/* * Copyright 2007 Dave Airlied * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * Authors: Dave Airlied * Ben Skeggs * Jeremy Kolb */ #include #include #include "nouveau_drv.h" #include "nouveau_dma.h" #include "nouveau_fence.h" #include "nouveau_bo.h" #include "nouveau_ttm.h" #include "nouveau_gem.h" #include "nouveau_mem.h" #include "nouveau_vmm.h" #include #include #include /* * NV10-NV40 tiling helpers */ static void nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg, u32 addr, u32 size, u32 pitch, u32 flags) { struct nouveau_drm *drm = nouveau_drm(dev); int i = reg - drm->tile.reg; struct nvkm_fb *fb = nvxx_fb(&drm->client.device); struct nvkm_fb_tile *tile = &fb->tile.region[i]; nouveau_fence_unref(®->fence); if (tile->pitch) nvkm_fb_tile_fini(fb, i, tile); if (pitch) nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile); nvkm_fb_tile_prog(fb, i, tile); } static struct nouveau_drm_tile * nv10_bo_get_tile_region(struct drm_device *dev, int i) { struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_drm_tile *tile = &drm->tile.reg[i]; spin_lock(&drm->tile.lock); if (!tile->used && (!tile->fence || nouveau_fence_done(tile->fence))) tile->used = true; else tile = NULL; spin_unlock(&drm->tile.lock); return tile; } static void nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile, struct dma_fence *fence) { struct nouveau_drm *drm = nouveau_drm(dev); if (tile) { spin_lock(&drm->tile.lock); tile->fence = (struct nouveau_fence *)dma_fence_get(fence); tile->used = false; spin_unlock(&drm->tile.lock); } } static struct nouveau_drm_tile * nv10_bo_set_tiling(struct drm_device *dev, u32 addr, u32 size, u32 pitch, u32 zeta) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_fb *fb = nvxx_fb(&drm->client.device); struct nouveau_drm_tile *tile, *found = NULL; int i; for (i = 0; i < fb->tile.regions; i++) { tile = nv10_bo_get_tile_region(dev, i); if (pitch && !found) { found = tile; continue; } else if (tile && fb->tile.region[i].pitch) { /* Kill an unused tile region. */ nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0); } nv10_bo_put_tile_region(dev, tile, NULL); } if (found) nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta); return found; } static void nouveau_bo_del_ttm(struct ttm_buffer_object *bo) { struct nouveau_drm *drm = nouveau_bdev(bo->bdev); struct drm_device *dev = drm->dev; struct nouveau_bo *nvbo = nouveau_bo(bo); if (unlikely(nvbo->gem.filp)) DRM_ERROR("bo %p still attached to GEM object\n", bo); WARN_ON(nvbo->pin_refcnt > 0); nv10_bo_put_tile_region(dev, nvbo->tile, NULL); kfree(nvbo); } static inline u64 roundup_64(u64 x, u32 y) { x += y - 1; do_div(x, y); return x * y; } static void nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags, int *align, u64 *size) { struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); struct nvif_device *device = &drm->client.device; if (device->info.family < NV_DEVICE_INFO_V0_TESLA) { if (nvbo->mode) { if (device->info.chipset >= 0x40) { *align = 65536; *size = roundup_64(*size, 64 * nvbo->mode); } else if (device->info.chipset >= 0x30) { *align = 32768; *size = roundup_64(*size, 64 * nvbo->mode); } else if (device->info.chipset >= 0x20) { *align = 16384; *size = roundup_64(*size, 64 * nvbo->mode); } else if (device->info.chipset >= 0x10) { *align = 16384; *size = roundup_64(*size, 32 * nvbo->mode); } } } else { *size = roundup_64(*size, (1 << nvbo->page)); *align = max((1 << nvbo->page), *align); } *size = roundup_64(*size, PAGE_SIZE); } int nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align, uint32_t flags, uint32_t tile_mode, uint32_t tile_flags, struct sg_table *sg, struct reservation_object *robj, struct nouveau_bo **pnvbo) { struct nouveau_drm *drm = cli->drm; struct nouveau_bo *nvbo; struct nvif_mmu *mmu = &cli->mmu; struct nvif_vmm *vmm = &cli->vmm.vmm; size_t acc_size; int type = ttm_bo_type_device; int ret, i, pi = -1; if (!size) { NV_WARN(drm, "skipped size %016llx\n", size); return -EINVAL; } if (sg) type = ttm_bo_type_sg; nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); if (!nvbo) return -ENOMEM; INIT_LIST_HEAD(&nvbo->head); INIT_LIST_HEAD(&nvbo->entry); INIT_LIST_HEAD(&nvbo->vma_list); nvbo->bo.bdev = &drm->ttm.bdev; /* This is confusing, and doesn't actually mean we want an uncached * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated * into in nouveau_gem_new(). */ if (flags & TTM_PL_FLAG_UNCACHED) { /* Determine if we can get a cache-coherent map, forcing * uncached mapping if we can't. */ if (!nouveau_drm_use_coherent_gpu_mapping(drm)) nvbo->force_coherent = true; } if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) { nvbo->kind = (tile_flags & 0x0000ff00) >> 8; if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { kfree(nvbo); return -EINVAL; } nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind; } else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { nvbo->kind = (tile_flags & 0x00007f00) >> 8; nvbo->comp = (tile_flags & 0x00030000) >> 16; if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { kfree(nvbo); return -EINVAL; } } else { nvbo->zeta = (tile_flags & 0x00000007); } nvbo->mode = tile_mode; nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG); /* Determine the desirable target GPU page size for the buffer. */ for (i = 0; i < vmm->page_nr; i++) { /* Because we cannot currently allow VMM maps to fail * during buffer migration, we need to determine page * size for the buffer up-front, and pre-allocate its * page tables. * * Skip page sizes that can't support needed domains. */ if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE && (flags & TTM_PL_FLAG_VRAM) && !vmm->page[i].vram) continue; if ((flags & TTM_PL_FLAG_TT) && (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) continue; /* Select this page size if it's the first that supports * the potential memory domains, or when it's compatible * with the requested compression settings. */ if (pi < 0 || !nvbo->comp || vmm->page[i].comp) pi = i; /* Stop once the buffer is larger than the current page size. */ if (size >= 1ULL << vmm->page[i].shift) break; } if (WARN_ON(pi < 0)) return -EINVAL; /* Disable compression if suitable settings couldn't be found. */ if (nvbo->comp && !vmm->page[pi].comp) { if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100) nvbo->kind = mmu->kind[nvbo->kind]; nvbo->comp = 0; } nvbo->page = vmm->page[pi].shift; nouveau_bo_fixup_align(nvbo, flags, &align, &size); nvbo->bo.mem.num_pages = size >> PAGE_SHIFT; nouveau_bo_placement_set(nvbo, flags, 0); acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size, sizeof(struct nouveau_bo)); ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size, type, &nvbo->placement, align >> PAGE_SHIFT, false, acc_size, sg, robj, nouveau_bo_del_ttm); if (ret) { /* ttm will call nouveau_bo_del_ttm if it fails.. */ return ret; } *pnvbo = nvbo; return 0; } static void set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags) { *n = 0; if (type & TTM_PL_FLAG_VRAM) pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags; if (type & TTM_PL_FLAG_TT) pl[(*n)++].flags = TTM_PL_FLAG_TT | flags; if (type & TTM_PL_FLAG_SYSTEM) pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags; } static void set_placement_range(struct nouveau_bo *nvbo, uint32_t type) { struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT; unsigned i, fpfn, lpfn; if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && nvbo->mode && (type & TTM_PL_FLAG_VRAM) && nvbo->bo.mem.num_pages < vram_pages / 4) { /* * Make sure that the color and depth buffers are handled * by independent memory controller units. Up to a 9x * speed up when alpha-blending and depth-test are enabled * at the same time. */ if (nvbo->zeta) { fpfn = vram_pages / 2; lpfn = ~0; } else { fpfn = 0; lpfn = vram_pages / 2; } for (i = 0; i < nvbo->placement.num_placement; ++i) { nvbo->placements[i].fpfn = fpfn; nvbo->placements[i].lpfn = lpfn; } for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { nvbo->busy_placements[i].fpfn = fpfn; nvbo->busy_placements[i].lpfn = lpfn; } } } void nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy) { struct ttm_placement *pl = &nvbo->placement; uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED : TTM_PL_MASK_CACHING) | (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0); pl->placement = nvbo->placements; set_placement_list(nvbo->placements, &pl->num_placement, type, flags); pl->busy_placement = nvbo->busy_placements; set_placement_list(nvbo->busy_placements, &pl->num_busy_placement, type | busy, flags); set_placement_range(nvbo, type); } int nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig) { struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); struct ttm_buffer_object *bo = &nvbo->bo; bool force = false, evict = false; int ret; ret = ttm_bo_reserve(bo, false, false, NULL); if (ret) return ret; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && memtype == TTM_PL_FLAG_VRAM && contig) { if (!nvbo->contig) { nvbo->contig = true; force = true; evict = true; } } if (nvbo->pin_refcnt) { if (!(memtype & (1 << bo->mem.mem_type)) || evict) { NV_ERROR(drm, "bo %p pinned elsewhere: " "0x%08x vs 0x%08x\n", bo, 1 << bo->mem.mem_type, memtype); ret = -EBUSY; } nvbo->pin_refcnt++; goto out; } if (evict) { nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0); ret = nouveau_bo_validate(nvbo, false, false); if (ret) goto out; } nvbo->pin_refcnt++; nouveau_bo_placement_set(nvbo, memtype, 0); /* drop pin_refcnt temporarily, so we don't trip the assertion * in nouveau_bo_move() that makes sure we're not trying to * move a pinned buffer */ nvbo->pin_refcnt--; ret = nouveau_bo_validate(nvbo, false, false); if (ret) goto out; nvbo->pin_refcnt++; switch (bo->mem.mem_type) { case TTM_PL_VRAM: drm->gem.vram_available -= bo->mem.size; break; case TTM_PL_TT: drm->gem.gart_available -= bo->mem.size; break; default: break; } out: if (force && ret) nvbo->contig = false; ttm_bo_unreserve(bo); return ret; } int nouveau_bo_unpin(struct nouveau_bo *nvbo) { struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); struct ttm_buffer_object *bo = &nvbo->bo; int ret, ref; ret = ttm_bo_reserve(bo, false, false, NULL); if (ret) return ret; ref = --nvbo->pin_refcnt; WARN_ON_ONCE(ref < 0); if (ref) goto out; nouveau_bo_placement_set(nvbo, bo->mem.placement, 0); ret = nouveau_bo_validate(nvbo, false, false); if (ret == 0) { switch (bo->mem.mem_type) { case TTM_PL_VRAM: drm->gem.vram_available += bo->mem.size; break; case TTM_PL_TT: drm->gem.gart_available += bo->mem.size; break; default: break; } } out: ttm_bo_unreserve(bo); return ret; } int nouveau_bo_map(struct nouveau_bo *nvbo) { int ret; ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL); if (ret) return ret; ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap); ttm_bo_unreserve(&nvbo->bo); return ret; } void nouveau_bo_unmap(struct nouveau_bo *nvbo) { if (!nvbo) return; ttm_bo_kunmap(&nvbo->kmap); } void nouveau_bo_sync_for_device(struct nouveau_bo *nvbo) { struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm; int i; if (!ttm_dma) return; /* Don't waste time looping if the object is coherent */ if (nvbo->force_coherent) return; for (i = 0; i < ttm_dma->ttm.num_pages; i++) dma_sync_single_for_device(drm->dev->dev, ttm_dma->dma_address[i], PAGE_SIZE, DMA_TO_DEVICE); } void nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo) { struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm; int i; if (!ttm_dma) return; /* Don't waste time looping if the object is coherent */ if (nvbo->force_coherent) return; for (i = 0; i < ttm_dma->ttm.num_pages; i++) dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i], PAGE_SIZE, DMA_FROM_DEVICE); } int nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible, bool no_wait_gpu) { struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu }; int ret; ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx); if (ret) return ret; nouveau_bo_sync_for_device(nvbo); return 0; } void nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val) { bool is_iomem; u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); mem += index; if (is_iomem) iowrite16_native(val, (void __force __iomem *)mem); else *mem = val; } u32 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index) { bool is_iomem; u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); mem += index; if (is_iomem) return ioread32_native((void __force __iomem *)mem); else return *mem; } void nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val) { bool is_iomem; u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); mem += index; if (is_iomem) iowrite32_native(val, (void __force __iomem *)mem); else *mem = val; } static struct ttm_tt * nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) { #if IS_ENABLED(CONFIG_AGP) struct nouveau_drm *drm = nouveau_bdev(bo->bdev); if (drm->agp.bridge) { return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags); } #endif return nouveau_sgdma_create_ttm(bo, page_flags); } static int nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) { /* We'll do this from user space. */ return 0; } static int nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, struct ttm_mem_type_manager *man) { struct nouveau_drm *drm = nouveau_bdev(bdev); struct nvif_mmu *mmu = &drm->client.mmu; switch (type) { case TTM_PL_SYSTEM: man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; break; case TTM_PL_VRAM: man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; man->default_caching = TTM_PL_FLAG_WC; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) { /* Some BARs do not support being ioremapped WC */ const u8 type = mmu->type[drm->ttm.type_vram].type; if (type & NVIF_MEM_UNCACHED) { man->available_caching = TTM_PL_FLAG_UNCACHED; man->default_caching = TTM_PL_FLAG_UNCACHED; } man->func = &nouveau_vram_manager; man->io_reserve_fastpath = false; man->use_io_reserve_lru = true; } else { man->func = &ttm_bo_manager_func; } break; case TTM_PL_TT: if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) man->func = &nouveau_gart_manager; else if (!drm->agp.bridge) man->func = &nv04_gart_manager; else man->func = &ttm_bo_manager_func; if (drm->agp.bridge) { man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; man->default_caching = TTM_PL_FLAG_WC; } else { man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; } break; default: return -EINVAL; } return 0; } static void nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl) { struct nouveau_bo *nvbo = nouveau_bo(bo); switch (bo->mem.mem_type) { case TTM_PL_VRAM: nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, TTM_PL_FLAG_SYSTEM); break; default: nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0); break; } *pl = nvbo->placement; } static int nve0_bo_move_init(struct nouveau_channel *chan, u32 handle) { int ret = RING_SPACE(chan, 2); if (ret == 0) { BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1); OUT_RING (chan, handle & 0x0000ffff); FIRE_RING (chan); } return ret; } static int nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = nouveau_mem(old_reg); int ret = RING_SPACE(chan, 10); if (ret == 0) { BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8); OUT_RING (chan, upper_32_bits(mem->vma[0].addr)); OUT_RING (chan, lower_32_bits(mem->vma[0].addr)); OUT_RING (chan, upper_32_bits(mem->vma[1].addr)); OUT_RING (chan, lower_32_bits(mem->vma[1].addr)); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, new_reg->num_pages); BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386); } return ret; } static int nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle) { int ret = RING_SPACE(chan, 2); if (ret == 0) { BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1); OUT_RING (chan, handle); } return ret; } static int nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = nouveau_mem(old_reg); u64 src_offset = mem->vma[0].addr; u64 dst_offset = mem->vma[1].addr; u32 page_count = new_reg->num_pages; int ret; page_count = new_reg->num_pages; while (page_count) { int line_count = (page_count > 8191) ? 8191 : page_count; ret = RING_SPACE(chan, 11); if (ret) return ret; BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8); OUT_RING (chan, upper_32_bits(src_offset)); OUT_RING (chan, lower_32_bits(src_offset)); OUT_RING (chan, upper_32_bits(dst_offset)); OUT_RING (chan, lower_32_bits(dst_offset)); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, line_count); BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1); OUT_RING (chan, 0x00000110); page_count -= line_count; src_offset += (PAGE_SIZE * line_count); dst_offset += (PAGE_SIZE * line_count); } return 0; } static int nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = nouveau_mem(old_reg); u64 src_offset = mem->vma[0].addr; u64 dst_offset = mem->vma[1].addr; u32 page_count = new_reg->num_pages; int ret; page_count = new_reg->num_pages; while (page_count) { int line_count = (page_count > 2047) ? 2047 : page_count; ret = RING_SPACE(chan, 12); if (ret) return ret; BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2); OUT_RING (chan, upper_32_bits(dst_offset)); OUT_RING (chan, lower_32_bits(dst_offset)); BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6); OUT_RING (chan, upper_32_bits(src_offset)); OUT_RING (chan, lower_32_bits(src_offset)); OUT_RING (chan, PAGE_SIZE); /* src_pitch */ OUT_RING (chan, PAGE_SIZE); /* dst_pitch */ OUT_RING (chan, PAGE_SIZE); /* line_length */ OUT_RING (chan, line_count); BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1); OUT_RING (chan, 0x00100110); page_count -= line_count; src_offset += (PAGE_SIZE * line_count); dst_offset += (PAGE_SIZE * line_count); } return 0; } static int nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = nouveau_mem(old_reg); u64 src_offset = mem->vma[0].addr; u64 dst_offset = mem->vma[1].addr; u32 page_count = new_reg->num_pages; int ret; page_count = new_reg->num_pages; while (page_count) { int line_count = (page_count > 8191) ? 8191 : page_count; ret = RING_SPACE(chan, 11); if (ret) return ret; BEGIN_NV04(chan, NvSubCopy, 0x030c, 8); OUT_RING (chan, upper_32_bits(src_offset)); OUT_RING (chan, lower_32_bits(src_offset)); OUT_RING (chan, upper_32_bits(dst_offset)); OUT_RING (chan, lower_32_bits(dst_offset)); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, line_count); BEGIN_NV04(chan, NvSubCopy, 0x0300, 1); OUT_RING (chan, 0x00000110); page_count -= line_count; src_offset += (PAGE_SIZE * line_count); dst_offset += (PAGE_SIZE * line_count); } return 0; } static int nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = nouveau_mem(old_reg); int ret = RING_SPACE(chan, 7); if (ret == 0) { BEGIN_NV04(chan, NvSubCopy, 0x0320, 6); OUT_RING (chan, upper_32_bits(mem->vma[0].addr)); OUT_RING (chan, lower_32_bits(mem->vma[0].addr)); OUT_RING (chan, upper_32_bits(mem->vma[1].addr)); OUT_RING (chan, lower_32_bits(mem->vma[1].addr)); OUT_RING (chan, 0x00000000 /* COPY */); OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT); } return ret; } static int nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = nouveau_mem(old_reg); int ret = RING_SPACE(chan, 7); if (ret == 0) { BEGIN_NV04(chan, NvSubCopy, 0x0304, 6); OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT); OUT_RING (chan, upper_32_bits(mem->vma[0].addr)); OUT_RING (chan, lower_32_bits(mem->vma[0].addr)); OUT_RING (chan, upper_32_bits(mem->vma[1].addr)); OUT_RING (chan, lower_32_bits(mem->vma[1].addr)); OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */); } return ret; } static int nv50_bo_move_init(struct nouveau_channel *chan, u32 handle) { int ret = RING_SPACE(chan, 6); if (ret == 0) { BEGIN_NV04(chan, NvSubCopy, 0x0000, 1); OUT_RING (chan, handle); BEGIN_NV04(chan, NvSubCopy, 0x0180, 3); OUT_RING (chan, chan->drm->ntfy.handle); OUT_RING (chan, chan->vram.handle); OUT_RING (chan, chan->vram.handle); } return ret; } static int nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = nouveau_mem(old_reg); u64 length = (new_reg->num_pages << PAGE_SHIFT); u64 src_offset = mem->vma[0].addr; u64 dst_offset = mem->vma[1].addr; int src_tiled = !!mem->kind; int dst_tiled = !!nouveau_mem(new_reg)->kind; int ret; while (length) { u32 amount, stride, height; ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled)); if (ret) return ret; amount = min(length, (u64)(4 * 1024 * 1024)); stride = 16 * 4; height = amount / stride; if (src_tiled) { BEGIN_NV04(chan, NvSubCopy, 0x0200, 7); OUT_RING (chan, 0); OUT_RING (chan, 0); OUT_RING (chan, stride); OUT_RING (chan, height); OUT_RING (chan, 1); OUT_RING (chan, 0); OUT_RING (chan, 0); } else { BEGIN_NV04(chan, NvSubCopy, 0x0200, 1); OUT_RING (chan, 1); } if (dst_tiled) { BEGIN_NV04(chan, NvSubCopy, 0x021c, 7); OUT_RING (chan, 0); OUT_RING (chan, 0); OUT_RING (chan, stride); OUT_RING (chan, height); OUT_RING (chan, 1); OUT_RING (chan, 0); OUT_RING (chan, 0); } else { BEGIN_NV04(chan, NvSubCopy, 0x021c, 1); OUT_RING (chan, 1); } BEGIN_NV04(chan, NvSubCopy, 0x0238, 2); OUT_RING (chan, upper_32_bits(src_offset)); OUT_RING (chan, upper_32_bits(dst_offset)); BEGIN_NV04(chan, NvSubCopy, 0x030c, 8); OUT_RING (chan, lower_32_bits(src_offset)); OUT_RING (chan, lower_32_bits(dst_offset)); OUT_RING (chan, stride); OUT_RING (chan, stride); OUT_RING (chan, stride); OUT_RING (chan, height); OUT_RING (chan, 0x00000101); OUT_RING (chan, 0x00000000); BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1); OUT_RING (chan, 0); length -= amount; src_offset += amount; dst_offset += amount; } return 0; } static int nv04_bo_move_init(struct nouveau_channel *chan, u32 handle) { int ret = RING_SPACE(chan, 4); if (ret == 0) { BEGIN_NV04(chan, NvSubCopy, 0x0000, 1); OUT_RING (chan, handle); BEGIN_NV04(chan, NvSubCopy, 0x0180, 1); OUT_RING (chan, chan->drm->ntfy.handle); } return ret; } static inline uint32_t nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo, struct nouveau_channel *chan, struct ttm_mem_reg *reg) { if (reg->mem_type == TTM_PL_TT) return NvDmaTT; return chan->vram.handle; } static int nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo, struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg) { u32 src_offset = old_reg->start << PAGE_SHIFT; u32 dst_offset = new_reg->start << PAGE_SHIFT; u32 page_count = new_reg->num_pages; int ret; ret = RING_SPACE(chan, 3); if (ret) return ret; BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2); OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_reg)); OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_reg)); page_count = new_reg->num_pages; while (page_count) { int line_count = (page_count > 2047) ? 2047 : page_count; ret = RING_SPACE(chan, 11); if (ret) return ret; BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8); OUT_RING (chan, src_offset); OUT_RING (chan, dst_offset); OUT_RING (chan, PAGE_SIZE); /* src_pitch */ OUT_RING (chan, PAGE_SIZE); /* dst_pitch */ OUT_RING (chan, PAGE_SIZE); /* line_length */ OUT_RING (chan, line_count); OUT_RING (chan, 0x00000101); OUT_RING (chan, 0x00000000); BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1); OUT_RING (chan, 0); page_count -= line_count; src_offset += (PAGE_SIZE * line_count); dst_offset += (PAGE_SIZE * line_count); } return 0; } static int nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo, struct ttm_mem_reg *reg) { struct nouveau_mem *old_mem = nouveau_mem(&bo->mem); struct nouveau_mem *new_mem = nouveau_mem(reg); struct nvif_vmm *vmm = &drm->client.vmm.vmm; int ret; ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0, old_mem->mem.size, &old_mem->vma[0]); if (ret) return ret; ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0, new_mem->mem.size, &old_mem->vma[1]); if (ret) goto done; ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]); if (ret) goto done; ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]); done: if (ret) { nvif_vmm_put(vmm, &old_mem->vma[1]); nvif_vmm_put(vmm, &old_mem->vma[0]); } return 0; } static int nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr, bool no_wait_gpu, struct ttm_mem_reg *new_reg) { struct nouveau_drm *drm = nouveau_bdev(bo->bdev); struct nouveau_channel *chan = drm->ttm.chan; struct nouveau_cli *cli = (void *)chan->user.client; struct nouveau_fence *fence; int ret; /* create temporary vmas for the transfer and attach them to the * old nvkm_mem node, these will get cleaned up after ttm has * destroyed the ttm_mem_reg */ if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) { ret = nouveau_bo_move_prep(drm, bo, new_reg); if (ret) return ret; } mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING); ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr); if (ret == 0) { ret = drm->ttm.move(chan, bo, &bo->mem, new_reg); if (ret == 0) { ret = nouveau_fence_new(chan, false, &fence); if (ret == 0) { ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, new_reg); nouveau_fence_unref(&fence); } } } mutex_unlock(&cli->mutex); return ret; } void nouveau_bo_move_init(struct nouveau_drm *drm) { static const struct { const char *name; int engine; s32 oclass; int (*exec)(struct nouveau_channel *, struct ttm_buffer_object *, struct ttm_mem_reg *, struct ttm_mem_reg *); int (*init)(struct nouveau_channel *, u32 handle); } _methods[] = { { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init }, { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init }, { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init }, { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init }, { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init }, { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init }, { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init }, { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init }, { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init }, { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init }, { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init }, { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init }, { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init }, { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init }, { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init }, { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init }, { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init }, { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init }, { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init }, {}, { "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init }, }, *mthd = _methods; const char *name = "CPU"; int ret; do { struct nouveau_channel *chan; if (mthd->engine) chan = drm->cechan; else chan = drm->channel; if (chan == NULL) continue; ret = nvif_object_init(&chan->user, mthd->oclass | (mthd->engine << 16), mthd->oclass, NULL, 0, &drm->ttm.copy); if (ret == 0) { ret = mthd->init(chan, drm->ttm.copy.handle); if (ret) { nvif_object_fini(&drm->ttm.copy); continue; } drm->ttm.move = mthd->exec; drm->ttm.chan = chan; name = mthd->name; break; } } while ((++mthd)->exec); NV_INFO(drm, "MM: using %s for buffer copies\n", name); } static int nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr, bool no_wait_gpu, struct ttm_mem_reg *new_reg) { struct ttm_operation_ctx ctx = { intr, no_wait_gpu }; struct ttm_place placement_memtype = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING }; struct ttm_placement placement; struct ttm_mem_reg tmp_reg; int ret; placement.num_placement = placement.num_busy_placement = 1; placement.placement = placement.busy_placement = &placement_memtype; tmp_reg = *new_reg; tmp_reg.mm_node = NULL; ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx); if (ret) return ret; ret = ttm_tt_bind(bo->ttm, &tmp_reg, &ctx); if (ret) goto out; ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_reg); if (ret) goto out; ret = ttm_bo_move_ttm(bo, &ctx, new_reg); out: ttm_bo_mem_put(bo, &tmp_reg); return ret; } static int nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr, bool no_wait_gpu, struct ttm_mem_reg *new_reg) { struct ttm_operation_ctx ctx = { intr, no_wait_gpu }; struct ttm_place placement_memtype = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING }; struct ttm_placement placement; struct ttm_mem_reg tmp_reg; int ret; placement.num_placement = placement.num_busy_placement = 1; placement.placement = placement.busy_placement = &placement_memtype; tmp_reg = *new_reg; tmp_reg.mm_node = NULL; ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx); if (ret) return ret; ret = ttm_bo_move_ttm(bo, &ctx, &tmp_reg); if (ret) goto out; ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_reg); if (ret) goto out; out: ttm_bo_mem_put(bo, &tmp_reg); return ret; } static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict, struct ttm_mem_reg *new_reg) { struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL; struct nouveau_bo *nvbo = nouveau_bo(bo); struct nouveau_vma *vma; /* ttm can now (stupidly) pass the driver bos it didn't create... */ if (bo->destroy != nouveau_bo_del_ttm) return; if (mem && new_reg->mem_type != TTM_PL_SYSTEM && mem->mem.page == nvbo->page) { list_for_each_entry(vma, &nvbo->vma_list, head) { nouveau_vma_map(vma, mem); } } else { list_for_each_entry(vma, &nvbo->vma_list, head) { WARN_ON(ttm_bo_wait(bo, false, false)); nouveau_vma_unmap(vma); } } } static int nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_reg, struct nouveau_drm_tile **new_tile) { struct nouveau_drm *drm = nouveau_bdev(bo->bdev); struct drm_device *dev = drm->dev; struct nouveau_bo *nvbo = nouveau_bo(bo); u64 offset = new_reg->start << PAGE_SHIFT; *new_tile = NULL; if (new_reg->mem_type != TTM_PL_VRAM) return 0; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { *new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size, nvbo->mode, nvbo->zeta); } return 0; } static void nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo, struct nouveau_drm_tile *new_tile, struct nouveau_drm_tile **old_tile) { struct nouveau_drm *drm = nouveau_bdev(bo->bdev); struct drm_device *dev = drm->dev; struct dma_fence *fence = reservation_object_get_excl(bo->resv); nv10_bo_put_tile_region(dev, *old_tile, fence); *old_tile = new_tile; } static int nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_mem_reg *new_reg) { struct nouveau_drm *drm = nouveau_bdev(bo->bdev); struct nouveau_bo *nvbo = nouveau_bo(bo); struct ttm_mem_reg *old_reg = &bo->mem; struct nouveau_drm_tile *new_tile = NULL; int ret = 0; ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); if (ret) return ret; if (nvbo->pin_refcnt) NV_WARN(drm, "Moving pinned object %p!\n", nvbo); if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile); if (ret) return ret; } /* Fake bo copy. */ if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) { BUG_ON(bo->mem.mm_node != NULL); bo->mem = *new_reg; new_reg->mm_node = NULL; goto out; } /* Hardware assisted copy. */ if (drm->ttm.move) { if (new_reg->mem_type == TTM_PL_SYSTEM) ret = nouveau_bo_move_flipd(bo, evict, ctx->interruptible, ctx->no_wait_gpu, new_reg); else if (old_reg->mem_type == TTM_PL_SYSTEM) ret = nouveau_bo_move_flips(bo, evict, ctx->interruptible, ctx->no_wait_gpu, new_reg); else ret = nouveau_bo_move_m2mf(bo, evict, ctx->interruptible, ctx->no_wait_gpu, new_reg); if (!ret) goto out; } /* Fallback to software copy. */ ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); if (ret == 0) ret = ttm_bo_move_memcpy(bo, ctx, new_reg); out: if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { if (ret) nouveau_bo_vm_cleanup(bo, NULL, &new_tile); else nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile); } return ret; } static int nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp) { struct nouveau_bo *nvbo = nouveau_bo(bo); return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp->private_data); } static int nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg) { struct ttm_mem_type_manager *man = &bdev->man[reg->mem_type]; struct nouveau_drm *drm = nouveau_bdev(bdev); struct nvkm_device *device = nvxx_device(&drm->client.device); struct nouveau_mem *mem = nouveau_mem(reg); reg->bus.addr = NULL; reg->bus.offset = 0; reg->bus.size = reg->num_pages << PAGE_SHIFT; reg->bus.base = 0; reg->bus.is_iomem = false; if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) return -EINVAL; switch (reg->mem_type) { case TTM_PL_SYSTEM: /* System memory */ return 0; case TTM_PL_TT: #if IS_ENABLED(CONFIG_AGP) if (drm->agp.bridge) { reg->bus.offset = reg->start << PAGE_SHIFT; reg->bus.base = drm->agp.base; reg->bus.is_iomem = !drm->agp.cma; } #endif if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || !mem->kind) /* untiled */ break; /* fall through - tiled memory */ case TTM_PL_VRAM: reg->bus.offset = reg->start << PAGE_SHIFT; reg->bus.base = device->func->resource_addr(device, 1); reg->bus.is_iomem = true; if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { union { struct nv50_mem_map_v0 nv50; struct gf100_mem_map_v0 gf100; } args; u64 handle, length; u32 argc = 0; int ret; switch (mem->mem.object.oclass) { case NVIF_CLASS_MEM_NV50: args.nv50.version = 0; args.nv50.ro = 0; args.nv50.kind = mem->kind; args.nv50.comp = mem->comp; argc = sizeof(args.nv50); break; case NVIF_CLASS_MEM_GF100: args.gf100.version = 0; args.gf100.ro = 0; args.gf100.kind = mem->kind; argc = sizeof(args.gf100); break; default: WARN_ON(1); break; } ret = nvif_object_map_handle(&mem->mem.object, &args, argc, &handle, &length); if (ret != 1) return ret ? ret : -EINVAL; reg->bus.base = 0; reg->bus.offset = handle; } break; default: return -EINVAL; } return 0; } static void nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg) { struct nouveau_drm *drm = nouveau_bdev(bdev); struct nouveau_mem *mem = nouveau_mem(reg); if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { switch (reg->mem_type) { case TTM_PL_TT: if (mem->kind) nvif_object_unmap_handle(&mem->mem.object); break; case TTM_PL_VRAM: nvif_object_unmap_handle(&mem->mem.object); break; default: break; } } } static int nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) { struct nouveau_drm *drm = nouveau_bdev(bo->bdev); struct nouveau_bo *nvbo = nouveau_bo(bo); struct nvkm_device *device = nvxx_device(&drm->client.device); u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT; int i, ret; /* as long as the bo isn't in vram, and isn't tiled, we've got * nothing to do here. */ if (bo->mem.mem_type != TTM_PL_VRAM) { if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA || !nvbo->kind) return 0; if (bo->mem.mem_type == TTM_PL_SYSTEM) { nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0); ret = nouveau_bo_validate(nvbo, false, false); if (ret) return ret; } return 0; } /* make sure bo is in mappable vram */ if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA || bo->mem.start + bo->mem.num_pages < mappable) return 0; for (i = 0; i < nvbo->placement.num_placement; ++i) { nvbo->placements[i].fpfn = 0; nvbo->placements[i].lpfn = mappable; } for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { nvbo->busy_placements[i].fpfn = 0; nvbo->busy_placements[i].lpfn = mappable; } nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0); return nouveau_bo_validate(nvbo, false, false); } static int nouveau_ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) { struct ttm_dma_tt *ttm_dma = (void *)ttm; struct nouveau_drm *drm; struct device *dev; unsigned i; int r; bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); if (ttm->state != tt_unpopulated) return 0; if (slave && ttm->sg) { /* make userspace faulting work */ drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, ttm_dma->dma_address, ttm->num_pages); ttm->state = tt_unbound; return 0; } drm = nouveau_bdev(ttm->bdev); dev = drm->dev->dev; #if IS_ENABLED(CONFIG_AGP) if (drm->agp.bridge) { return ttm_agp_tt_populate(ttm, ctx); } #endif #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86) if (swiotlb_nr_tbl()) { return ttm_dma_populate((void *)ttm, dev, ctx); } #endif r = ttm_pool_populate(ttm, ctx); if (r) { return r; } for (i = 0; i < ttm->num_pages; i++) { dma_addr_t addr; addr = dma_map_page(dev, ttm->pages[i], 0, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, addr)) { while (i--) { dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE, DMA_BIDIRECTIONAL); ttm_dma->dma_address[i] = 0; } ttm_pool_unpopulate(ttm); return -EFAULT; } ttm_dma->dma_address[i] = addr; } return 0; } static void nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm) { struct ttm_dma_tt *ttm_dma = (void *)ttm; struct nouveau_drm *drm; struct device *dev; unsigned i; bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); if (slave) return; drm = nouveau_bdev(ttm->bdev); dev = drm->dev->dev; #if IS_ENABLED(CONFIG_AGP) if (drm->agp.bridge) { ttm_agp_tt_unpopulate(ttm); return; } #endif #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86) if (swiotlb_nr_tbl()) { ttm_dma_unpopulate((void *)ttm, dev); return; } #endif for (i = 0; i < ttm->num_pages; i++) { if (ttm_dma->dma_address[i]) { dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE, DMA_BIDIRECTIONAL); } } ttm_pool_unpopulate(ttm); } void nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive) { struct reservation_object *resv = nvbo->bo.resv; if (exclusive) reservation_object_add_excl_fence(resv, &fence->base); else if (fence) reservation_object_add_shared_fence(resv, &fence->base); } struct ttm_bo_driver nouveau_bo_driver = { .ttm_tt_create = &nouveau_ttm_tt_create, .ttm_tt_populate = &nouveau_ttm_tt_populate, .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate, .invalidate_caches = nouveau_bo_invalidate_caches, .init_mem_type = nouveau_bo_init_mem_type, .eviction_valuable = ttm_bo_eviction_valuable, .evict_flags = nouveau_bo_evict_flags, .move_notify = nouveau_bo_move_ntfy, .move = nouveau_bo_move, .verify_access = nouveau_bo_verify_access, .fault_reserve_notify = &nouveau_ttm_fault_reserve_notify, .io_mem_reserve = &nouveau_ttm_io_mem_reserve, .io_mem_free = &nouveau_ttm_io_mem_free, };