/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "priv.h" #include "vmm.h" #include #include #include #include struct nvkm_mmu_ptp { struct nvkm_mmu_pt *pt; struct list_head head; u8 shift; u16 mask; u16 free; }; static void nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt) { const int slot = pt->base >> pt->ptp->shift; struct nvkm_mmu_ptp *ptp = pt->ptp; /* If there were no free slots in the parent allocation before, * there will be now, so return PTP to the cache. */ if (!ptp->free) list_add(&ptp->head, &mmu->ptp.list); ptp->free |= BIT(slot); /* If there's no more sub-allocations, destroy PTP. */ if (ptp->free == ptp->mask) { nvkm_mmu_ptc_put(mmu, force, &ptp->pt); list_del(&ptp->head); kfree(ptp); } kfree(pt); } struct nvkm_mmu_pt * nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero) { struct nvkm_mmu_pt *pt; struct nvkm_mmu_ptp *ptp; int slot; if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL))) return NULL; ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head); if (!ptp) { /* Need to allocate a new parent to sub-allocate from. */ if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) { kfree(pt); return NULL; } ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false); if (!ptp->pt) { kfree(ptp); kfree(pt); return NULL; } ptp->shift = order_base_2(size); slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift; ptp->mask = (1 << slot) - 1; ptp->free = ptp->mask; list_add(&ptp->head, &mmu->ptp.list); } pt->ptp = ptp; pt->sub = true; /* Sub-allocate from parent object, removing PTP from cache * if there's no more free slots left. */ slot = __ffs(ptp->free); ptp->free &= ~BIT(slot); if (!ptp->free) list_del(&ptp->head); pt->memory = pt->ptp->pt->memory; pt->base = slot << ptp->shift; pt->addr = pt->ptp->pt->addr + pt->base; return pt; } struct nvkm_mmu_ptc { struct list_head head; struct list_head item; u32 size; u32 refs; }; static inline struct nvkm_mmu_ptc * nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { if (ptc->size == size) return ptc; } ptc = kmalloc(sizeof(*ptc), GFP_KERNEL); if (ptc) { INIT_LIST_HEAD(&ptc->item); ptc->size = size; ptc->refs = 0; list_add(&ptc->head, &mmu->ptc.list); } return ptc; } void nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt) { struct nvkm_mmu_pt *pt = *ppt; if (pt) { /* Handle sub-allocated page tables. */ if (pt->sub) { mutex_lock(&mmu->ptp.mutex); nvkm_mmu_ptp_put(mmu, force, pt); mutex_unlock(&mmu->ptp.mutex); return; } /* Either cache or free the object. */ mutex_lock(&mmu->ptc.mutex); if (pt->ptc->refs < 8 /* Heuristic. */ && !force) { list_add_tail(&pt->head, &pt->ptc->item); pt->ptc->refs++; } else { nvkm_memory_unref(&pt->memory); kfree(pt); } mutex_unlock(&mmu->ptc.mutex); } } struct nvkm_mmu_pt * nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero) { struct nvkm_mmu_ptc *ptc; struct nvkm_mmu_pt *pt; int ret; /* Sub-allocated page table (ie. GP100 LPT). */ if (align < 0x1000) { mutex_lock(&mmu->ptp.mutex); pt = nvkm_mmu_ptp_get(mmu, align, zero); mutex_unlock(&mmu->ptp.mutex); return pt; } /* Lookup cache for this page table size. */ mutex_lock(&mmu->ptc.mutex); ptc = nvkm_mmu_ptc_find(mmu, size); if (!ptc) { mutex_unlock(&mmu->ptc.mutex); return NULL; } /* If there's a free PT in the cache, reuse it. */ pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head); if (pt) { if (zero) nvkm_fo64(pt->memory, 0, 0, size >> 3); list_del(&pt->head); ptc->refs--; mutex_unlock(&mmu->ptc.mutex); return pt; } mutex_unlock(&mmu->ptc.mutex); /* No such luck, we need to allocate. */ if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL))) return NULL; pt->ptc = ptc; pt->sub = false; ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST, size, align, zero, &pt->memory); if (ret) { kfree(pt); return NULL; } pt->base = 0; pt->addr = nvkm_memory_addr(pt->memory); return pt; } static void nvkm_vm_map_(const struct nvkm_vmm_page *page, struct nvkm_vma *vma, u64 delta, struct nvkm_mem *mem, nvkm_vmm_pte_func fn, struct nvkm_vmm_map *map) { union { struct nv50_vmm_map_v0 nv50; struct gf100_vmm_map_v0 gf100; } args; struct nvkm_vmm *vmm = vma->vm; void *argv = NULL; u32 argc = 0; int ret; map->memory = mem->memory; map->page = page; if (vmm->func->valid) { switch (vmm->mmu->subdev.device->card_type) { case NV_50: args.nv50.version = 0; args.nv50.ro = !(vma->access & NV_MEM_ACCESS_WO); args.nv50.priv = !!(vma->access & NV_MEM_ACCESS_SYS); args.nv50.kind = (mem->memtype & 0x07f); args.nv50.comp = (mem->memtype & 0x180) >> 7; argv = &args.nv50; argc = sizeof(args.nv50); break; case NV_C0: case NV_E0: case GM100: case GP100: { args.gf100.version = 0; args.gf100.vol = (nvkm_memory_target(map->memory) != NVKM_MEM_TARGET_VRAM); args.gf100.ro = !(vma->access & NV_MEM_ACCESS_WO); args.gf100.priv = !!(vma->access & NV_MEM_ACCESS_SYS); args.gf100.kind = (mem->memtype & 0x0ff); argv = &args.gf100; argc = sizeof(args.gf100); } break; default: break; } ret = vmm->func->valid(vmm, argv, argc, map); if (WARN_ON(ret)) return; } mutex_lock(&vmm->mutex); nvkm_vmm_ptes_map(vmm, page, vma->node->addr + delta, vma->node->size, map, fn); mutex_unlock(&vmm->mutex); nvkm_memory_tags_put(vma->node->memory, vmm->mmu->subdev.device, &vma->node->tags); nvkm_memory_unref(&vma->node->memory); vma->node->memory = nvkm_memory_ref(map->memory); vma->node->tags = map->tags; } void nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { struct nvkm_mmu_pt *pt, *tt; list_for_each_entry_safe(pt, tt, &ptc->item, head) { nvkm_memory_unref(&pt->memory); list_del(&pt->head); kfree(pt); } } } static void nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc, *ptct; list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) { WARN_ON(!list_empty(&ptc->item)); list_del(&ptc->head); kfree(ptc); } } static void nvkm_mmu_ptc_init(struct nvkm_mmu *mmu) { mutex_init(&mmu->ptc.mutex); INIT_LIST_HEAD(&mmu->ptc.list); mutex_init(&mmu->ptp.mutex); INIT_LIST_HEAD(&mmu->ptp.list); } void nvkm_vm_map_at(struct nvkm_vma *vma, u64 delta, struct nvkm_mem *node) { const struct nvkm_vmm_page *page = &vma->vm->func->page[vma->node->page]; if (page->desc->func->unmap) { struct nvkm_vmm_map map = { .mem = node->mem }; nvkm_vm_map_(page, vma, delta, node, page->desc->func->mem, &map); return; } } static void nvkm_vm_map_sg_table(struct nvkm_vma *vma, u64 delta, u64 length, struct nvkm_mem *mem) { const struct nvkm_vmm_page *page = &vma->vm->func->page[vma->node->page]; if (page->desc->func->unmap) { struct nvkm_vmm_map map = { .sgl = mem->sg->sgl }; nvkm_vm_map_(page, vma, delta, mem, page->desc->func->sgl, &map); return; } } static void nvkm_vm_map_sg(struct nvkm_vma *vma, u64 delta, u64 length, struct nvkm_mem *mem) { const struct nvkm_vmm_page *page = &vma->vm->func->page[vma->node->page]; if (page->desc->func->unmap) { struct nvkm_vmm_map map = { .dma = mem->pages }; nvkm_vm_map_(page, vma, delta, mem, page->desc->func->dma, &map); return; } } void nvkm_vm_map(struct nvkm_vma *vma, struct nvkm_mem *node) { if (node->sg) nvkm_vm_map_sg_table(vma, 0, node->size << 12, node); else if (node->pages) nvkm_vm_map_sg(vma, 0, node->size << 12, node); else nvkm_vm_map_at(vma, 0, node); } void nvkm_vm_unmap(struct nvkm_vma *vma) { nvkm_vmm_unmap(vma->vm, vma->node); } int nvkm_vm_get(struct nvkm_vm *vm, u64 size, u32 page_shift, u32 access, struct nvkm_vma *vma) { int ret; mutex_lock(&vm->mutex); ret = nvkm_vmm_get_locked(vm, true, false, false, page_shift, 0, size, &vma->node); mutex_unlock(&vm->mutex); if (ret) return ret; vma->memory = NULL; vma->tags = NULL; vma->vm = NULL; nvkm_vm_ref(vm, &vma->vm, NULL); vma->offset = vma->addr = vma->node->addr; vma->access = access; return 0; } void nvkm_vm_put(struct nvkm_vma *vma) { nvkm_vmm_put(vma->vm, &vma->node); nvkm_vm_ref(NULL, &vma->vm, NULL); } int nvkm_vm_boot(struct nvkm_vm *vm, u64 size) { return nvkm_vmm_boot(vm); } int nvkm_vm_new(struct nvkm_device *device, u64 offset, u64 length, u64 mm_offset, struct lock_class_key *key, struct nvkm_vm **pvm) { struct nvkm_mmu *mmu = device->mmu; *pvm = NULL; if (mmu->func->vmm.ctor) { int ret = mmu->func->vmm.ctor(mmu, mm_offset, offset + length - mm_offset, NULL, 0, key, "legacy", pvm); if (ret) { nvkm_vm_ref(NULL, pvm, NULL); return ret; } return ret; } return -EINVAL; } int nvkm_vm_ref(struct nvkm_vm *ref, struct nvkm_vm **ptr, struct nvkm_memory *inst) { if (ref) { if (inst) { int ret = nvkm_vmm_join(ref, inst); if (ret) return ret; } nvkm_vmm_ref(ref); } if (*ptr) { nvkm_vmm_part(*ptr, inst); nvkm_vmm_unref(ptr); } *ptr = ref; return 0; } static void nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type) { if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) { mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type; mmu->type[mmu->type_nr].heap = heap; mmu->type_nr++; } } static int nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size) { if (size) { if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) { mmu->heap[mmu->heap_nr].type = type; mmu->heap[mmu->heap_nr].size = size; return mmu->heap_nr++; } } return -EINVAL; } static void nvkm_mmu_host(struct nvkm_mmu *mmu) { struct nvkm_device *device = mmu->subdev.device; u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys; int heap; /* Non-mappable system memory. */ heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL); nvkm_mmu_type(mmu, heap, type); /* Non-coherent, cached, system memory. * * Block-linear mappings of system memory must be done through * BAR1, and cannot be supported on systems where we're unable * to map BAR1 with write-combining. */ type |= NVKM_MEM_MAPPABLE; if (!device->bar || device->bar->iomap_uncached) nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); else nvkm_mmu_type(mmu, heap, type); /* Coherent, cached, system memory. * * Unsupported on systems that aren't able to support snooped * mappings, and also for block-linear mappings which must be * done through BAR1. */ type |= NVKM_MEM_COHERENT; if (device->func->cpu_coherent) nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); /* Uncached system memory. */ nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED); } static void nvkm_mmu_vram(struct nvkm_mmu *mmu) { struct nvkm_device *device = mmu->subdev.device; struct nvkm_mm *mm = &device->fb->ram->vram; const u32 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL); const u32 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP); const u32 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED); u8 type = NVKM_MEM_KIND * !!mmu->func->kind; u8 heap = NVKM_MEM_VRAM; int heapM, heapN, heapU; /* Mixed-memory doesn't support compression or display. */ heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT); heap |= NVKM_MEM_COMP; heap |= NVKM_MEM_DISP; heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT); heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT); /* Add non-mappable VRAM types first so that they're preferred * over anything else. Mixed-memory will be slower than other * heaps, it's prioritised last. */ nvkm_mmu_type(mmu, heapU, type); nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); /* Add host memory types next, under the assumption that users * wanting mappable memory want to use them as staging buffers * or the like. */ nvkm_mmu_host(mmu); /* Mappable VRAM types go last, as they're basically the worst * possible type to ask for unless there's no other choice. */ if (device->bar) { /* Write-combined BAR1 access. */ type |= NVKM_MEM_MAPPABLE; if (!device->bar->iomap_uncached) { nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); } /* Uncached BAR1 access. */ type |= NVKM_MEM_COHERENT; type |= NVKM_MEM_UNCACHED; nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); } } static int nvkm_mmu_oneinit(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); /* Determine available memory types. */ if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram) nvkm_mmu_vram(mmu); else nvkm_mmu_host(mmu); if (mmu->func->vmm.global) { int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL, "gart", &mmu->vmm); if (ret) return ret; } return 0; } static int nvkm_mmu_init(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); if (mmu->func->init) mmu->func->init(mmu); return 0; } static void * nvkm_mmu_dtor(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); nvkm_vmm_unref(&mmu->vmm); nvkm_mmu_ptc_fini(mmu); return mmu; } static const struct nvkm_subdev_func nvkm_mmu = { .dtor = nvkm_mmu_dtor, .oneinit = nvkm_mmu_oneinit, .init = nvkm_mmu_init, }; void nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device, int index, struct nvkm_mmu *mmu) { nvkm_subdev_ctor(&nvkm_mmu, device, index, &mmu->subdev); mmu->func = func; mmu->limit = func->limit; mmu->dma_bits = func->dma_bits; mmu->lpg_shift = func->lpg_shift; nvkm_mmu_ptc_init(mmu); } int nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device, int index, struct nvkm_mmu **pmmu) { if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL))) return -ENOMEM; nvkm_mmu_ctor(func, device, index, *pmmu); return 0; }