD_BROADCOM_SAND256: return true; default: return false; } case DRM_FORMAT_RGBX1010102: case DRM_FORMAT_BGRX1010102: case DRM_FORMAT_RGBA1010102: case DRM_FORMAT_BGRA1010102: case DRM_FORMAT_YUV422: case DRM_FORMAT_YVU422: case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: case DRM_FORMAT_NV16: case DRM_FORMAT_NV61: default: return (modifier == DRM_FORMAT_MOD_LINEAR); } } static const struct drm_plane_funcs vc4_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_cleanup, .set_property = NULL, .reset = vc4_plane_reset, .atomic_duplicate_state = vc4_plane_duplicate_state, .atomic_destroy_state = vc4_plane_destroy_state, .format_mod_supported = vc4_format_mod_supported, }; struct drm_plane *vc4_plane_init(struct drm_device *dev, enum drm_plane_type type) { struct drm_plane *plane = NULL; struct vc4_plane *vc4_plane; u32 formats[ARRAY_SIZE(hvs_formats)]; int ret = 0; unsigned i; static const uint64_t modifiers[] = { DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED, DRM_FORMAT_MOD_BROADCOM_SAND128, DRM_FORMAT_MOD_BROADCOM_SAND64, DRM_FORMAT_MOD_BROADCOM_SAND256, DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane), GFP_KERNEL); if (!vc4_plane) return ERR_PTR(-ENOMEM); for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) formats[i] = hvs_formats[i].drm; plane = &vc4_plane->base; ret = drm_universal_plane_init(dev, plane, 0, &vc4_plane_funcs, formats, ARRAY_SIZE(formats), modifiers, type, NULL); if (ret) return ERR_PTR(ret); drm_plane_helper_add(plane, &vc4_plane_helper_funcs); drm_plane_create_alpha_property(plane); drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y); return plane; } int vc4_plane_create_additional_planes(struct drm_device *drm) { struct drm_plane *cursor_plane; struct drm_crtc *crtc; unsigned int i; /* Set up some arbitrary number of planes. We're not limited * by a set number of physical registers, just the space in * the HVS (16k) and how small an plane can be (28 bytes). * However, each plane we set up takes up some memory, and * increases the cost of looping over planes, which atomic * modesetting does quite a bit. As a result, we pick a * modest number of planes to expose, that should hopefully * still cover any sane usecase. */ for (i = 0; i < 16; i++) { struct drm_plane *plane = vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); if (IS_ERR(plane)) continue; plane->possible_crtcs = GENMASK(drm->mode_config.num_crtc - 1, 0); } drm_for_each_crtc(crtc, drm) { /* Set up the legacy cursor after overlay initialization, * since we overlay planes on the CRTC in the order they were * initialized. */ cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); if (!IS_ERR(cursor_plane)) { cursor_plane->possible_crtcs = drm_crtc_mask(crtc); crtc->cursor = cursor_plane; } } return 0; }