// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen * * Some code and ideas taken from drivers/video/omap/ driver * by Imre Deak. */ #define DSS_SUBSYS_NAME "DISPC" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omapdss.h" #include "dss.h" #include "dispc.h" struct dispc_device; /* DISPC */ #define DISPC_SZ_REGS SZ_4K enum omap_burst_size { BURST_SIZE_X2 = 0, BURST_SIZE_X4 = 1, BURST_SIZE_X8 = 2, }; #define REG_GET(dispc, idx, start, end) \ FLD_GET(dispc_read_reg(dispc, idx), start, end) #define REG_FLD_MOD(dispc, idx, val, start, end) \ dispc_write_reg(dispc, idx, \ FLD_MOD(dispc_read_reg(dispc, idx), val, start, end)) /* DISPC has feature id */ enum dispc_feature_id { FEAT_LCDENABLEPOL, FEAT_LCDENABLESIGNAL, FEAT_PCKFREEENABLE, FEAT_FUNCGATED, FEAT_MGR_LCD2, FEAT_MGR_LCD3, FEAT_LINEBUFFERSPLIT, FEAT_ROWREPEATENABLE, FEAT_RESIZECONF, /* Independent core clk divider */ FEAT_CORE_CLK_DIV, FEAT_HANDLE_UV_SEPARATE, FEAT_ATTR2, FEAT_CPR, FEAT_PRELOAD, FEAT_FIR_COEF_V, FEAT_ALPHA_FIXED_ZORDER, FEAT_ALPHA_FREE_ZORDER, FEAT_FIFO_MERGE, /* An unknown HW bug causing the normal FIFO thresholds not to work */ FEAT_OMAP3_DSI_FIFO_BUG, FEAT_BURST_2D, FEAT_MFLAG, }; struct dispc_features { u8 sw_start; u8 fp_start; u8 bp_start; u16 sw_max; u16 vp_max; u16 hp_max; u8 mgr_width_start; u8 mgr_height_start; u16 mgr_width_max; u16 mgr_height_max; unsigned long max_lcd_pclk; unsigned long max_tv_pclk; unsigned int max_downscale; unsigned int max_line_width; unsigned int min_pcd; int (*calc_scaling)(struct dispc_device *dispc, unsigned long pclk, unsigned long lclk, const struct videomode *vm, u16 width, u16 height, u16 out_width, u16 out_height, u32 fourcc, bool *five_taps, int *x_predecim, int *y_predecim, int *decim_x, int *decim_y, u16 pos_x, unsigned long *core_clk, bool mem_to_mem); unsigned long (*calc_core_clk) (unsigned long pclk, u16 width, u16 height, u16 out_width, u16 out_height, bool mem_to_mem); u8 num_fifos; const enum dispc_feature_id *features; unsigned int num_features; const struct dss_reg_field *reg_fields; const unsigned int num_reg_fields; const enum omap_overlay_caps *overlay_caps; const u32 **supported_color_modes; unsigned int num_mgrs; unsigned int num_ovls; unsigned int buffer_size_unit; unsigned int burst_size_unit; /* swap GFX & WB fifos */ bool gfx_fifo_workaround:1; /* no DISPC_IRQ_FRAMEDONETV on this SoC */ bool no_framedone_tv:1; /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */ bool mstandby_workaround:1; bool set_max_preload:1; /* PIXEL_INC is not added to the last pixel of a line */ bool last_pixel_inc_missing:1; /* POL_FREQ has ALIGN bit */ bool supports_sync_align:1; bool has_writeback:1; bool supports_double_pixel:1; /* * Field order for VENC is different than HDMI. We should handle this in * some intelligent manner, but as the SoCs have either HDMI or VENC, * never both, we can just use this flag for now. */ bool reverse_ilace_field_order:1; bool has_gamma_table:1; bool has_gamma_i734_bug:1; }; #define DISPC_MAX_NR_FIFOS 5 #define DISPC_MAX_CHANNEL_GAMMA 4 struct dispc_device { struct platform_device *pdev; void __iomem *base; struct dss_device *dss; struct dss_debugfs_entry *debugfs; int irq; irq_handler_t user_handler; void *user_data; unsigned long core_clk_rate; unsigned long tv_pclk_rate; u32 fifo_size[DISPC_MAX_NR_FIFOS]; /* maps which plane is using a fifo. fifo-id -> plane-id */ int fifo_assignment[DISPC_MAX_NR_FIFOS]; bool ctx_valid; u32 ctx[DISPC_SZ_REGS / sizeof(u32)]; u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA]; const struct dispc_features *feat; bool is_enabled; struct regmap *syscon_pol; u32 syscon_pol_offset; /* DISPC_CONTROL & DISPC_CONFIG lock*/ spinlock_t control_lock; }; enum omap_color_component { /* used for all color formats for OMAP3 and earlier * and for RGB and Y color component on OMAP4 */ DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0, /* used for UV component for * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12 * color formats on OMAP4 */ DISPC_COLOR_COMPONENT_UV = 1 << 1, }; enum mgr_reg_fields { DISPC_MGR_FLD_ENABLE, DISPC_MGR_FLD_STNTFT, DISPC_MGR_FLD_GO, DISPC_MGR_FLD_TFTDATALINES, DISPC_MGR_FLD_STALLMODE, DISPC_MGR_FLD_TCKENABLE, DISPC_MGR_FLD_TCKSELECTION, DISPC_MGR_FLD_CPR, DISPC_MGR_FLD_FIFOHANDCHECK, /* used to maintain a count of the above fields */ DISPC_MGR_FLD_NUM, }; /* DISPC register field id */ enum dispc_feat_reg_field { FEAT_REG_FIRHINC, FEAT_REG_FIRVINC, FEAT_REG_FIFOHIGHTHRESHOLD, FEAT_REG_FIFOLOWTHRESHOLD, FEAT_REG_FIFOSIZE, FEAT_REG_HORIZONTALACCU, FEAT_REG_VERTICALACCU, }; struct dispc_reg_field { u16 reg; u8 high; u8 low; }; struct dispc_gamma_desc { u32 len; u32 bits; u16 reg; bool has_index; }; static const struct { const char *name; u32 vsync_irq; u32 framedone_irq; u32 sync_lost_irq; struct dispc_gamma_desc gamma; struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM]; } mgr_desc[] = { [OMAP_DSS_CHANNEL_LCD] = { .name = "LCD", .vsync_irq = DISPC_IRQ_VSYNC, .framedone_irq = DISPC_IRQ_FRAMEDONE, .sync_lost_irq = DISPC_IRQ_SYNC_LOST, .gamma = { .len = 256, .bits = 8, .reg = DISPC_GAMMA_TABLE0, .has_index = true, }, .reg_desc = { [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 }, [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 }, [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 }, [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 }, [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 }, [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 }, [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 }, [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 }, [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 }, }, }, [OMAP_DSS_CHANNEL_DIGIT] = { .name = "DIGIT", .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN, .framedone_irq = DISPC_IRQ_FRAMEDONETV, .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT, .gamma = { .len = 1024, .bits = 10, .reg = DISPC_GAMMA_TABLE2, .has_index = false, }, .reg_desc = { [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 }, [DISPC_MGR_FLD_STNTFT] = { }, [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 }, [DISPC_MGR_FLD_TFTDATALINES] = { }, [DISPC_MGR_FLD_STALLMODE] = { }, [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 }, [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 }, [DISPC_MGR_FLD_CPR] = { }, [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 }, }, }, [OMAP_DSS_CHANNEL_LCD2] = { .name = "LCD2", .vsync_irq = DISPC_IRQ_VSYNC2, .framedone_irq = DISPC_IRQ_FRAMEDONE2, .sync_lost_irq = DISPC_IRQ_SYNC_LOST2, .gamma = { .len = 256, .bits = 8, .reg = DISPC_GAMMA_TABLE1, .has_index = true, }, .reg_desc = { [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 }, [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 }, [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 }, [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 }, [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 }, [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 }, [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 }, [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 }, [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 }, }, }, [OMAP_DSS_CHANNEL_LCD3] = { .name = "LCD3", .vsync_irq = DISPC_IRQ_VSYNC3, .framedone_irq = DISPC_IRQ_FRAMEDONE3, .sync_lost_irq = DISPC_IRQ_SYNC_LOST3, .gamma = { .len = 256, .bits = 8, .reg = DISPC_GAMMA_TABLE3, .has_index = true, }, .reg_desc = { [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 }, [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 }, [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 }, [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 }, [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 }, [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 }, [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 }, [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 }, [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 }, }, }, }; static unsigned long dispc_fclk_rate(struct dispc_device *dispc); static unsigned long dispc_core_clk_rate(struct dispc_device *dispc); static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc, enum omap_channel channel); static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc, enum omap_channel channel); static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc, enum omap_plane_id plane); static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc, enum omap_plane_id plane); static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask); static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val) { __raw_writel(val, dispc->base + idx); } static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx) { return __raw_readl(dispc->base + idx); } static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel, enum mgr_reg_fields regfld) { const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld]; return REG_GET(dispc, rfld.reg, rfld.high, rfld.low); } static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel, enum mgr_reg_fields regfld, int val) { const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld]; const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG; unsigned long flags; if (need_lock) { spin_lock_irqsave(&dispc->control_lock, flags); REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low); spin_unlock_irqrestore(&dispc->control_lock, flags); } else { REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low); } } static int dispc_get_num_ovls(struct dispc_device *dispc) { return dispc->feat->num_ovls; } static int dispc_get_num_mgrs(struct dispc_device *dispc) { return dispc->feat->num_mgrs; } static void dispc_get_reg_field(struct dispc_device *dispc, enum dispc_feat_reg_field id, u8 *start, u8 *end) { if (id >= dispc->feat->num_reg_fields) BUG(); *start = dispc->feat->reg_fields[id].start; *end = dispc->feat->reg_fields[id].end; } static bool dispc_has_feature(struct dispc_device *dispc, enum dispc_feature_id id) { unsigned int i; for (i = 0; i < dispc->feat->num_features; i++) { if (dispc->feat->features[i] == id) return true; } return false; } #define SR(dispc, reg) \ dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg) #define RR(dispc, reg) \ dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)]) static void dispc_save_context(struct dispc_device *dispc) { int i, j; DSSDBG("dispc_save_context\n"); SR(dispc, IRQENABLE); SR(dispc, CONTROL); SR(dispc, CONFIG); SR(dispc, LINE_NUMBER); if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) SR(dispc, GLOBAL_ALPHA); if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { SR(dispc, CONTROL2); SR(dispc, CONFIG2); } if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { SR(dispc, CONTROL3); SR(dispc, CONFIG3); } for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { SR(dispc, DEFAULT_COLOR(i)); SR(dispc, TRANS_COLOR(i)); SR(dispc, SIZE_MGR(i)); if (i == OMAP_DSS_CHANNEL_DIGIT) continue; SR(dispc, TIMING_H(i)); SR(dispc, TIMING_V(i)); SR(dispc, POL_FREQ(i)); SR(dispc, DIVISORo(i)); SR(dispc, DATA_CYCLE1(i)); SR(dispc, DATA_CYCLE2(i)); SR(dispc, DATA_CYCLE3(i)); if (dispc_has_feature(dispc, FEAT_CPR)) { SR(dispc, CPR_COEF_R(i)); SR(dispc, CPR_COEF_G(i)); SR(dispc, CPR_COEF_B(i)); } } for (i = 0; i < dispc_get_num_ovls(dispc); i++) { SR(dispc, OVL_BA0(i)); SR(dispc, OVL_BA1(i)); SR(dispc, OVL_POSITION(i)); SR(dispc, OVL_SIZE(i)); SR(dispc, OVL_ATTRIBUTES(i)); SR(dispc, OVL_FIFO_THRESHOLD(i)); SR(dispc, OVL_ROW_INC(i)); SR(dispc, OVL_PIXEL_INC(i)); if (dispc_has_feature(dispc, FEAT_PRELOAD)) SR(dispc, OVL_PRELOAD(i)); if (i == OMAP_DSS_GFX) { SR(dispc, OVL_WINDOW_SKIP(i)); SR(dispc, OVL_TABLE_BA(i)); continue; } SR(dispc, OVL_FIR(i)); SR(dispc, OVL_PICTURE_SIZE(i)); SR(dispc, OVL_ACCU0(i)); SR(dispc, OVL_ACCU1(i)); for (j = 0; j < 8; j++) SR(dispc, OVL_FIR_COEF_H(i, j)); for (j = 0; j < 8; j++) SR(dispc, OVL_FIR_COEF_HV(i, j)); for (j = 0; j < 5; j++) SR(dispc, OVL_CONV_COEF(i, j)); if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { for (j = 0; j < 8; j++) SR(dispc, OVL_FIR_COEF_V(i, j)); } if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { SR(dispc, OVL_BA0_UV(i)); SR(dispc, OVL_BA1_UV(i)); SR(dispc, OVL_FIR2(i)); SR(dispc, OVL_ACCU2_0(i)); SR(dispc, OVL_ACCU2_1(i)); for (j = 0; j < 8; j++) SR(dispc, OVL_FIR_COEF_H2(i, j)); for (j = 0; j < 8; j++) SR(dispc, OVL_FIR_COEF_HV2(i, j)); for (j = 0; j < 8; j++) SR(dispc, OVL_FIR_COEF_V2(i, j)); } if (dispc_has_feature(dispc, FEAT_ATTR2)) SR(dispc, OVL_ATTRIBUTES2(i)); } if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) SR(dispc, DIVISOR); dispc->ctx_valid = true; DSSDBG("context saved\n"); } static void dispc_restore_context(struct dispc_device *dispc) { int i, j; DSSDBG("dispc_restore_context\n"); if (!dispc->ctx_valid) return; /*RR(dispc, IRQENABLE);*/ /*RR(dispc, CONTROL);*/ RR(dispc, CONFIG); RR(dispc, LINE_NUMBER); if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) RR(dispc, GLOBAL_ALPHA); if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) RR(dispc, CONFIG2); if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) RR(dispc, CONFIG3); for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { RR(dispc, DEFAULT_COLOR(i)); RR(dispc, TRANS_COLOR(i)); RR(dispc, SIZE_MGR(i)); if (i == OMAP_DSS_CHANNEL_DIGIT) continue; RR(dispc, TIMING_H(i)); RR(dispc, TIMING_V(i)); RR(dispc, POL_FREQ(i)); RR(dispc, DIVISORo(i)); RR(dispc, DATA_CYCLE1(i)); RR(dispc, DATA_CYCLE2(i)); RR(dispc, DATA_CYCLE3(i)); if (dispc_has_feature(dispc, FEAT_CPR)) { RR(dispc, CPR_COEF_R(i)); RR(dispc, CPR_COEF_G(i)); RR(dispc, CPR_COEF_B(i)); } } for (i = 0; i < dispc_get_num_ovls(dispc); i++) { RR(dispc, OVL_BA0(i)); RR(dispc, OVL_BA1(i)); RR(dispc, OVL_POSITION(i)); RR(dispc, OVL_SIZE(i)); RR(dispc, OVL_ATTRIBUTES(i)); RR(dispc, OVL_FIFO_THRESHOLD(i)); RR(dispc, OVL_ROW_INC(i)); RR(dispc, OVL_PIXEL_INC(i)); if (dispc_has_feature(dispc, FEAT_PRELOAD)) RR(dispc, OVL_PRELOAD(i)); if (i == OMAP_DSS_GFX) { RR(dispc, OVL_WINDOW_SKIP(i)); RR(dispc, OVL_TABLE_BA(i)); continue; } RR(dispc, OVL_FIR(i)); RR(dispc, OVL_PICTURE_SIZE(i)); RR(dispc, OVL_ACCU0(i)); RR(dispc, OVL_ACCU1(i)); for (j = 0; j < 8; j++) RR(dispc, OVL_FIR_COEF_H(i, j)); for (j = 0; j < 8; j++) RR(dispc, OVL_FIR_COEF_HV(i, j)); for (j = 0; j < 5; j++) RR(dispc, OVL_CONV_COEF(i, j)); if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { for (j = 0; j < 8; j++) RR(dispc, OVL_FIR_COEF_V(i, j)); } if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { RR(dispc, OVL_BA0_UV(i)); RR(dispc, OVL_BA1_UV(i)); RR(dispc, OVL_FIR2(i)); RR(dispc, OVL_ACCU2_0(i)); RR(dispc, OVL_ACCU2_1(i)); for (j = 0; j < 8; j++) RR(dispc, OVL_FIR_COEF_H2(i, j)); for (j = 0; j < 8; j++) RR(dispc, OVL_FIR_COEF_HV2(i, j)); for (j = 0; j < 8; j++) RR(dispc, OVL_FIR_COEF_V2(i, j)); } if (dispc_has_feature(dispc, FEAT_ATTR2)) RR(dispc, OVL_ATTRIBUTES2(i)); } if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) RR(dispc, DIVISOR); /* enable last, because LCD & DIGIT enable are here */ RR(dispc, CONTROL); if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) RR(dispc, CONTROL2); if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) RR(dispc, CONTROL3); /* clear spurious SYNC_LOST_DIGIT interrupts */ dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT); /* * enable last so IRQs won't trigger before * the context is fully restored */ RR(dispc, IRQENABLE); DSSDBG("context restored\n"); } #undef SR #undef RR int dispc_runtime_get(struct dispc_device *dispc) { int r; DSSDBG("dispc_runtime_get\n"); r = pm_runtime_get_sync(&dispc->pdev->dev); WARN_ON(r < 0); return r < 0 ? r : 0; } void dispc_runtime_put(struct dispc_device *dispc) { int r; DSSDBG("dispc_runtime_put\n"); r = pm_runtime_put_sync(&dispc->pdev->dev); WARN_ON(r < 0 && r != -ENOSYS); } static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc, enum omap_channel channel) { return mgr_desc[channel].vsync_irq; } static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc, enum omap_channel channel) { if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv) return 0; return mgr_desc[channel].framedone_irq; } static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc, enum omap_channel channel) { return mgr_desc[channel].sync_lost_irq; } static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc) { return DISPC_IRQ_FRAMEDONEWB; } static void dispc_mgr_enable(struct dispc_device *dispc, enum omap_channel channel, bool enable) { mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable); /* flush posted write */ mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE); } static bool dispc_mgr_is_enabled(struct dispc_device *dispc, enum omap_channel channel) { return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE); } static bool dispc_mgr_go_busy(struct dispc_device *dispc, enum omap_channel channel) { return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1; } static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel) { WARN_ON(!dispc_mgr_is_enabled(dispc, channel)); WARN_ON(dispc_mgr_go_busy(dispc, channel)); DSSDBG("GO %s\n", mgr_desc[channel].name); mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1); } static bool dispc_wb_go_busy(struct dispc_device *dispc) { return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1; } static void dispc_wb_go(struct dispc_device *dispc) { enum omap_plane_id plane = OMAP_DSS_WB; bool enable, go; enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1; if (!enable) return; go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1; if (go) { DSSERR("GO bit not down for WB\n"); return; } REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6); } static void dispc_ovl_write_firh_reg(struct dispc_device *dispc, enum omap_plane_id plane, int reg, u32 value) { dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value); } static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc, enum omap_plane_id plane, int reg, u32 value) { dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value); } static void dispc_ovl_write_firv_reg(struct dispc_device *dispc, enum omap_plane_id plane, int reg, u32 value) { dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value); } static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc, enum omap_plane_id plane, int reg, u32 value) { BUG_ON(plane == OMAP_DSS_GFX); dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value); } static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc, enum omap_plane_id plane, int reg, u32 value) { BUG_ON(plane == OMAP_DSS_GFX); dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value); } static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc, enum omap_plane_id plane, int reg, u32 value) { BUG_ON(plane == OMAP_DSS_GFX); dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value); } static void dispc_ovl_set_scale_coef(struct dispc_device *dispc, enum omap_plane_id plane, int fir_hinc, int fir_vinc, int five_taps, enum omap_color_component color_comp) { const struct dispc_coef *h_coef, *v_coef; int i; h_coef = dispc_ovl_get_scale_coef(fir_hinc, true); v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps); if (!h_coef || !v_coef) { dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n", __func__); return; } for (i = 0; i < 8; i++) { u32 h, hv; h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0) | FLD_VAL(h_coef[i].hc1_vc0, 15, 8) | FLD_VAL(h_coef[i].hc2_vc1, 23, 16) | FLD_VAL(h_coef[i].hc3_vc2, 31, 24); hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0) | FLD_VAL(v_coef[i].hc1_vc0, 15, 8) | FLD_VAL(v_coef[i].hc2_vc1, 23, 16) | FLD_VAL(v_coef[i].hc3_vc2, 31, 24); if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) { dispc_ovl_write_firh_reg(dispc, plane, i, h); dispc_ovl_write_firhv_reg(dispc, plane, i, hv); } else { dispc_ovl_write_firh2_reg(dispc, plane, i, h); dispc_ovl_write_firhv2_reg(dispc, plane, i, hv); } } if (five_taps) { for (i = 0; i < 8; i++) { u32 v; v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0) | FLD_VAL(v_coef[i].hc4_vc22, 15, 8); if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) dispc_ovl_write_firv_reg(dispc, plane, i, v); else dispc_ovl_write_firv2_reg(dispc, plane, i, v); } } } struct csc_coef_yuv2rgb { int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr; bool full_range; }; struct csc_coef_rgb2yuv { int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb; bool full_range; }; static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc, enum omap_plane_id plane, const struct csc_coef_yuv2rgb *ct) { #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0)) dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb)); REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11); #undef CVAL } static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc, const struct csc_coef_rgb2yuv *ct) { const enum omap_plane_id plane = OMAP_DSS_WB; #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0)) dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg, ct->yr)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr)); dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb)); REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11); #undef CVAL } static void dispc_setup_color_conv_coef(struct dispc_device *dispc) { int i; int num_ovl = dispc_get_num_ovls(dispc); /* YUV -> RGB, ITU-R BT.601, limited range */ const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = { 298, 0, 409, /* ry, rcb, rcr */ 298, -100, -208, /* gy, gcb, gcr */ 298, 516, 0, /* by, bcb, bcr */ false, /* limited range */ }; /* RGB -> YUV, ITU-R BT.601, limited range */ const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = { 66, 129, 25, /* yr, yg, yb */ -38, -74, 112, /* cbr, cbg, cbb */ 112, -94, -18, /* crr, crg, crb */ false, /* limited range */ }; for (i = 1; i < num_ovl; i++) dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim); if (dispc->feat->has_writeback) dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim); } static void dispc_ovl_set_ba0(struct dispc_device *dispc, enum omap_plane_id plane, u32 paddr) { dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr); } static void dispc_ovl_set_ba1(struct dispc_device *dispc, enum omap_plane_id plane, u32 paddr) { dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr); } static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc, enum omap_plane_id plane, u32 paddr) { dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr); } static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc, enum omap_plane_id plane, u32 paddr) { dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr); } static void dispc_ovl_set_pos(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_overlay_caps caps, int x, int y) { u32 val; if ((caps & OMAP_DSS_OVL_CAP_POS) == 0) return; val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0); dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val); } static void dispc_ovl_set_input_size(struct dispc_device *dispc, enum omap_plane_id plane, int width, int height) { u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB) dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val); else dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val); } static void dispc_ovl_set_output_size(struct dispc_device *dispc, enum omap_plane_id plane, int width, int height) { u32 val; BUG_ON(plane == OMAP_DSS_GFX); val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); if (plane == OMAP_DSS_WB) dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val); else dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val); } static void dispc_ovl_set_zorder(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_overlay_caps caps, u8 zorder) { if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0) return; REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26); } static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc) { int i; if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) return; for (i = 0; i < dispc_get_num_ovls(dispc); i++) REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25); } static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_overlay_caps caps, bool enable) { if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0) return; REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28); } static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_overlay_caps caps, u8 global_alpha) { static const unsigned int shifts[] = { 0, 8, 16, 24, }; int shift; if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0) return; shift = shifts[plane]; REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift); } static void dispc_ovl_set_pix_inc(struct dispc_device *dispc, enum omap_plane_id plane, s32 inc) { dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc); } static void dispc_ovl_set_row_inc(struct dispc_device *dispc, enum omap_plane_id plane, s32 inc) { dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc); } static void dispc_ovl_set_color_mode(struct dispc_device *dispc, enum omap_plane_id plane, u32 fourcc) { u32 m = 0; if (plane != OMAP_DSS_GFX) { switch (fourcc) { case DRM_FORMAT_NV12: m = 0x0; break; case DRM_FORMAT_XRGB4444: m = 0x1; break; case DRM_FORMAT_RGBA4444: m = 0x2; break; case DRM_FORMAT_RGBX4444: m = 0x4; break; case DRM_FORMAT_ARGB4444: m = 0x5; break; case DRM_FORMAT_RGB565: m = 0x6; break; case DRM_FORMAT_ARGB1555: m = 0x7; break; case DRM_FORMAT_XRGB8888: m = 0x8; break; case DRM_FORMAT_RGB888: m = 0x9; break; case DRM_FORMAT_YUYV: m = 0xa; break; case DRM_FORMAT_UYVY: m = 0xb; break; case DRM_FORMAT_ARGB8888: m = 0xc; break; case DRM_FORMAT_RGBA8888: m = 0xd; break; case DRM_FORMAT_RGBX8888: m = 0xe; break; case DRM_FORMAT_XRGB1555: m = 0xf; break; default: BUG(); return; } } else { switch (fourcc) { case DRM_FORMAT_RGBX4444: m = 0x4; break; case DRM_FORMAT_ARGB4444: m = 0x5; break; case DRM_FORMAT_RGB565: m = 0x6; break; case DRM_FORMAT_ARGB1555: m = 0x7; break; case DRM_FORMAT_XRGB8888: m = 0x8; break; case DRM_FORMAT_RGB888: m = 0x9; break; case DRM_FORMAT_XRGB4444: m = 0xa; break; case DRM_FORMAT_RGBA4444: m = 0xb; break; case DRM_FORMAT_ARGB8888: m = 0xc; break; case DRM_FORMAT_RGBA8888: m = 0xd; break; case DRM_FORMAT_RGBX8888: m = 0xe; break; case DRM_FORMAT_XRGB1555: m = 0xf; break; default: BUG(); return; } } REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1); } static void dispc_ovl_configure_burst_type(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_dss_rotation_type rotation) { if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0) return; if (rotation == OMAP_DSS_ROT_TILER) REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29); else REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29); } static void dispc_ovl_set_channel_out(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_channel channel) { int shift; u32 val; int chan = 0, chan2 = 0; switch (plane) { case OMAP_DSS_GFX: shift = 8; break; case OMAP_DSS_VIDEO1: case OMAP_DSS_VIDEO2: case OMAP_DSS_VIDEO3: shift = 16; break; default: BUG(); return; } val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { switch (channel) { case OMAP_DSS_CHANNEL_LCD: chan = 0; chan2 = 0; break; case OMAP_DSS_CHANNEL_DIGIT: chan = 1; chan2 = 0; break; case OMAP_DSS_CHANNEL_LCD2: chan = 0; chan2 = 1; break; case OMAP_DSS_CHANNEL_LCD3: if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { chan = 0; chan2 = 2; } else { BUG(); return; } break; case OMAP_DSS_CHANNEL_WB: chan = 0; chan2 = 3; break; default: BUG(); return; } val = FLD_MOD(val, chan, shift, shift); val = FLD_MOD(val, chan2, 31, 30); } else { val = FLD_MOD(val, channel, shift, shift); } dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val); } static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc, enum omap_plane_id plane) { int shift; u32 val; switch (plane) { case OMAP_DSS_GFX: shift = 8; break; case OMAP_DSS_VIDEO1: case OMAP_DSS_VIDEO2: case OMAP_DSS_VIDEO3: shift = 16; break; default: BUG(); return 0; } val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); if (FLD_GET(val, shift, shift) == 1) return OMAP_DSS_CHANNEL_DIGIT; if (!dispc_has_feature(dispc, FEAT_MGR_LCD2)) return OMAP_DSS_CHANNEL_LCD; switch (FLD_GET(val, 31, 30)) { case 0: default: return OMAP_DSS_CHANNEL_LCD; case 1: return OMAP_DSS_CHANNEL_LCD2; case 2: return OMAP_DSS_CHANNEL_LCD3; case 3: return OMAP_DSS_CHANNEL_WB; } } static void dispc_ovl_set_burst_size(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_burst_size burst_size) { static const unsigned int shifts[] = { 6, 14, 14, 14, 14, }; int shift; shift = shifts[plane]; REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size, shift + 1, shift); } static void dispc_configure_burst_sizes(struct dispc_device *dispc) { int i; const int burst_size = BURST_SIZE_X8; /* Configure burst size always to maximum size */ for (i = 0; i < dispc_get_num_ovls(dispc); ++i) dispc_ovl_set_burst_size(dispc, i, burst_size); if (dispc->feat->has_writeback) dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size); } static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc, enum omap_plane_id plane) { /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */ return dispc->feat->burst_size_unit * 8; } static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc, enum omap_plane_id plane, u32 fourcc) { const u32 *modes; unsigned int i; modes = dispc->feat->supported_color_modes[plane]; for (i = 0; modes[i]; ++i) { if (modes[i] == fourcc) return true; } return false; } static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc, enum omap_plane_id plane) { return dispc->feat->supported_color_modes[plane]; } static void dispc_mgr_enable_cpr(struct dispc_device *dispc, enum omap_channel channel, bool enable) { if (channel == OMAP_DSS_CHANNEL_DIGIT) return; mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable); } static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc, enum omap_channel channel, const struct omap_dss_cpr_coefs *coefs) { u32 coef_r, coef_g, coef_b; if (!dss_mgr_is_lcd(channel)) return; coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) | FLD_VAL(coefs->rb, 9, 0); coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) | FLD_VAL(coefs->gb, 9, 0); coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) | FLD_VAL(coefs->bb, 9, 0); dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r); dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g); dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b); } static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc, enum omap_plane_id plane, bool enable) { u32 val; BUG_ON(plane == OMAP_DSS_GFX); val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); val = FLD_MOD(val, enable, 9, 9); dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val); } static void dispc_ovl_enable_replication(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_overlay_caps caps, bool enable) { static const unsigned int shifts[] = { 5, 10, 10, 10 }; int shift; if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0) return; shift = shifts[plane]; REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift); } static void dispc_mgr_set_size(struct dispc_device *dispc, enum omap_channel channel, u16 width, u16 height) { u32 val; val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) | FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0); dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val); } static void dispc_init_fifos(struct dispc_device *dispc) { u32 size; int fifo; u8 start, end; u32 unit; int i; unit = dispc->feat->buffer_size_unit; dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end); for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) { size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo), start, end); size *= unit; dispc->fifo_size[fifo] = size; /* * By default fifos are mapped directly to overlays, fifo 0 to * ovl 0, fifo 1 to ovl 1, etc. */ dispc->fifo_assignment[fifo] = fifo; } /* * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo * causes problems with certain use cases, like using the tiler in 2D * mode. The below hack swaps the fifos of GFX and WB planes, thus * giving GFX plane a larger fifo. WB but should work fine with a * smaller fifo. */ if (dispc->feat->gfx_fifo_workaround) { u32 v; v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER); v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */ v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */ v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */ v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */ dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v); dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB; dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX; } /* * Setup default fifo thresholds. */ for (i = 0; i < dispc_get_num_ovls(dispc); ++i) { u32 low, high; const bool use_fifomerge = false; const bool manual_update = false; dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high, use_fifomerge, manual_update); dispc_ovl_set_fifo_threshold(dispc, i, low, high); } if (dispc->feat->has_writeback) { u32 low, high; const bool use_fifomerge = false; const bool manual_update = false; dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB, &low, &high, use_fifomerge, manual_update); dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high); } } static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc, enum omap_plane_id plane) { int fifo; u32 size = 0; for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) { if (dispc->fifo_assignment[fifo] == plane) size += dispc->fifo_size[fifo]; } return size; } void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc, enum omap_plane_id plane, u32 low, u32 high) { u8 hi_start, hi_end, lo_start, lo_end; u32 unit; unit = dispc->feat->buffer_size_unit; WARN_ON(low % unit != 0); WARN_ON(high % unit != 0); low /= unit; high /= unit; dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD, &hi_start, &hi_end); dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD, &lo_start, &lo_end); DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n", plane, REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), lo_start, lo_end) * unit, REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), hi_start, hi_end) * unit, low * unit, high * unit); dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), FLD_VAL(high, hi_start, hi_end) | FLD_VAL(low, lo_start, lo_end)); /* * configure the preload to the pipeline's high threhold, if HT it's too * large for the preload field, set the threshold to the maximum value * that can be held by the preload register */ if (dispc_has_feature(dispc, FEAT_PRELOAD) && dispc->feat->set_max_preload && plane != OMAP_DSS_WB) dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane), min(high, 0xfffu)); } void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable) { if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) { WARN_ON(enable); return; } DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled"); REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14); } void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc, enum omap_plane_id plane, u32 *fifo_low, u32 *fifo_high, bool use_fifomerge, bool manual_update) { /* * All sizes are in bytes. Both the buffer and burst are made of * buffer_units, and the fifo thresholds must be buffer_unit aligned. */ unsigned int buf_unit = dispc->feat->buffer_size_unit; unsigned int ovl_fifo_size, total_fifo_size, burst_size; int i; burst_size = dispc_ovl_get_burst_size(dispc, plane); ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane); if (use_fifomerge) { total_fifo_size = 0; for (i = 0; i < dispc_get_num_ovls(dispc); ++i) total_fifo_size += dispc_ovl_get_fifo_size(dispc, i); } else { total_fifo_size = ovl_fifo_size; } /* * We use the same low threshold for both fifomerge and non-fifomerge * cases, but for fifomerge we calculate the high threshold using the * combined fifo size */ if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) { *fifo_low = ovl_fifo_size - burst_size * 2; *fifo_high = total_fifo_size - burst_size; } else if (plane == OMAP_DSS_WB) { /* * Most optimal configuration for writeback is to push out data * to the interconnect the moment writeback pushes enough pixels * in the FIFO to form a burst */ *fifo_low = 0; *fifo_high = burst_size; } else { *fifo_low = ovl_fifo_size - burst_size; *fifo_high = total_fifo_size - buf_unit; } } static void dispc_ovl_set_mflag(struct dispc_device *dispc, enum omap_plane_id plane, bool enable) { int bit; if (plane == OMAP_DSS_GFX) bit = 14; else bit = 23; REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit); } static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc, enum omap_plane_id plane, int low, int high) { dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane), FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); } static void dispc_init_mflag(struct dispc_device *dispc) { int i; /* * HACK: NV12 color format and MFLAG seem to have problems working * together: using two displays, and having an NV12 overlay on one of * the displays will cause underflows/synclosts when MFLAG_CTRL=2. * Changing MFLAG thresholds and PRELOAD to certain values seem to * remove the errors, but there doesn't seem to be a clear logic on * which values work and which not. * * As a work-around, set force MFLAG to always on. */ dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, (1 << 0) | /* MFLAG_CTRL = force always on */ (0 << 2)); /* MFLAG_START = disable */ for (i = 0; i < dispc_get_num_ovls(dispc); ++i) { u32 size = dispc_ovl_get_fifo_size(dispc, i); u32 unit = dispc->feat->buffer_size_unit; u32 low, high; dispc_ovl_set_mflag(dispc, i, true); /* * Simulation team suggests below thesholds: * HT = fifosize * 5 / 8; * LT = fifosize * 4 / 8; */ low = size * 4 / 8 / unit; high = size * 5 / 8 / unit; dispc_ovl_set_mflag_threshold(dispc, i, low, high); } if (dispc->feat->has_writeback) { u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB); u32 unit = dispc->feat->buffer_size_unit; u32 low, high; dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true); /* * Simulation team suggests below thesholds: * HT = fifosize * 5 / 8; * LT = fifosize * 4 / 8; */ low = size * 4 / 8 / unit; high = size * 5 / 8 / unit; dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high); } } static void dispc_ovl_set_fir(struct dispc_device *dispc, enum omap_plane_id plane, int hinc, int vinc, enum omap_color_component color_comp) { u32 val; if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) { u8 hinc_start, hinc_end, vinc_start, vinc_end; dispc_get_reg_field(dispc, FEAT_REG_FIRHINC, &hinc_start, &hinc_end); dispc_get_reg_field(dispc, FEAT_REG_FIRVINC, &vinc_start, &vinc_end); val = FLD_VAL(vinc, vinc_start, vinc_end) | FLD_VAL(hinc, hinc_start, hinc_end); dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val); } else { val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0); dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val); } } static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc, enum omap_plane_id plane, int haccu, int vaccu) { u32 val; u8 hor_start, hor_end, vert_start, vert_end; dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end); dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU, &vert_start, &vert_end); val = FLD_VAL(vaccu, vert_start, vert_end) | FLD_VAL(haccu, hor_start, hor_end); dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val); } static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc, enum omap_plane_id plane, int haccu, int vaccu) { u32 val; u8 hor_start, hor_end, vert_start, vert_end; dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end); dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU, &vert_start, &vert_end); val = FLD_VAL(vaccu, vert_start, vert_end) | FLD_VAL(haccu, hor_start, hor_end); dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val); } static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc, enum omap_plane_id plane, int haccu, int vaccu) { u32 val; val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0); dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val); } static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc, enum omap_plane_id plane, int haccu, int vaccu) { u32 val; val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0); dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val); } static void dispc_ovl_set_scale_param(struct dispc_device *dispc, enum omap_plane_id plane, u16 orig_width, u16 orig_height, u16 out_width, u16 out_height, bool five_taps, u8 rotation, enum omap_color_component color_comp) { int fir_hinc, fir_vinc; fir_hinc = 1024 * orig_width / out_width; fir_vinc = 1024 * orig_height / out_height; dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps, color_comp); dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp); } static void dispc_ovl_set_accu_uv(struct dispc_device *dispc, enum omap_plane_id plane, u16 orig_width, u16 orig_height, u16 out_width, u16 out_height, bool ilace, u32 fourcc, u8 rotation) { int h_accu2_0, h_accu2_1; int v_accu2_0, v_accu2_1; int chroma_hinc, chroma_vinc; int idx; struct accu { s8 h0_m, h0_n; s8 h1_m, h1_n; s8 v0_m, v0_n; s8 v1_m, v1_n; }; const struct accu *accu_table; const struct accu *accu_val; static const struct accu accu_nv12[4] = { { 0, 1, 0, 1 , -1, 2, 0, 1 }, { 1, 2, -3, 4 , 0, 1, 0, 1 }, { -1, 1, 0, 1 , -1, 2, 0, 1 }, { -1, 2, -1, 2 , -1, 1, 0, 1 }, }; static const struct accu accu_nv12_ilace[4] = { { 0, 1, 0, 1 , -3, 4, -1, 4 }, { -1, 4, -3, 4 , 0, 1, 0, 1 }, { -1, 1, 0, 1 , -1, 4, -3, 4 }, { -3, 4, -3, 4 , -1, 1, 0, 1 }, }; static const struct accu accu_yuv[4] = { { 0, 1, 0, 1, 0, 1, 0, 1 }, { 0, 1, 0, 1, 0, 1, 0, 1 }, { -1, 1, 0, 1, 0, 1, 0, 1 }, { 0, 1, 0, 1, -1, 1, 0, 1 }, }; /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */ switch (rotation & DRM_MODE_ROTATE_MASK) { default: case DRM_MODE_ROTATE_0: idx = 0; break; case DRM_MODE_ROTATE_90: idx = 3; break; case DRM_MODE_ROTATE_180: idx = 2; break; case DRM_MODE_ROTATE_270: idx = 1; break; } switch (fourcc) { case DRM_FORMAT_NV12: if (ilace) accu_table = accu_nv12_ilace; else accu_table = accu_nv12; break; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: accu_table = accu_yuv; break; default: BUG(); return; } accu_val = &accu_table[idx]; chroma_hinc = 1024 * orig_width / out_width; chroma_vinc = 1024 * orig_height / out_height; h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024; h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024; v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024; v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024; dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0); dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1); } static void dispc_ovl_set_scaling_common(struct dispc_device *dispc, enum omap_plane_id plane, u16 orig_width, u16 orig_height, u16 out_width, u16 out_height, bool ilace, bool five_taps, bool fieldmode, u32 fourcc, u8 rotation) { int accu0 = 0; int accu1 = 0; u32 l; dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height, out_width, out_height, five_taps, rotation, DISPC_COLOR_COMPONENT_RGB_Y); l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); /* RESIZEENABLE and VERTICALTAPS */ l &= ~((0x3 << 5) | (0x1 << 21)); l |= (orig_width != out_width) ? (1 << 5) : 0; l |= (orig_height != out_height) ? (1 << 6) : 0; l |= five_taps ? (1 << 21) : 0; /* VRESIZECONF and HRESIZECONF */ if (dispc_has_feature(dispc, FEAT_RESIZECONF)) { l &= ~(0x3 << 7); l |= (orig_width <= out_width) ? 0 : (1 << 7); l |= (orig_height <= out_height) ? 0 : (1 << 8); } /* LINEBUFFERSPLIT */ if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) { l &= ~(0x1 << 22); l |= five_taps ? (1 << 22) : 0; } dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l); /* * field 0 = even field = bottom field * field 1 = odd field = top field */ if (ilace && !fieldmode) { accu1 = 0; accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff; if (accu0 >= 1024/2) { accu1 = 1024/2; accu0 -= accu1; } } dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0); dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1); } static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc, enum omap_plane_id plane, u16 orig_width, u16 orig_height, u16 out_width, u16 out_height, bool ilace, bool five_taps, bool fieldmode, u32 fourcc, u8 rotation) { int scale_x = out_width != orig_width; int scale_y = out_height != orig_height; bool chroma_upscale = plane != OMAP_DSS_WB; const struct drm_format_info *info; info = drm_format_info(fourcc); if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) return; if (!info->is_yuv) { /* reset chroma resampling for RGB formats */ if (plane != OMAP_DSS_WB) REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 8, 8); return; } dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width, out_height, ilace, fourcc, rotation); switch (fourcc) { case DRM_FORMAT_NV12: if (chroma_upscale) { /* UV is subsampled by 2 horizontally and vertically */ orig_height >>= 1; orig_width >>= 1; } else { /* UV is downsampled by 2 horizontally and vertically */ orig_height <<= 1; orig_width <<= 1; } break; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: /* For YUV422 with 90/270 rotation, we don't upsample chroma */ if (!drm_rotation_90_or_270(rotation)) { if (chroma_upscale) /* UV is subsampled by 2 horizontally */ orig_width >>= 1; else /* UV is downsampled by 2 horizontally */ orig_width <<= 1; } /* must use FIR for YUV422 if rotated */ if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0) scale_x = scale_y = true; break; default: BUG(); return; } if (out_width != orig_width) scale_x = true; if (out_height != orig_height) scale_y = true; dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height, out_width, out_height, five_taps, rotation, DISPC_COLOR_COMPONENT_UV); if (plane != OMAP_DSS_WB) REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), (scale_x || scale_y) ? 1 : 0, 8, 8); /* set H scaling */ REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5); /* set V scaling */ REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6); } static void dispc_ovl_set_scaling(struct dispc_device *dispc, enum omap_plane_id plane, u16 orig_width, u16 orig_height, u16 out_width, u16 out_height, bool ilace, bool five_taps, bool fieldmode, u32 fourcc, u8 rotation) { BUG_ON(plane == OMAP_DSS_GFX); dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height, out_width, out_height, ilace, five_taps, fieldmode, fourcc, rotation); dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height, out_width, out_height, ilace, five_taps, fieldmode, fourcc, rotation); } static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc, enum omap_plane_id plane, u8 rotation, enum omap_dss_rotation_type rotation_type, u32 fourcc) { bool row_repeat = false; int vidrot = 0; /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */ if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) { if (rotation & DRM_MODE_REFLECT_X) { switch (rotation & DRM_MODE_ROTATE_MASK) { case DRM_MODE_ROTATE_0: vidrot = 2; break; case DRM_MODE_ROTATE_90: vidrot = 1; break; case DRM_MODE_ROTATE_180: vidrot = 0; break; case DRM_MODE_ROTATE_270: vidrot = 3; break; } } else { switch (rotation & DRM_MODE_ROTATE_MASK) { case DRM_MODE_ROTATE_0: vidrot = 0; break; case DRM_MODE_ROTATE_90: vidrot = 3; break; case DRM_MODE_ROTATE_180: vidrot = 2; break; case DRM_MODE_ROTATE_270: vidrot = 1; break; } } if (drm_rotation_90_or_270(rotation)) row_repeat = true; else row_repeat = false; } /* * OMAP4/5 Errata i631: * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra * rows beyond the framebuffer, which may cause OCP error. */ if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER) vidrot = 1; REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12); if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE)) REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), row_repeat ? 1 : 0, 18, 18); if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) { bool doublestride = fourcc == DRM_FORMAT_NV12 && rotation_type == OMAP_DSS_ROT_TILER && !drm_rotation_90_or_270(rotation); /* DOUBLESTRIDE */ REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), doublestride, 22, 22); } } static int color_mode_to_bpp(u32 fourcc) { switch (fourcc) { case DRM_FORMAT_NV12: return 8; case DRM_FORMAT_RGBX4444: case DRM_FORMAT_RGB565: case DRM_FORMAT_ARGB4444: case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: case DRM_FORMAT_RGBA4444: case DRM_FORMAT_XRGB4444: case DRM_FORMAT_ARGB1555: case DRM_FORMAT_XRGB1555: return 16; case DRM_FORMAT_RGB888: return 24; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_RGBA8888: case DRM_FORMAT_RGBX8888: return 32; default: BUG(); return 0; } } static s32 pixinc(int pixels, u8 ps) { if (pixels == 1) return 1; else if (pixels > 1) return 1 + (pixels - 1) * ps; else if (pixels < 0) return 1 - (-pixels + 1) * ps; else BUG(); return 0; } static void calc_offset(u16 screen_width, u16 width, u32 fourcc, bool fieldmode, unsigned int field_offset, unsigned int *offset0, unsigned int *offset1, s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim, enum omap_dss_rotation_type rotation_type, u8 rotation) { u8 ps; ps = color_mode_to_bpp(fourcc) / 8; DSSDBG("scrw %d, width %d\n", screen_width, width); if (rotation_type == OMAP_DSS_ROT_TILER && (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) && drm_rotation_90_or_270(rotation)) { /* * HACK: ROW_INC needs to be calculated with TILER units. * We get such 'screen_width' that multiplying it with the * YUV422 pixel size gives the correct TILER container width. * However, 'width' is in pixels and multiplying it with YUV422 * pixel size gives incorrect result. We thus multiply it here * with 2 to match the 32 bit TILER unit size. */ width *= 2; } /* * field 0 = even field = bottom field * field 1 = odd field = top field */ *offset0 = field_offset * screen_width * ps; *offset1 = 0; *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) + (fieldmode ? screen_width : 0), ps); if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) *pix_inc = pixinc(x_predecim, 2 * ps); else *pix_inc = pixinc(x_predecim, ps); } /* * This function is used to avoid synclosts in OMAP3, because of some * undocumented horizontal position and timing related limitations. */ static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk, const struct videomode *vm, u16 pos_x, u16 width, u16 height, u16 out_width, u16 out_height, bool five_taps) { const int ds = DIV_ROUND_UP(height, out_height); unsigned long nonactive; static const u8 limits[3] = { 8, 10, 20 }; u64 val, blank; int i; nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len + vm->hback_porch - out_width; i = 0; if (out_height < height) i++; if (out_width < width) i++; blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) * lclk, pclk); DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]); if (blank <= limits[i]) return -EINVAL; /* FIXME add checks for 3-tap filter once the limitations are known */ if (!five_taps) return 0; /* * Pixel data should be prepared before visible display point starts. * So, atleast DS-2 lines must have already been fetched by DISPC * during nonactive - pos_x period. */ val = div_u64((u64)(nonactive - pos_x) * lclk, pclk); DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n", val, max(0, ds - 2) * width); if (val < max(0, ds - 2) * width) return -EINVAL; /* * All lines need to be refilled during the nonactive period of which * only one line can be loaded during the active period. So, atleast * DS - 1 lines should be loaded during nonactive period. */ val = div_u64((u64)nonactive * lclk, pclk); DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n", val, max(0, ds - 1) * width); if (val < max(0, ds - 1) * width) return -EINVAL; return 0; } static unsigned long calc_core_clk_five_taps(unsigned long pclk, const struct videomode *vm, u16 width, u16 height, u16 out_width, u16 out_height, u32 fourcc) { u32 core_clk = 0; u64 tmp; if (height <= out_height && width <= out_width) return (unsigned long) pclk; if (height > out_height) { unsigned int ppl = vm->hactive; tmp = (u64)pclk * height * out_width; do_div(tmp, 2 * out_height * ppl); core_clk = tmp; if (height > 2 * out_height) { if (ppl == out_width) return 0; tmp = (u64)pclk * (height - 2 * out_height) * out_width; do_div(tmp, 2 * out_height * (ppl - out_width)); core_clk = max_t(u32, core_clk, tmp); } } if (width > out_width) { tmp = (u64)pclk * width; do_div(tmp, out_width); core_clk = max_t(u32, core_clk, tmp); if (fourcc == DRM_FORMAT_XRGB8888) core_clk <<= 1; } return core_clk; } static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width, u16 height, u16 out_width, u16 out_height, bool mem_to_mem) { if (height > out_height && width > out_width) return pclk * 4; else return pclk * 2; } static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width, u16 height, u16 out_width, u16 out_height, bool mem_to_mem) { unsigned int hf, vf; /* * FIXME how to determine the 'A' factor * for the no downscaling case ? */ if (width > 3 * out_width) hf = 4; else if (width > 2 * out_width) hf = 3; else if (width > out_width) hf = 2; else hf = 1; if (height > out_height) vf = 2; else vf = 1; return pclk * vf * hf; } static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width, u16 height, u16 out_width, u16 out_height, bool mem_to_mem) { /* * If the overlay/writeback is in mem to mem mode, there are no * downscaling limitations with respect to pixel clock, return 1 as * required core clock to represent that we have sufficient enough * core clock to do maximum downscaling */ if (mem_to_mem) return 1; if (width > out_width) return DIV_ROUND_UP(pclk, out_width) * width; else return pclk; } static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc, unsigned long pclk, unsigned long lclk, const struct videomode *vm, u16 width, u16 height, u16 out_width, u16 out_height, u32 fourcc, bool *five_taps, int *x_predecim, int *y_predecim, int *decim_x, int *decim_y, u16 pos_x, unsigned long *core_clk, bool mem_to_mem) { int error; u16 in_width, in_height; int min_factor = min(*decim_x, *decim_y); const int maxsinglelinewidth = dispc->feat->max_line_width; *five_taps = false; do { in_height = height / *decim_y; in_width = width / *decim_x; *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height, out_width, out_height, mem_to_mem); error = (in_width > maxsinglelinewidth || !*core_clk || *core_clk > dispc_core_clk_rate(dispc)); if (error) { if (*decim_x == *decim_y) { *decim_x = min_factor; ++*decim_y; } else { swap(*decim_x, *decim_y); if (*decim_x < *decim_y) ++*decim_x; } } } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error); if (error) { DSSERR("failed to find scaling settings\n"); return -EINVAL; } if (in_width > maxsinglelinewidth) { DSSERR("Cannot scale max input width exceeded\n"); return -EINVAL; } return 0; } static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc, unsigned long pclk, unsigned long lclk, const struct videomode *vm, u16 width, u16 height, u16 out_width, u16 out_height, u32 fourcc, bool *five_taps, int *x_predecim, int *y_predecim, int *decim_x, int *decim_y, u16 pos_x, unsigned long *core_clk, bool mem_to_mem) { int error; u16 in_width, in_height; const int maxsinglelinewidth = dispc->feat->max_line_width; do { in_height = height / *decim_y; in_width = width / *decim_x; *five_taps = in_height > out_height; if (in_width > maxsinglelinewidth) if (in_height > out_height && in_height < out_height * 2) *five_taps = false; again: if (*five_taps) *core_clk = calc_core_clk_five_taps(pclk, vm, in_width, in_height, out_width, out_height, fourcc); else *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height, out_width, out_height, mem_to_mem); error = check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width, in_height, out_width, out_height, *five_taps); if (error && *five_taps) { *five_taps = false; goto again; } error = (error || in_width > maxsinglelinewidth * 2 || (in_width > maxsinglelinewidth && *five_taps) || !*core_clk || *core_clk > dispc_core_clk_rate(dispc)); if (!error) { /* verify that we're inside the limits of scaler */ if (in_width / 4 > out_width) error = 1; if (*five_taps) { if (in_height / 4 > out_height) error = 1; } else { if (in_height / 2 > out_height) error = 1; } } if (error) ++*decim_y; } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error); if (error) { DSSERR("failed to find scaling settings\n"); return -EINVAL; } if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width, in_height, out_width, out_height, *five_taps)) { DSSERR("horizontal timing too tight\n"); return -EINVAL; } if (in_width > (maxsinglelinewidth * 2)) { DSSERR("Cannot setup scaling\n"); DSSERR("width exceeds maximum width possible\n"); return -EINVAL; } if (in_width > maxsinglelinewidth && *five_taps) { DSSERR("cannot setup scaling with five taps\n"); return -EINVAL; } return 0; } static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc, unsigned long pclk, unsigned long lclk, const struct videomode *vm, u16 width, u16 height, u16 out_width, u16 out_height, u32 fourcc, bool *five_taps, int *x_predecim, int *y_predecim, int *decim_x, int *decim_y, u16 pos_x, unsigned long *core_clk, bool mem_to_mem) { u16 in_width, in_width_max; int decim_x_min = *decim_x; u16 in_height = height / *decim_y; const int maxsinglelinewidth = dispc->feat->max_line_width; const int maxdownscale = dispc->feat->max_downscale; if (mem_to_mem) { in_width_max = out_width * maxdownscale; } else { in_width_max = dispc_core_clk_rate(dispc) / DIV_ROUND_UP(pclk, out_width); } *decim_x = DIV_ROUND_UP(width, in_width_max); *decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min; if (*decim_x > *x_predecim) return -EINVAL; do { in_width = width / *decim_x; } while (*decim_x <= *x_predecim && in_width > maxsinglelinewidth && ++*decim_x); if (in_width > maxsinglelinewidth) { DSSERR("Cannot scale width exceeds max line width\n"); return -EINVAL; } if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) { /* * Let's disable all scaling that requires horizontal * decimation with higher factor than 4, until we have * better estimates of what we can and can not * do. However, NV12 color format appears to work Ok * with all decimation factors. * * When decimating horizontally by more that 4 the dss * is not able to fetch the data in burst mode. When * this happens it is hard to tell if there enough * bandwidth. Despite what theory says this appears to * be true also for 16-bit color formats. */ DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x); return -EINVAL; } *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height, out_width, out_height, mem_to_mem); return 0; } #define DIV_FRAC(dividend, divisor) \ ((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100)) static int dispc_ovl_calc_scaling(struct dispc_device *dispc, enum omap_plane_id plane, unsigned long pclk, unsigned long lclk, enum omap_overlay_caps caps, const struct videomode *vm, u16 width, u16 height, u16 out_width, u16 out_height, u32 fourcc, bool *five_taps, int *x_predecim, int *y_predecim, u16 pos_x, enum omap_dss_rotation_type rotation_type, bool mem_to_mem) { int maxhdownscale = dispc->feat->max_downscale; int maxvdownscale = dispc->feat->max_downscale; const int max_decim_limit = 16; unsigned long core_clk = 0; int decim_x, decim_y, ret; if (width == out_width && height == out_height) return 0; if (plane == OMAP_DSS_WB) { switch (fourcc) { case DRM_FORMAT_NV12: maxhdownscale = maxvdownscale = 2; break; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: maxhdownscale = 2; maxvdownscale = 4; break; default: break; } } if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) { DSSERR("cannot calculate scaling settings: pclk is zero\n"); return -EINVAL; } if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0) return -EINVAL; if (mem_to_mem) { *x_predecim = *y_predecim = 1; } else { *x_predecim = max_decim_limit; *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER && dispc_has_feature(dispc, FEAT_BURST_2D)) ? 2 : max_decim_limit; } decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale); decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale); if (decim_x > *x_predecim || out_width > width * 8) return -EINVAL; if (decim_y > *y_predecim || out_height > height * 8) return -EINVAL; ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height, out_width, out_height, fourcc, five_taps, x_predecim, y_predecim, &decim_x, &decim_y, pos_x, &core_clk, mem_to_mem); if (ret) return ret; DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n", width, height, out_width, out_height, out_width / width, DIV_FRAC(out_width, width), out_height / height, DIV_FRAC(out_height, height), decim_x, decim_y, width / decim_x, height / decim_y, out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x), out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y), *five_taps ? 5 : 3, core_clk, dispc_core_clk_rate(dispc)); if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) { DSSERR("failed to set up scaling, " "required core clk rate = %lu Hz, " "current core clk rate = %lu Hz\n", core_clk, dispc_core_clk_rate(dispc)); return -EINVAL; } *x_predecim = decim_x; *y_predecim = decim_y; return 0; } static int dispc_ovl_setup_common(struct dispc_device *dispc, enum omap_plane_id plane, enum omap_overlay_caps caps, u32 paddr, u32 p_uv_addr, u16 screen_width, int pos_x, int pos_y, u16 width, u16 height, u16 out_width, u16 out_height, u32 fourcc, u8 rotation, u8 zorder, u8 pre_mult_alpha, u8 global_alpha, enum omap_dss_rotation_type rotation_type, bool replication, const struct videomode *vm, bool mem_to_mem) { bool five_taps = true; bool fieldmode = false; int r, cconv = 0; unsigned int offset0, offset1; s32 row_inc; s32 pix_inc; u16 frame_width; unsigned int field_offset = 0; u16 in_height = height; u16 in_width = width; int x_predecim = 1, y_predecim = 1; bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED); unsigned long pclk = dispc_plane_pclk_rate(dispc, plane); unsigned long lclk = dispc_plane_lclk_rate(dispc, plane); const struct drm_format_info *info; info = drm_format_info(fourcc); /* when setting up WB, dispc_plane_pclk_rate() returns 0 */ if (plane == OMAP_DSS_WB) pclk = vm->pixelclock; if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER) return -EINVAL; if (info->is_yuv && (in_width & 1)) { DSSERR("input width %d is not even for YUV format\n", in_width); return -EINVAL; } out_width = out_width == 0 ? width : out_width; out_height = out_height == 0 ? height : out_height; if (plane != OMAP_DSS_WB) { if (ilace && height == out_height) fieldmode = true; if (ilace) { if (fieldmode) in_height /= 2; pos_y /= 2; out_height /= 2; DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n", in_height, pos_y, out_height); } } if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc)) return -EINVAL; r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width, in_height, out_width, out_height, fourcc, &five_taps, &x_predecim, &y_predecim, pos_x, rotation_type, mem_to_mem); if (r) return r; in_width = in_width / x_predecim; in_height = in_height / y_predecim; if (x_predecim > 1 || y_predecim > 1) DSSDBG("predecimation %d x %x, new input size %d x %d\n", x_predecim, y_predecim, in_width, in_height); if (info->is_yuv && (in_width & 1)) { DSSDBG("predecimated input width is not even for YUV format\n"); DSSDBG("adjusting input width %d -> %d\n", in_width, in_width & ~1); in_width &= ~1; } if (info->is_yuv) cconv = 1; if (ilace && !fieldmode) { /* * when downscaling the bottom field may have to start several * source lines below the top field. Unfortunately ACCUI * registers will only hold the fractional part of the offset * so the integer part must be added to the base address of the * bottom field. */ if (!in_height || in_height == out_height) field_offset = 0; else field_offset = in_height / out_height / 2; } /* Fields are independent but interleaved in memory. */ if (fieldmode) field_offset = 1; offset0 = 0; offset1 = 0; row_inc = 0; pix_inc = 0; if (plane == OMAP_DSS_WB) frame_width = out_width; else frame_width = in_width; calc_offset(screen_width, frame_width, fourcc, fieldmode, field_offset, &offset0, &offset1, &row_inc, &pix_inc, x_predecim, y_predecim, rotation_type, rotation); DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n", offset0, offset1, row_inc, pix_inc); dispc_ovl_set_color_mode(dispc, plane, fourcc); dispc_ovl_configure_burst_type(dispc, plane, rotation_type); if (dispc->feat->reverse_ilace_field_order) swap(offset0, offset1); dispc_ovl_set_ba0(dispc, plane, paddr + offset0); dispc_ovl_set_ba1(dispc, plane, paddr + offset1); if (fourcc == DRM_FORMAT_NV12) { dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0); dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1); } if (dispc->feat->last_pixel_inc_missing) row_inc += pix_inc - 1; dispc_ovl_set_row_inc(dispc, plane, row_inc); dispc_ovl_set_pix_inc(dispc, plane, pix_inc); DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width, in_height, out_width, out_height); dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y); dispc_ovl_set_input_size(dispc, plane, in_width, in_height); if (caps & OMAP_DSS_OVL_CAP_SCALE) { dispc_ovl_set_scaling(dispc, plane, in_width, in_height, out_width, out_height, ilace, five_taps, fieldmode, fourcc, rotation); dispc_ovl_set_output_size(dispc, plane, out_width, out_height); dispc_ovl_set_vid_color_conv(dispc, plane, cconv); } dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type, fourcc); dispc_ovl_set_zorder(dispc, plane, caps, zorder); dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha); dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha); dispc_ovl_enable_replication(dispc, plane, caps, replication); return 0; } static int dispc_ovl_setup(struct dispc_device *dispc, enum omap_plane_id plane, const struct omap_overlay_info *oi, const struct videomode *vm, bool mem_to_mem, enum omap_channel channel) { int r; enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane]; const bool replication = true; DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->" " %dx%d, cmode %x, rot %d, chan %d repl %d\n", plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height, oi->fourcc, oi->rotation, channel, replication); dispc_ovl_set_channel_out(dispc, plane, channel); r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr, oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height, oi->fourcc, oi->rotation, oi->zorder, oi->pre_mult_alpha, oi->global_alpha, oi->rotation_type, replication, vm, mem_to_mem); return r; } static int dispc_wb_setup(struct dispc_device *dispc, const struct omap_dss_writeback_info *wi, bool mem_to_mem, const struct videomode *vm, enum dss_writeback_channel channel_in) { int r; u32 l; enum omap_plane_id plane = OMAP_DSS_WB; const int pos_x = 0, pos_y = 0; const u8 zorder = 0, global_alpha = 0; const bool replication = true; bool truncation; int in_width = vm->hactive; int in_height = vm->vactive; enum omap_overlay_caps caps = OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA; if (vm->flags & DISPLAY_FLAGS_INTERLACED) in_height /= 2; DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, " "rot %d\n", wi->paddr, wi->p_uv_addr, in_width, in_height, wi->width, wi->height, wi->fourcc, wi->rotation); r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr, wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width, wi->height, wi->fourcc, wi->rotation, zorder, wi->pre_mult_alpha, global_alpha, wi->rotation_type, replication, vm, mem_to_mem); if (r) return r; switch (wi->fourcc) { case DRM_FORMAT_RGB565: case DRM_FORMAT_RGB888: case DRM_FORMAT_ARGB4444: case DRM_FORMAT_RGBA4444: case DRM_FORMAT_RGBX4444: case DRM_FORMAT_ARGB1555: case DRM_FORMAT_XRGB1555: case DRM_FORMAT_XRGB4444: truncation = true; break; default: truncation = false; break; } /* setup extra DISPC_WB_ATTRIBUTES */ l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */ l = FLD_MOD(l, channel_in, 18, 16); /* CHANNELIN */ l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */ if (mem_to_mem) l = FLD_MOD(l, 1, 26, 24); /* CAPTUREMODE */ else l = FLD_MOD(l, 0, 26, 24); /* CAPTUREMODE */ dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l); if (mem_to_mem) { /* WBDELAYCOUNT */ REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0); } else { u32 wbdelay; if (channel_in == DSS_WB_TV_MGR) wbdelay = vm->vsync_len + vm->vback_porch; else wbdelay = vm->vfront_porch + vm->vsync_len + vm->vback_porch; if (vm->flags & DISPLAY_FLAGS_INTERLACED) wbdelay /= 2; wbdelay = min(wbdelay, 255u); /* WBDELAYCOUNT */ REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0); } return 0; } static bool dispc_has_writeback(struct dispc_device *dispc) { return dispc->feat->has_writeback; } static int dispc_ovl_enable(struct dispc_device *dispc, enum omap_plane_id plane, bool enable) { DSSDBG("dispc_enable_plane %d, %d\n", plane, enable); REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0); return 0; } static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc, bool act_high) { if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL)) return; REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29); } void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable) { if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL)) return; REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28); } void dispc_pck_free_enable(struct dispc_device *dispc, bool enable) { if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE)) return; REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27); } static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc, enum omap_channel channel, bool enable) { mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable); } static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc, enum omap_channel channel) { mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1); } static void dispc_set_loadmode(struct dispc_device *dispc, enum omap_dss_load_mode mode) { REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1); } static void dispc_mgr_set_default_color(struct dispc_device *dispc, enum omap_channel channel, u32 color) { dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color); } static void dispc_mgr_set_trans_key(struct dispc_device *dispc, enum omap_channel ch, enum omap_dss_trans_key_type type, u32 trans_key) { mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type); dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key); } static void dispc_mgr_enable_trans_key(struct dispc_device *dispc, enum omap_channel ch, bool enable) { mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable); } static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc, enum omap_channel ch, bool enable) { if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER)) return; if (ch == OMAP_DSS_CHANNEL_LCD) REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18); else if (ch == OMAP_DSS_CHANNEL_DIGIT) REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19); } static void dispc_mgr_setup(struct dispc_device *dispc, enum omap_channel channel, const struct omap_overlay_manager_info *info) { dispc_mgr_set_default_color(dispc, channel, info->default_color); dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type, info->trans_key); dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled); dispc_mgr_enable_alpha_fixed_zorder(dispc, channel, info->partial_alpha_enabled); if (dispc_has_feature(dispc, FEAT_CPR)) { dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable); dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs); } } static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc, enum omap_channel channel, u8 data_lines) { int code; switch (data_lines) { case 12: code = 0; break; case 16: code = 1; break; case 18: code = 2; break; case 24: code = 3; break; default: BUG(); return; } mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code); } static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc, enum dss_io_pad_mode mode) { u32 l; int gpout0, gpout1; switch (mode) { case DSS_IO_PAD_MODE_RESET: gpout0 = 0; gpout1 = 0; break; case DSS_IO_PAD_MODE_RFBI: gpout0 = 1; gpout1 = 0; break; case DSS_IO_PAD_MODE_BYPASS: gpout0 = 1; gpout1 = 1; break; default: BUG(); return; } l = dispc_read_reg(dispc, DISPC_CONTROL); l = FLD_MOD(l, gpout0, 15, 15); l = FLD_MOD(l, gpout1, 16, 16); dispc_write_reg(dispc, DISPC_CONTROL, l); } static void dispc_mgr_enable_stallmode(struct dispc_device *dispc, enum omap_channel channel, bool enable) { mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable); } static void dispc_mgr_set_lcd_config(struct dispc_device *dispc, enum omap_channel channel, const struct dss_lcd_mgr_config *config) { dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode); dispc_mgr_enable_stallmode(dispc, channel, config->stallmode); dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck); dispc_mgr_set_clock_div(dispc, channel, &config->clock_info); dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width); dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity); dispc_mgr_set_lcd_type_tft(dispc, channel); } static bool _dispc_mgr_size_ok(struct dispc_device *dispc, u16 width, u16 height) { return width <= dispc->feat->mgr_width_max && height <= dispc->feat->mgr_height_max; } static bool _dispc_lcd_timings_ok(struct dispc_device *dispc, int hsync_len, int hfp, int hbp, int vsw, int vfp, int vbp) { if (hsync_len < 1 || hsync_len > dispc->feat->sw_max || hfp < 1 || hfp > dispc->feat->hp_max || hbp < 1 || hbp > dispc->feat->hp_max || vsw < 1 || vsw > dispc->feat->sw_max || vfp < 0 || vfp > dispc->feat->vp_max || vbp < 0 || vbp > dispc->feat->vp_max) return false; return true; } static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc, enum omap_channel channel, unsigned long pclk) { if (dss_mgr_is_lcd(channel)) return pclk <= dispc->feat->max_lcd_pclk; else return pclk <= dispc->feat->max_tv_pclk; } static int dispc_mgr_check_timings(struct dispc_device *dispc, enum omap_channel channel, const struct videomode *vm) { if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive)) return MODE_BAD; if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock)) return MODE_BAD; if (dss_mgr_is_lcd(channel)) { /* TODO: OMAP4+ supports interlace for LCD outputs */ if (vm->flags & DISPLAY_FLAGS_INTERLACED) return MODE_BAD; if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len, vm->hfront_porch, vm->hback_porch, vm->vsync_len, vm->vfront_porch, vm->vback_porch)) return MODE_BAD; } return MODE_OK; } static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc, enum omap_channel channel, const struct videomode *vm) { u32 timing_h, timing_v, l; bool onoff, rf, ipc, vs, hs, de; timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) | FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) | FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20); timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) | FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) | FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20); dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h); dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v); if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH) vs = false; else vs = true; if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH) hs = false; else hs = true; if (vm->flags & DISPLAY_FLAGS_DE_HIGH) de = false; else de = true; if (vm->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE) ipc = false; else ipc = true; /* always use the 'rf' setting */ onoff = true; if (vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE) rf = true; else rf = false; l = FLD_VAL(onoff, 17, 17) | FLD_VAL(rf, 16, 16) | FLD_VAL(de, 15, 15) | FLD_VAL(ipc, 14, 14) | FLD_VAL(hs, 13, 13) | FLD_VAL(vs, 12, 12); /* always set ALIGN bit when available */ if (dispc->feat->supports_sync_align) l |= (1 << 18); dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l); if (dispc->syscon_pol) { const int shifts[] = { [OMAP_DSS_CHANNEL_LCD] = 0, [OMAP_DSS_CHANNEL_LCD2] = 1, [OMAP_DSS_CHANNEL_LCD3] = 2, }; u32 mask, val; mask = (1 << 0) | (1 << 3) | (1 << 6); val = (rf << 0) | (ipc << 3) | (onoff << 6); mask <<= 16 + shifts[channel]; val <<= 16 + shifts[channel]; regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset, mask, val); } } static int vm_flag_to_int(enum display_flags flags, enum display_flags high, enum display_flags low) { if (flags & high) return 1; if (flags & low) return -1; return 0; } /* change name to mode? */ static void dispc_mgr_set_timings(struct dispc_device *dispc, enum omap_channel channel, const struct videomode *vm) { unsigned int xtot, ytot; unsigned long ht, vt; struct videomode t = *vm; DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive); if (dispc_mgr_check_timings(dispc, channel, &t)) { BUG(); return; } if (dss_mgr_is_lcd(channel)) { _dispc_mgr_set_lcd_timings(dispc, channel, &t); xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch; ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch; ht = vm->pixelclock / xtot; vt = vm->pixelclock / xtot / ytot; DSSDBG("pck %lu\n", vm->pixelclock); DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n", t.hsync_len, t.hfront_porch, t.hback_porch, t.vsync_len, t.vfront_porch, t.vback_porch); DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n", vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW), vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW), vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE), vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW), vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE)); DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt); } else { if (t.flags & DISPLAY_FLAGS_INTERLACED) t.vactive /= 2; if (dispc->feat->supports_double_pixel) REG_FLD_MOD(dispc, DISPC_CONTROL, !!(t.flags & DISPLAY_FLAGS_DOUBLECLK), 19, 17); } dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive); } static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc, enum omap_channel channel, u16 lck_div, u16 pck_div) { BUG_ON(lck_div < 1); BUG_ON(pck_div < 1); dispc_write_reg(dispc, DISPC_DIVISORo(channel), FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0)); if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) && channel == OMAP_DSS_CHANNEL_LCD) dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div; } static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc, enum omap_channel channel, int *lck_div, int *pck_div) { u32 l; l = dispc_read_reg(dispc, DISPC_DIVISORo(channel)); *lck_div = FLD_GET(l, 23, 16); *pck_div = FLD_GET(l, 7, 0); } static unsigned long dispc_fclk_rate(struct dispc_device *dispc) { unsigned long r; enum dss_clk_source src; src = dss_get_dispc_clk_source(dispc->dss); if (src == DSS_CLK_SRC_FCK) { r = dss_get_dispc_clk_rate(dispc->dss); } else { struct dss_pll *pll; unsigned int clkout_idx; pll = dss_pll_find_by_src(dispc->dss, src); clkout_idx = dss_pll_get_clkout_idx_for_src(src); r = pll->cinfo.clkout[clkout_idx]; } return r; } static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc, enum omap_channel channel) { int lcd; unsigned long r; enum dss_clk_source src; /* for TV, LCLK rate is the FCLK rate */ if (!dss_mgr_is_lcd(channel)) return dispc_fclk_rate(dispc); src = dss_get_lcd_clk_source(dispc->dss, channel); if (src == DSS_CLK_SRC_FCK) { r = dss_get_dispc_clk_rate(dispc->dss); } else { struct dss_pll *pll; unsigned int clkout_idx; pll = dss_pll_find_by_src(dispc->dss, src); clkout_idx = dss_pll_get_clkout_idx_for_src(src); r = pll->cinfo.clkout[clkout_idx]; } lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16); return r / lcd; } static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc, enum omap_channel channel) { unsigned long r; if (dss_mgr_is_lcd(channel)) { int pcd; u32 l; l = dispc_read_reg(dispc, DISPC_DIVISORo(channel)); pcd = FLD_GET(l, 7, 0); r = dispc_mgr_lclk_rate(dispc, channel); return r / pcd; } else { return dispc->tv_pclk_rate; } } void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk) { dispc->tv_pclk_rate = pclk; } static unsigned long dispc_core_clk_rate(struct dispc_device *dispc) { return dispc->core_clk_rate; } static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc, enum omap_plane_id plane) { enum omap_channel channel; if (plane == OMAP_DSS_WB) return 0; channel = dispc_ovl_get_channel_out(dispc, plane); return dispc_mgr_pclk_rate(dispc, channel); } static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc, enum omap_plane_id plane) { enum omap_channel channel; if (plane == OMAP_DSS_WB) return 0; channel = dispc_ovl_get_channel_out(dispc, plane); return dispc_mgr_lclk_rate(dispc, channel); } static void dispc_dump_clocks_channel(struct dispc_device *dispc, struct seq_file *s, enum omap_channel channel) { int lcd, pcd; enum dss_clk_source lcd_clk_src; seq_printf(s, "- %s -\n", mgr_desc[channel].name); lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel); seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name, dss_get_clk_source_name(lcd_clk_src)); dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd); seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_mgr_lclk_rate(dispc, channel), lcd); seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_mgr_pclk_rate(dispc, channel), pcd); } void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s) { enum dss_clk_source dispc_clk_src; int lcd; u32 l; if (dispc_runtime_get(dispc)) return; seq_printf(s, "- DISPC -\n"); dispc_clk_src = dss_get_dispc_clk_source(dispc->dss); seq_printf(s, "dispc fclk source = %s\n", dss_get_clk_source_name(dispc_clk_src)); seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc)); if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) { seq_printf(s, "- DISPC-CORE-CLK -\n"); l = dispc_read_reg(dispc, DISPC_DIVISOR); lcd = FLD_GET(l, 23, 16); seq_printf(s, "lck\t\t%-16lulck div\t%u\n", (dispc_fclk_rate(dispc)/lcd), lcd); } dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD); if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2); if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3); dispc_runtime_put(dispc); } static int dispc_dump_regs(struct seq_file *s, void *p) { struct dispc_device *dispc = s->private; int i, j; const char *mgr_names[] = { [OMAP_DSS_CHANNEL_LCD] = "LCD", [OMAP_DSS_CHANNEL_DIGIT] = "TV", [OMAP_DSS_CHANNEL_LCD2] = "LCD2", [OMAP_DSS_CHANNEL_LCD3] = "LCD3", }; const char *ovl_names[] = { [OMAP_DSS_GFX] = "GFX", [OMAP_DSS_VIDEO1] = "VID1", [OMAP_DSS_VIDEO2] = "VID2", [OMAP_DSS_VIDEO3] = "VID3", [OMAP_DSS_WB] = "WB", }; const char **p_names; #define DUMPREG(dispc, r) \ seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r)) if (dispc_runtime_get(dispc)) return 0; /* DISPC common registers */ DUMPREG(dispc, DISPC_REVISION); DUMPREG(dispc, DISPC_SYSCONFIG); DUMPREG(dispc, DISPC_SYSSTATUS); DUMPREG(dispc, DISPC_IRQSTATUS); DUMPREG(dispc, DISPC_IRQENABLE); DUMPREG(dispc, DISPC_CONTROL); DUMPREG(dispc, DISPC_CONFIG); DUMPREG(dispc, DISPC_CAPABLE); DUMPREG(dispc, DISPC_LINE_STATUS); DUMPREG(dispc, DISPC_LINE_NUMBER); if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) DUMPREG(dispc, DISPC_GLOBAL_ALPHA); if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { DUMPREG(dispc, DISPC_CONTROL2); DUMPREG(dispc, DISPC_CONFIG2); } if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { DUMPREG(dispc, DISPC_CONTROL3); DUMPREG(dispc, DISPC_CONFIG3); } if (dispc_has_feature(dispc, FEAT_MFLAG)) DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE); #undef DUMPREG #define DISPC_REG(i, name) name(i) #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \ (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \ dispc_read_reg(dispc, DISPC_REG(i, r))) p_names = mgr_names; /* DISPC channel specific registers */ for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { DUMPREG(dispc, i, DISPC_DEFAULT_COLOR); DUMPREG(dispc, i, DISPC_TRANS_COLOR); DUMPREG(dispc, i, DISPC_SIZE_MGR); if (i == OMAP_DSS_CHANNEL_DIGIT) continue; DUMPREG(dispc, i, DISPC_TIMING_H); DUMPREG(dispc, i, DISPC_TIMING_V); DUMPREG(dispc, i, DISPC_POL_FREQ); DUMPREG(dispc, i, DISPC_DIVISORo); DUMPREG(dispc, i, DISPC_DATA_CYCLE1); DUMPREG(dispc, i, DISPC_DATA_CYCLE2); DUMPREG(dispc, i, DISPC_DATA_CYCLE3); if (dispc_has_feature(dispc, FEAT_CPR)) { DUMPREG(dispc, i, DISPC_CPR_COEF_R); DUMPREG(dispc, i, DISPC_CPR_COEF_G); DUMPREG(dispc, i, DISPC_CPR_COEF_B); } } p_names = ovl_names; for (i = 0; i < dispc_get_num_ovls(dispc); i++) { DUMPREG(dispc, i, DISPC_OVL_BA0); DUMPREG(dispc, i, DISPC_OVL_BA1); DUMPREG(dispc, i, DISPC_OVL_POSITION); DUMPREG(dispc, i, DISPC_OVL_SIZE); DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES); DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD); DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS); DUMPREG(dispc, i, DISPC_OVL_ROW_INC); DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC); if (dispc_has_feature(dispc, FEAT_PRELOAD)) DUMPREG(dispc, i, DISPC_OVL_PRELOAD); if (dispc_has_feature(dispc, FEAT_MFLAG)) DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD); if (i == OMAP_DSS_GFX) { DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP); DUMPREG(dispc, i, DISPC_OVL_TABLE_BA); continue; } DUMPREG(dispc, i, DISPC_OVL_FIR); DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE); DUMPREG(dispc, i, DISPC_OVL_ACCU0); DUMPREG(dispc, i, DISPC_OVL_ACCU1); if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { DUMPREG(dispc, i, DISPC_OVL_BA0_UV); DUMPREG(dispc, i, DISPC_OVL_BA1_UV); DUMPREG(dispc, i, DISPC_OVL_FIR2); DUMPREG(dispc, i, DISPC_OVL_ACCU2_0); DUMPREG(dispc, i, DISPC_OVL_ACCU2_1); } if (dispc_has_feature(dispc, FEAT_ATTR2)) DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2); } if (dispc->feat->has_writeback) { i = OMAP_DSS_WB; DUMPREG(dispc, i, DISPC_OVL_BA0); DUMPREG(dispc, i, DISPC_OVL_BA1); DUMPREG(dispc, i, DISPC_OVL_SIZE); DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES); DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD); DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS); DUMPREG(dispc, i, DISPC_OVL_ROW_INC); DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC); if (dispc_has_feature(dispc, FEAT_MFLAG)) DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD); DUMPREG(dispc, i, DISPC_OVL_FIR); DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE); DUMPREG(dispc, i, DISPC_OVL_ACCU0); DUMPREG(dispc, i, DISPC_OVL_ACCU1); if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { DUMPREG(dispc, i, DISPC_OVL_BA0_UV); DUMPREG(dispc, i, DISPC_OVL_BA1_UV); DUMPREG(dispc, i, DISPC_OVL_FIR2); DUMPREG(dispc, i, DISPC_OVL_ACCU2_0); DUMPREG(dispc, i, DISPC_OVL_ACCU2_1); } if (dispc_has_feature(dispc, FEAT_ATTR2)) DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2); } #undef DISPC_REG #undef DUMPREG #define DISPC_REG(plane, name, i) name(plane, i) #define DUMPREG(dispc, plane, name, i) \ seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \ (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \ dispc_read_reg(dispc, DISPC_REG(plane, name, i))) /* Video pipeline coefficient registers */ /* start from OMAP_DSS_VIDEO1 */ for (i = 1; i < dispc_get_num_ovls(dispc); i++) { for (j = 0; j < 8; j++) DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j); for (j = 0; j < 8; j++) DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j); for (j = 0; j < 5; j++) DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j); if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { for (j = 0; j < 8; j++) DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j); } if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { for (j = 0; j < 8; j++) DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j); for (j = 0; j < 8; j++) DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j); for (j = 0; j < 8; j++) DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j); } } dispc_runtime_put(dispc); #undef DISPC_REG #undef DUMPREG return 0; } /* calculate clock rates using dividers in cinfo */ int dispc_calc_clock_rates(struct dispc_device *dispc, unsigned long dispc_fclk_rate, struct dispc_clock_info *cinfo) { if (cinfo->lck_div > 255 || cinfo->lck_div == 0) return -EINVAL; if (cinfo->pck_div < 1 || cinfo->pck_div > 255) return -EINVAL; cinfo->lck = dispc_fclk_rate / cinfo->lck_div; cinfo->pck = cinfo->lck / cinfo->pck_div; return 0; } bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq, unsigned long pck_min, unsigned long pck_max, dispc_div_calc_func func, void *data) { int lckd, lckd_start, lckd_stop; int pckd, pckd_start, pckd_stop; unsigned long pck, lck; unsigned long lck_max; unsigned long pckd_hw_min, pckd_hw_max; unsigned int min_fck_per_pck; unsigned long fck; #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK; #else min_fck_per_pck = 0; #endif pckd_hw_min = dispc->feat->min_pcd; pckd_hw_max = 255; lck_max = dss_get_max_fck_rate(dispc->dss); pck_min = pck_min ? pck_min : 1; pck_max = pck_max ? pck_max : ULONG_MAX; lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul); lckd_stop = min(dispc_freq / pck_min, 255ul); for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) { lck = dispc_freq / lckd; pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min); pckd_stop = min(lck / pck_min, pckd_hw_max); for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) { pck = lck / pckd; /* * For OMAP2/3 the DISPC fclk is the same as LCD's logic * clock, which means we're configuring DISPC fclk here * also. Thus we need to use the calculated lck. For * OMAP4+ the DISPC fclk is a separate clock. */ if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) fck = dispc_core_clk_rate(dispc); else fck = lck; if (fck < pck * min_fck_per_pck) continue; if (func(lckd, pckd, lck, pck, data)) return true; } } return false; } void dispc_mgr_set_clock_div(struct dispc_device *dispc, enum omap_channel channel, const struct dispc_clock_info *cinfo) { DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div); DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div); dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div, cinfo->pck_div); } int dispc_mgr_get_clock_div(struct dispc_device *dispc, enum omap_channel channel, struct dispc_clock_info *cinfo) { unsigned long fck; fck = dispc_fclk_rate(dispc); cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16); cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0); cinfo->lck = fck / cinfo->lck_div; cinfo->pck = cinfo->lck / cinfo->pck_div; return 0; } static u32 dispc_read_irqstatus(struct dispc_device *dispc) { return dispc_read_reg(dispc, DISPC_IRQSTATUS); } static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask) { dispc_write_reg(dispc, DISPC_IRQSTATUS, mask); } static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask) { u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE); /* clear the irqstatus for newly enabled irqs */ dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask); dispc_write_reg(dispc, DISPC_IRQENABLE, mask); /* flush posted write */ dispc_read_reg(dispc, DISPC_IRQENABLE); } void dispc_enable_sidle(struct dispc_device *dispc) { /* SIDLEMODE: smart idle */ REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3); } void dispc_disable_sidle(struct dispc_device *dispc) { REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */ } static u32 dispc_mgr_gamma_size(struct dispc_device *dispc, enum omap_channel channel) { const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; if (!dispc->feat->has_gamma_table) return 0; return gdesc->len; } static void dispc_mgr_write_gamma_table(struct dispc_device *dispc, enum omap_channel channel) { const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; u32 *table = dispc->gamma_table[channel]; unsigned int i; DSSDBG("%s: channel %d\n", __func__, channel); for (i = 0; i < gdesc->len; ++i) { u32 v = table[i]; if (gdesc->has_index) v |= i << 24; else if (i == 0) v |= 1 << 31; dispc_write_reg(dispc, gdesc->reg, v); } } static void dispc_restore_gamma_tables(struct dispc_device *dispc) { DSSDBG("%s()\n", __func__); if (!dispc->feat->has_gamma_table) return; dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD); dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT); if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2); if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3); } static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = { { .red = 0, .green = 0, .blue = 0, }, { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, }; static void dispc_mgr_set_gamma(struct dispc_device *dispc, enum omap_channel channel, const struct drm_color_lut *lut, unsigned int length) { const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; u32 *table = dispc->gamma_table[channel]; uint i; DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__, channel, length, gdesc->len); if (!dispc->feat->has_gamma_table) return; if (lut == NULL || length < 2) { lut = dispc_mgr_gamma_default_lut; length = ARRAY_SIZE(dispc_mgr_gamma_default_lut); } for (i = 0; i < length - 1; ++i) { uint first = i * (gdesc->len - 1) / (length - 1); uint last = (i + 1) * (gdesc->len - 1) / (length - 1); uint w = last - first; u16 r, g, b; uint j; if (w == 0) continue; for (j = 0; j <= w; j++) { r = (lut[i].red * (w - j) + lut[i+1].red * j) / w; g = (lut[i].green * (w - j) + lut[i+1].green * j) / w; b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w; r >>= 16 - gdesc->bits; g >>= 16 - gdesc->bits; b >>= 16 - gdesc->bits; table[first + j] = (r << (gdesc->bits * 2)) | (g << gdesc->bits) | b; } } if (dispc->is_enabled) dispc_mgr_write_gamma_table(dispc, channel); } static int dispc_init_gamma_tables(struct dispc_device *dispc) { int channel; if (!dispc->feat->has_gamma_table) return 0; for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) { const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; u32 *gt; if (channel == OMAP_DSS_CHANNEL_LCD2 && !dispc_has_feature(dispc, FEAT_MGR_LCD2)) continue; if (channel == OMAP_DSS_CHANNEL_LCD3 && !dispc_has_feature(dispc, FEAT_MGR_LCD3)) continue; gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len, sizeof(u32), GFP_KERNEL); if (!gt) return -ENOMEM; dispc->gamma_table[channel] = gt; dispc_mgr_set_gamma(dispc, channel, NULL, 0); } return 0; } static void _omap_dispc_initial_config(struct dispc_device *dispc) { u32 l; /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */ if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) { l = dispc_read_reg(dispc, DISPC_DIVISOR); /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */ l = FLD_MOD(l, 1, 0, 0); l = FLD_MOD(l, 1, 23, 16); dispc_write_reg(dispc, DISPC_DIVISOR, l); dispc->core_clk_rate = dispc_fclk_rate(dispc); } /* Use gamma table mode, instead of palette mode */ if (dispc->feat->has_gamma_table) REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3); /* For older DSS versions (FEAT_FUNCGATED) this enables * func-clock auto-gating. For newer versions * (dispc->feat->has_gamma_table) this enables tv-out gamma tables. */ if (dispc_has_feature(dispc, FEAT_FUNCGATED) || dispc->feat->has_gamma_table) REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9); dispc_setup_color_conv_coef(dispc); dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY); dispc_init_fifos(dispc); dispc_configure_burst_sizes(dispc); dispc_ovl_enable_zorder_planes(dispc); if (dispc->feat->mstandby_workaround) REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0); if (dispc_has_feature(dispc, FEAT_MFLAG)) dispc_init_mflag(dispc); } static const enum dispc_feature_id omap2_dispc_features_list[] = { FEAT_LCDENABLEPOL, FEAT_LCDENABLESIGNAL, FEAT_PCKFREEENABLE, FEAT_FUNCGATED, FEAT_ROWREPEATENABLE, FEAT_RESIZECONF, }; static const enum dispc_feature_id omap3_dispc_features_list[] = { FEAT_LCDENABLEPOL, FEAT_LCDENABLESIGNAL, FEAT_PCKFREEENABLE, FEAT_FUNCGATED, FEAT_LINEBUFFERSPLIT, FEAT_ROWREPEATENABLE, FEAT_RESIZECONF, FEAT_CPR, FEAT_PRELOAD, FEAT_FIR_COEF_V, FEAT_ALPHA_FIXED_ZORDER, FEAT_FIFO_MERGE, FEAT_OMAP3_DSI_FIFO_BUG, }; static const enum dispc_feature_id am43xx_dispc_features_list[] = { FEAT_LCDENABLEPOL, FEAT_LCDENABLESIGNAL, FEAT_PCKFREEENABLE, FEAT_FUNCGATED, FEAT_LINEBUFFERSPLIT, FEAT_ROWREPEATENABLE, FEAT_RESIZECONF, FEAT_CPR, FEAT_PRELOAD, FEAT_FIR_COEF_V, FEAT_ALPHA_FIXED_ZORDER, FEAT_FIFO_MERGE, }; static const enum dispc_feature_id omap4_dispc_features_list[] = { FEAT_MGR_LCD2, FEAT_CORE_CLK_DIV, FEAT_HANDLE_UV_SEPARATE, FEAT_ATTR2, FEAT_CPR, FEAT_PRELOAD, FEAT_FIR_COEF_V, FEAT_ALPHA_FREE_ZORDER, FEAT_FIFO_MERGE, FEAT_BURST_2D, }; static const enum dispc_feature_id omap5_dispc_features_list[] = { FEAT_MGR_LCD2, FEAT_MGR_LCD3, FEAT_CORE_CLK_DIV, FEAT_HANDLE_UV_SEPARATE, FEAT_ATTR2, FEAT_CPR, FEAT_PRELOAD, FEAT_FIR_COEF_V, FEAT_ALPHA_FREE_ZORDER, FEAT_FIFO_MERGE, FEAT_BURST_2D, FEAT_MFLAG, }; static const struct dss_reg_field omap2_dispc_reg_fields[] = { [FEAT_REG_FIRHINC] = { 11, 0 }, [FEAT_REG_FIRVINC] = { 27, 16 }, [FEAT_REG_FIFOLOWTHRESHOLD] = { 8, 0 }, [FEAT_REG_FIFOHIGHTHRESHOLD] = { 24, 16 }, [FEAT_REG_FIFOSIZE] = { 8, 0 }, [FEAT_REG_HORIZONTALACCU] = { 9, 0 }, [FEAT_REG_VERTICALACCU] = { 25, 16 }, }; static const struct dss_reg_field omap3_dispc_reg_fields[] = { [FEAT_REG_FIRHINC] = { 12, 0 }, [FEAT_REG_FIRVINC] = { 28, 16 }, [FEAT_REG_FIFOLOWTHRESHOLD] = { 11, 0 }, [FEAT_REG_FIFOHIGHTHRESHOLD] = { 27, 16 }, [FEAT_REG_FIFOSIZE] = { 10, 0 }, [FEAT_REG_HORIZONTALACCU] = { 9, 0 }, [FEAT_REG_VERTICALACCU] = { 25, 16 }, }; static const struct dss_reg_field omap4_dispc_reg_fields[] = { [FEAT_REG_FIRHINC] = { 12, 0 }, [FEAT_REG_FIRVINC] = { 28, 16 }, [FEAT_REG_FIFOLOWTHRESHOLD] = { 15, 0 }, [FEAT_REG_FIFOHIGHTHRESHOLD] = { 31, 16 }, [FEAT_REG_FIFOSIZE] = { 15, 0 }, [FEAT_REG_HORIZONTALACCU] = { 10, 0 }, [FEAT_REG_VERTICALACCU] = { 26, 16 }, }; static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = { /* OMAP_DSS_GFX */ OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO1 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO2 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, }; static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = { /* OMAP_DSS_GFX */ OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO1 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO2 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, }; static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = { /* OMAP_DSS_GFX */ OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO1 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO2 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, }; static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = { /* OMAP_DSS_GFX */ OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO1 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO2 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, /* OMAP_DSS_VIDEO3 */ OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, }; #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 } static const u32 *omap2_dispc_supported_color_modes[] = { /* OMAP_DSS_GFX */ COLOR_ARRAY( DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888), /* OMAP_DSS_VIDEO1 */ COLOR_ARRAY( DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, DRM_FORMAT_UYVY), /* OMAP_DSS_VIDEO2 */ COLOR_ARRAY( DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, DRM_FORMAT_UYVY), }; static const u32 *omap3_dispc_supported_color_modes[] = { /* OMAP_DSS_GFX */ COLOR_ARRAY( DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888), /* OMAP_DSS_VIDEO1 */ COLOR_ARRAY( DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565, DRM_FORMAT_YUYV, DRM_FORMAT_UYVY), /* OMAP_DSS_VIDEO2 */ COLOR_ARRAY( DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888), }; static const u32 *omap4_dispc_supported_color_modes[] = { /* OMAP_DSS_GFX */ COLOR_ARRAY( DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444, DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555), /* OMAP_DSS_VIDEO1 */ COLOR_ARRAY( DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, DRM_FORMAT_RGBX8888), /* OMAP_DSS_VIDEO2 */ COLOR_ARRAY( DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, DRM_FORMAT_RGBX8888), /* OMAP_DSS_VIDEO3 */ COLOR_ARRAY( DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, DRM_FORMAT_RGBX8888), /* OMAP_DSS_WB */ COLOR_ARRAY( DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, DRM_FORMAT_RGBX8888), }; static const struct dispc_features omap24xx_dispc_feats = { .sw_start = 5, .fp_start = 15, .bp_start = 27, .sw_max = 64, .vp_max = 255, .hp_max = 256, .mgr_width_start = 10, .mgr_height_start = 26, .mgr_width_max = 2048, .mgr_height_max = 2048, .max_lcd_pclk = 66500000, .max_downscale = 2, /* * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler * cannot scale an image width larger than 768. */ .max_line_width = 768, .min_pcd = 2, .calc_scaling = dispc_ovl_calc_scaling_24xx, .calc_core_clk = calc_core_clk_24xx, .num_fifos = 3, .features = omap2_dispc_features_list, .num_features = ARRAY_SIZE(omap2_dispc_features_list), .reg_fields = omap2_dispc_reg_fields, .num_reg_fields = ARRAY_SIZE(omap2_dispc_reg_fields), .overlay_caps = omap2_dispc_overlay_caps, .supported_color_modes = omap2_dispc_supported_color_modes, .num_mgrs = 2, .num_ovls = 3, .buffer_size_unit = 1, .burst_size_unit = 8, .no_framedone_tv = true, .set_max_preload = false, .last_pixel_inc_missing = true, }; static const struct dispc_features omap34xx_rev1_0_dispc_feats = { .sw_start = 5, .fp_start = 15, .bp_start = 27, .sw_max = 64, .vp_max = 255, .hp_max = 256, .mgr_width_start = 10, .mgr_height_start = 26, .mgr_width_max = 2048, .mgr_height_max = 2048, .max_lcd_pclk = 173000000, .max_tv_pclk = 59000000, .max_downscale = 4, .max_line_width = 1024, .min_pcd = 1, .calc_scaling = dispc_ovl_calc_scaling_34xx, .calc_core_clk = calc_core_clk_34xx, .num_fifos = 3, .features = omap3_dispc_features_list, .num_features = ARRAY_SIZE(omap3_dispc_features_list), .reg_fields = omap3_dispc_reg_fields, .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), .overlay_caps = omap3430_dispc_overlay_caps, .supported_color_modes = omap3_dispc_supported_color_modes, .num_mgrs = 2, .num_ovls = 3, .buffer_size_unit = 1, .burst_size_unit = 8, .no_framedone_tv = true, .set_max_preload = false, .last_pixel_inc_missing = true, }; static const struct dispc_features omap34xx_rev3_0_dispc_feats = { .sw_start = 7, .fp_start = 19, .bp_start = 31, .sw_max = 256, .vp_max = 4095, .hp_max = 4096, .mgr_width_start = 10, .mgr_height_start = 26, .mgr_width_max = 2048, .mgr_height_max = 2048, .max_lcd_pclk = 173000000, .max_tv_pclk = 59000000, .max_downscale = 4, .max_line_width = 1024, .min_pcd = 1, .calc_scaling = dispc_ovl_calc_scaling_34xx, .calc_core_clk = calc_core_clk_34xx, .num_fifos = 3, .features = omap3_dispc_features_list, .num_features = ARRAY_SIZE(omap3_dispc_features_list), .reg_fields = omap3_dispc_reg_fields, .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), .overlay_caps = omap3430_dispc_overlay_caps, .supported_color_modes = omap3_dispc_supported_color_modes, .num_mgrs = 2, .num_ovls = 3, .buffer_size_unit = 1, .burst_size_unit = 8, .no_framedone_tv = true, .set_max_preload = false, .last_pixel_inc_missing = true, }; static const struct dispc_features omap36xx_dispc_feats = { .sw_start = 7, .fp_start = 19, .bp_start = 31, .sw_max = 256, .vp_max = 4095, .hp_max = 4096, .mgr_width_start = 10, .mgr_height_start = 26, .mgr_width_max = 2048, .mgr_height_max = 2048, .max_lcd_pclk = 173000000, .max_tv_pclk = 59000000, .max_downscale = 4, .max_line_width = 1024, .min_pcd = 1, .calc_scaling = dispc_ovl_calc_scaling_34xx, .calc_core_clk = calc_core_clk_34xx, .num_fifos = 3, .features = omap3_dispc_features_list, .num_features = ARRAY_SIZE(omap3_dispc_features_list), .reg_fields = omap3_dispc_reg_fields, .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), .overlay_caps = omap3630_dispc_overlay_caps, .supported_color_modes = omap3_dispc_supported_color_modes, .num_mgrs = 2, .num_ovls = 3, .buffer_size_unit = 1, .burst_size_unit = 8, .no_framedone_tv = true, .set_max_preload = false, .last_pixel_inc_missing = true, }; static const struct dispc_features am43xx_dispc_feats = { .sw_start = 7, .fp_start = 19, .bp_start = 31, .sw_max = 256, .vp_max = 4095, .hp_max = 4096, .mgr_width_start = 10, .mgr_height_start = 26, .mgr_width_max = 2048, .mgr_height_max = 2048, .max_lcd_pclk = 173000000, .max_tv_pclk = 59000000, .max_downscale = 4, .max_line_width = 1024, .min_pcd = 1, .calc_scaling = dispc_ovl_calc_scaling_34xx, .calc_core_clk = calc_core_clk_34xx, .num_fifos = 3, .features = am43xx_dispc_features_list, .num_features = ARRAY_SIZE(am43xx_dispc_features_list), .reg_fields = omap3_dispc_reg_fields, .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), .overlay_caps = omap3430_dispc_overlay_caps, .supported_color_modes = omap3_dispc_supported_color_modes, .num_mgrs = 1, .num_ovls = 3, .buffer_size_unit = 1, .burst_size_unit = 8, .no_framedone_tv = true, .set_max_preload = false, .last_pixel_inc_missing = true, }; static const struct dispc_features omap44xx_dispc_feats = { .sw_start = 7, .fp_start = 19, .bp_start = 31, .sw_max = 256, .vp_max = 4095, .hp_max = 4096, .mgr_width_start = 10, .mgr_height_start = 26, .mgr_width_max = 2048, .mgr_height_max = 2048, .max_lcd_pclk = 170000000, .max_tv_pclk = 185625000, .max_downscale = 4, .max_line_width = 2048, .min_pcd = 1, .calc_scaling = dispc_ovl_calc_scaling_44xx, .calc_core_clk = calc_core_clk_44xx, .num_fifos = 5, .features = omap4_dispc_features_list, .num_features = ARRAY_SIZE(omap4_dispc_features_list), .reg_fields = omap4_dispc_reg_fields, .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields), .overlay_caps = omap4_dispc_overlay_caps, .supported_color_modes = omap4_dispc_supported_color_modes, .num_mgrs = 3, .num_ovls = 4, .buffer_size_unit = 16, .burst_size_unit = 16, .gfx_fifo_workaround = true, .set_max_preload = true, .supports_sync_align = true, .has_writeback = true, .supports_double_pixel = true, .reverse_ilace_field_order = true, .has_gamma_table = true, .has_gamma_i734_bug = true, }; static const struct dispc_features omap54xx_dispc_feats = { .sw_start = 7, .fp_start = 19, .bp_start = 31, .sw_max = 256, .vp_max = 4095, .hp_max = 4096, .mgr_width_start = 11, .mgr_height_start = 27, .mgr_width_max = 4096, .mgr_height_max = 4096, .max_lcd_pclk = 170000000, .max_tv_pclk = 186000000, .max_downscale = 4, .max_line_width = 2048, .min_pcd = 1, .calc_scaling = dispc_ovl_calc_scaling_44xx, .calc_core_clk = calc_core_clk_44xx, .num_fifos = 5, .features = omap5_dispc_features_list, .num_features = ARRAY_SIZE(omap5_dispc_features_list), .reg_fields = omap4_dispc_reg_fields, .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields), .overlay_caps = omap4_dispc_overlay_caps, .supported_color_modes = omap4_dispc_supported_color_modes, .num_mgrs = 4, .num_ovls = 4, .buffer_size_unit = 16, .burst_size_unit = 16, .gfx_fifo_workaround = true, .mstandby_workaround = true, .set_max_preload = true, .supports_sync_align = true, .has_writeback = true, .supports_double_pixel = true, .reverse_ilace_field_order = true, .has_gamma_table = true, .has_gamma_i734_bug = true, }; static irqreturn_t dispc_irq_handler(int irq, void *arg) { struct dispc_device *dispc = arg; if (!dispc->is_enabled) return IRQ_NONE; return dispc->user_handler(irq, dispc->user_data); } static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler, void *dev_id) { int r; if (dispc->user_handler != NULL) return -EBUSY; dispc->user_handler = handler; dispc->user_data = dev_id; /* ensure the dispc_irq_handler sees the values above */ smp_wmb(); r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler, IRQF_SHARED, "OMAP DISPC", dispc); if (r) { dispc->user_handler = NULL; dispc->user_data = NULL; } return r; } static void dispc_free_irq(struct dispc_device *dispc, void *dev_id) { devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc); dispc->user_handler = NULL; dispc->user_data = NULL; } static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc) { u32 limit = 0; /* Optional maximum memory bandwidth */ of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth", &limit); return limit; } /* * Workaround for errata i734 in DSS dispc * - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled * * For gamma tables to work on LCD1 the GFX plane has to be used at * least once after DSS HW has come out of reset. The workaround * sets up a minimal LCD setup with GFX plane and waits for one * vertical sync irq before disabling the setup and continuing with * the context restore. The physical outputs are gated during the * operation. This workaround requires that gamma table's LOADMODE * is set to 0x2 in DISPC_CONTROL1 register. * * For details see: * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata * Literature Number: SWPZ037E * Or some other relevant errata document for the DSS IP version. */ static const struct dispc_errata_i734_data { struct videomode vm; struct omap_overlay_info ovli; struct omap_overlay_manager_info mgri; struct dss_lcd_mgr_config lcd_conf; } i734 = { .vm = { .hactive = 8, .vactive = 1, .pixelclock = 16000000, .hsync_len = 8, .hfront_porch = 4, .hback_porch = 4, .vsync_len = 1, .vfront_porch = 1, .vback_porch = 1, .flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW | DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE | DISPLAY_FLAGS_PIXDATA_POSEDGE, }, .ovli = { .screen_width = 1, .width = 1, .height = 1, .fourcc = DRM_FORMAT_XRGB8888, .rotation = DRM_MODE_ROTATE_0, .rotation_type = OMAP_DSS_ROT_NONE, .pos_x = 0, .pos_y = 0, .out_width = 0, .out_height = 0, .global_alpha = 0xff, .pre_mult_alpha = 0, .zorder = 0, }, .mgri = { .default_color = 0, .trans_enabled = false, .partial_alpha_enabled = false, .cpr_enable = false, }, .lcd_conf = { .io_pad_mode = DSS_IO_PAD_MODE_BYPASS, .stallmode = false, .fifohandcheck = false, .clock_info = { .lck_div = 1, .pck_div = 2, }, .video_port_width = 24, .lcden_sig_polarity = 0, }, }; static struct i734_buf { size_t size; dma_addr_t paddr; void *vaddr; } i734_buf; static int dispc_errata_i734_wa_init(struct dispc_device *dispc) { if (!dispc->feat->has_gamma_i734_bug) return 0; i734_buf.size = i734.ovli.width * i734.ovli.height * color_mode_to_bpp(i734.ovli.fourcc) / 8; i734_buf.vaddr = dma_alloc_writecombine(&dispc->pdev->dev, i734_buf.size, &i734_buf.paddr, GFP_KERNEL); if (!i734_buf.vaddr) { dev_err(&dispc->pdev->dev, "%s: dma_alloc_writecombine failed\n", __func__); return -ENOMEM; } return 0; } static void dispc_errata_i734_wa_fini(struct dispc_device *dispc) { if (!dispc->feat->has_gamma_i734_bug) return; dma_free_writecombine(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr, i734_buf.paddr); } static void dispc_errata_i734_wa(struct dispc_device *dispc) { u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc, OMAP_DSS_CHANNEL_LCD); struct omap_overlay_info ovli; struct dss_lcd_mgr_config lcd_conf; u32 gatestate; unsigned int count; if (!dispc->feat->has_gamma_i734_bug) return; gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4); ovli = i734.ovli; ovli.paddr = i734_buf.paddr; lcd_conf = i734.lcd_conf; /* Gate all LCD1 outputs */ REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4); /* Setup and enable GFX plane */ dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false, OMAP_DSS_CHANNEL_LCD); dispc_ovl_enable(dispc, OMAP_DSS_GFX, true); /* Set up and enable display manager for LCD1 */ dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri); dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss), &lcd_conf.clock_info); dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf); dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm); dispc_clear_irqstatus(dispc, framedone_irq); /* Enable and shut the channel to produce just one frame */ dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true); dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false); /* Busy wait for framedone. We can't fiddle with irq handlers * in PM resume. Typically the loop runs less than 5 times and * waits less than a micro second. */ count = 0; while (!(dispc_read_irqstatus(dispc) & framedone_irq)) { if (count++ > 10000) { dev_err(&dispc->pdev->dev, "%s: framedone timeout\n", __func__); break; } } dispc_ovl_enable(dispc, OMAP_DSS_GFX, false); /* Clear all irq bits before continuing */ dispc_clear_irqstatus(dispc, 0xffffffff); /* Restore the original state to LCD1 output gates */ REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4); } static const struct dispc_ops dispc_ops = { .read_irqstatus = dispc_read_irqstatus, .clear_irqstatus = dispc_clear_irqstatus, .write_irqenable = dispc_write_irqenable, .request_irq = dispc_request_irq, .free_irq = dispc_free_irq, .runtime_get = dispc_runtime_get, .runtime_put = dispc_runtime_put, .get_num_ovls = dispc_get_num_ovls, .get_num_mgrs = dispc_get_num_mgrs, .get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit, .mgr_enable = dispc_mgr_enable, .mgr_is_enabled = dispc_mgr_is_enabled, .mgr_get_vsync_irq = dispc_mgr_get_vsync_irq, .mgr_get_framedone_irq = dispc_mgr_get_framedone_irq, .mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq, .mgr_go_busy = dispc_mgr_go_busy, .mgr_go = dispc_mgr_go, .mgr_set_lcd_config = dispc_mgr_set_lcd_config, .mgr_check_timings = dispc_mgr_check_timings, .mgr_set_timings = dispc_mgr_set_timings, .mgr_setup = dispc_mgr_setup, .mgr_gamma_size = dispc_mgr_gamma_size, .mgr_set_gamma = dispc_mgr_set_gamma, .ovl_enable = dispc_ovl_enable, .ovl_setup = dispc_ovl_setup, .ovl_get_color_modes = dispc_ovl_get_color_modes, .wb_get_framedone_irq = dispc_wb_get_framedone_irq, .wb_setup = dispc_wb_setup, .has_writeback = dispc_has_writeback, .wb_go_busy = dispc_wb_go_busy, .wb_go = dispc_wb_go, }; /* DISPC HW IP initialisation */ static const struct of_device_id dispc_of_match[] = { { .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats }, { .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats }, { .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats }, { .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats }, { .compatible = "ti,dra7-dispc", .data = &omap54xx_dispc_feats }, {}, }; static const struct soc_device_attribute dispc_soc_devices[] = { { .machine = "OMAP3[45]*", .revision = "ES[12].?", .data = &omap34xx_rev1_0_dispc_feats }, { .machine = "OMAP3[45]*", .data = &omap34xx_rev3_0_dispc_feats }, { .machine = "AM35*", .data = &omap34xx_rev3_0_dispc_feats }, { .machine = "AM43*", .data = &am43xx_dispc_feats }, { /* sentinel */ } }; static int dispc_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); const struct soc_device_attribute *soc; struct dss_device *dss = dss_get_device(master); struct dispc_device *dispc; u32 rev; int r = 0; struct resource *dispc_mem; struct device_node *np = pdev->dev.of_node; dispc = kzalloc(sizeof(*dispc), GFP_KERNEL); if (!dispc) return -ENOMEM; dispc->pdev = pdev; platform_set_drvdata(pdev, dispc); dispc->dss = dss; spin_lock_init(&dispc->control_lock); /* * The OMAP3-based models can't be told apart using the compatible * string, use SoC device matching. */ soc = soc_device_match(dispc_soc_devices); if (soc) dispc->feat = soc->data; else dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data; r = dispc_errata_i734_wa_init(dispc); if (r) goto err_free; dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0); dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem); if (IS_ERR(dispc->base)) { r = PTR_ERR(dispc->base); goto err_free; } dispc->irq = platform_get_irq(dispc->pdev, 0); if (dispc->irq < 0) { DSSERR("platform_get_irq failed\n"); r = -ENODEV; goto err_free; } if (np && of_property_read_bool(np, "syscon-pol")) { dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol"); if (IS_ERR(dispc->syscon_pol)) { dev_err(&pdev->dev, "failed to get syscon-pol regmap\n"); r = PTR_ERR(dispc->syscon_pol); goto err_free; } if (of_property_read_u32_index(np, "syscon-pol", 1, &dispc->syscon_pol_offset)) { dev_err(&pdev->dev, "failed to get syscon-pol offset\n"); r = -EINVAL; goto err_free; } } r = dispc_init_gamma_tables(dispc); if (r) goto err_free; pm_runtime_enable(&pdev->dev); r = dispc_runtime_get(dispc); if (r) goto err_runtime_get; _omap_dispc_initial_config(dispc); rev = dispc_read_reg(dispc, DISPC_REVISION); dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); dispc_runtime_put(dispc); dss->dispc = dispc; dss->dispc_ops = &dispc_ops; dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs, dispc); return 0; err_runtime_get: pm_runtime_disable(&pdev->dev); err_free: kfree(dispc); return r; } static void dispc_unbind(struct device *dev, struct device *master, void *data) { struct dispc_device *dispc = dev_get_drvdata(dev); struct dss_device *dss = dispc->dss; dss_debugfs_remove_file(dispc->debugfs); dss->dispc = NULL; dss->dispc_ops = NULL; pm_runtime_disable(dev); dispc_errata_i734_wa_fini(dispc); kfree(dispc); } static const struct component_ops dispc_component_ops = { .bind = dispc_bind, .unbind = dispc_unbind, }; static int dispc_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &dispc_component_ops); } static int dispc_remove(struct platform_device *pdev) { component_del(&pdev->dev, &dispc_component_ops); return 0; } static int dispc_runtime_suspend(struct device *dev) { struct dispc_device *dispc = dev_get_drvdata(dev); dispc->is_enabled = false; /* ensure the dispc_irq_handler sees the is_enabled value */ smp_wmb(); /* wait for current handler to finish before turning the DISPC off */ synchronize_irq(dispc->irq); dispc_save_context(dispc); return 0; } static int dispc_runtime_resume(struct device *dev) { struct dispc_device *dispc = dev_get_drvdata(dev); /* * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME) * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in * _omap_dispc_initial_config(). We can thus use it to detect if * we have lost register context. */ if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) { _omap_dispc_initial_config(dispc); dispc_errata_i734_wa(dispc); dispc_restore_context(dispc); dispc_restore_gamma_tables(dispc); } dispc->is_enabled = true; /* ensure the dispc_irq_handler sees the is_enabled value */ smp_wmb(); return 0; } static const struct dev_pm_ops dispc_pm_ops = { .runtime_suspend = dispc_runtime_suspend, .runtime_resume = dispc_runtime_resume, }; struct platform_driver omap_dispchw_driver = { .probe = dispc_probe, .remove = dispc_remove, .driver = { .name = "omapdss_dispc", .pm = &dispc_pm_ops, .of_match_table = dispc_of_match, .suppress_bind_attrs = true, }, };