/* * Copyright 2005-2006 Erik Waling * Copyright 2006 Stephane Marchesin * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "drmP.h" #define NV_DEBUG_NOTRACE #include "nouveau_drv.h" #include "nouveau_hw.h" #include "nouveau_encoder.h" #include /* these defines are made up */ #define NV_CIO_CRE_44_HEADA 0x0 #define NV_CIO_CRE_44_HEADB 0x3 #define FEATURE_MOBILE 0x10 /* also FEATURE_QUADRO for BMP */ #define LEGACY_I2C_CRT 0x80 #define LEGACY_I2C_PANEL 0x81 #define LEGACY_I2C_TV 0x82 #define EDID1_LEN 128 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg) #define LOG_OLD_VALUE(x) #define ROM16(x) le16_to_cpu(*(uint16_t *)&(x)) #define ROM32(x) le32_to_cpu(*(uint32_t *)&(x)) struct init_exec { bool execute; bool repeat; }; static bool nv_cksum(const uint8_t *data, unsigned int length) { /* * There's a few checksums in the BIOS, so here's a generic checking * function. */ int i; uint8_t sum = 0; for (i = 0; i < length; i++) sum += data[i]; if (sum) return true; return false; } static int score_vbios(struct drm_device *dev, const uint8_t *data, const bool writeable) { if (!(data[0] == 0x55 && data[1] == 0xAA)) { NV_TRACEWARN(dev, "... BIOS signature not found\n"); return 0; } if (nv_cksum(data, data[2] * 512)) { NV_TRACEWARN(dev, "... BIOS checksum invalid\n"); /* if a ro image is somewhat bad, it's probably all rubbish */ return writeable ? 2 : 1; } else NV_TRACE(dev, "... appears to be valid\n"); return 3; } static void load_vbios_prom(struct drm_device *dev, uint8_t *data) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t pci_nv_20, save_pci_nv_20; int pcir_ptr; int i; if (dev_priv->card_type >= NV_50) pci_nv_20 = 0x88050; else pci_nv_20 = NV_PBUS_PCI_NV_20; /* enable ROM access */ save_pci_nv_20 = nvReadMC(dev, pci_nv_20); nvWriteMC(dev, pci_nv_20, save_pci_nv_20 & ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED); /* bail if no rom signature */ if (nv_rd08(dev, NV_PROM_OFFSET) != 0x55 || nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa) goto out; /* additional check (see note below) - read PCI record header */ pcir_ptr = nv_rd08(dev, NV_PROM_OFFSET + 0x18) | nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8; if (nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr) != 'P' || nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 1) != 'C' || nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 2) != 'I' || nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 3) != 'R') goto out; /* on some 6600GT/6800LE prom reads are messed up. nvclock alleges a * a good read may be obtained by waiting or re-reading (cargocult: 5x) * each byte. we'll hope pramin has something usable instead */ for (i = 0; i < NV_PROM_SIZE; i++) data[i] = nv_rd08(dev, NV_PROM_OFFSET + i); out: /* disable ROM access */ nvWriteMC(dev, pci_nv_20, save_pci_nv_20 | NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED); } static void load_vbios_pramin(struct drm_device *dev, uint8_t *data) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t old_bar0_pramin = 0; int i; if (dev_priv->card_type >= NV_50) { uint32_t vbios_vram = (nv_rd32(dev, 0x619f04) & ~0xff) << 8; if (!vbios_vram) vbios_vram = (nv_rd32(dev, 0x1700) << 16) + 0xf0000; old_bar0_pramin = nv_rd32(dev, 0x1700); nv_wr32(dev, 0x1700, vbios_vram >> 16); } /* bail if no rom signature */ if (nv_rd08(dev, NV_PRAMIN_OFFSET) != 0x55 || nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa) goto out; for (i = 0; i < NV_PROM_SIZE; i++) data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i); out: if (dev_priv->card_type >= NV_50) nv_wr32(dev, 0x1700, old_bar0_pramin); } static void load_vbios_pci(struct drm_device *dev, uint8_t *data) { void __iomem *rom = NULL; size_t rom_len; int ret; ret = pci_enable_rom(dev->pdev); if (ret) return; rom = pci_map_rom(dev->pdev, &rom_len); if (!rom) goto out; memcpy_fromio(data, rom, rom_len); pci_unmap_rom(dev->pdev, rom); out: pci_disable_rom(dev->pdev); } static void load_vbios_acpi(struct drm_device *dev, uint8_t *data) { int i; int ret; int size = 64 * 1024; if (!nouveau_acpi_rom_supported(dev->pdev)) return; for (i = 0; i < (size / ROM_BIOS_PAGE); i++) { ret = nouveau_acpi_get_bios_chunk(data, (i * ROM_BIOS_PAGE), ROM_BIOS_PAGE); if (ret <= 0) break; } return; } struct methods { const char desc[8]; void (*loadbios)(struct drm_device *, uint8_t *); const bool rw; }; static struct methods shadow_methods[] = { { "PRAMIN", load_vbios_pramin, true }, { "PROM", load_vbios_prom, false }, { "PCIROM", load_vbios_pci, true }, { "ACPI", load_vbios_acpi, true }, }; #define NUM_SHADOW_METHODS ARRAY_SIZE(shadow_methods) static bool NVShadowVBIOS(struct drm_device *dev, uint8_t *data) { struct methods *methods = shadow_methods; int testscore = 3; int scores[NUM_SHADOW_METHODS], i; if (nouveau_vbios) { for (i = 0; i < NUM_SHADOW_METHODS; i++) if (!strcasecmp(nouveau_vbios, methods[i].desc)) break; if (i < NUM_SHADOW_METHODS) { NV_INFO(dev, "Attempting to use BIOS image from %s\n", methods[i].desc); methods[i].loadbios(dev, data); if (score_vbios(dev, data, methods[i].rw)) return true; } NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios); } for (i = 0; i < NUM_SHADOW_METHODS; i++) { NV_TRACE(dev, "Attempting to load BIOS image from %s\n", methods[i].desc); data[0] = data[1] = 0; /* avoid reuse of previous image */ methods[i].loadbios(dev, data); scores[i] = score_vbios(dev, data, methods[i].rw); if (scores[i] == testscore) return true; } while (--testscore > 0) { for (i = 0; i < NUM_SHADOW_METHODS; i++) { if (scores[i] == testscore) { NV_TRACE(dev, "Using BIOS image from %s\n", methods[i].desc); methods[i].loadbios(dev, data); return true; } } } NV_ERROR(dev, "No valid BIOS image found\n"); return false; } struct init_tbl_entry { char *name; uint8_t id; /* Return: * > 0: success, length of opcode * 0: success, but abort further parsing of table (INIT_DONE etc) * < 0: failure, table parsing will be aborted */ int (*handler)(struct nvbios *, uint16_t, struct init_exec *); }; struct bit_entry { uint8_t id[2]; uint16_t length; uint16_t offset; }; static int parse_init_table(struct nvbios *, unsigned int, struct init_exec *); #define MACRO_INDEX_SIZE 2 #define MACRO_SIZE 8 #define CONDITION_SIZE 12 #define IO_FLAG_CONDITION_SIZE 9 #define IO_CONDITION_SIZE 5 #define MEM_INIT_SIZE 66 static void still_alive(void) { #if 0 sync(); msleep(2); #endif } static uint32_t munge_reg(struct nvbios *bios, uint32_t reg) { struct drm_nouveau_private *dev_priv = bios->dev->dev_private; struct dcb_entry *dcbent = bios->display.output; if (dev_priv->card_type < NV_50) return reg; if (reg & 0x40000000) { BUG_ON(!dcbent); reg += (ffs(dcbent->or) - 1) * 0x800; if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1)) reg += 0x00000080; } reg &= ~0x60000000; return reg; } static int valid_reg(struct nvbios *bios, uint32_t reg) { struct drm_nouveau_private *dev_priv = bios->dev->dev_private; struct drm_device *dev = bios->dev; /* C51 has misaligned regs on purpose. Marvellous */ if (reg & 0x2 || (reg & 0x1 && dev_priv->vbios.chip_version != 0x51)) NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg); /* warn on C51 regs that haven't been verified accessible in tracing */ if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 && reg != 0x130d && reg != 0x1311 && reg != 0x60081d) NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n", reg); if (reg >= (8*1024*1024)) { NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg); return 0; } return 1; } static bool valid_idx_port(struct nvbios *bios, uint16_t port) { struct drm_nouveau_private *dev_priv = bios->dev->dev_private; struct drm_device *dev = bios->dev; /* * If adding more ports here, the read/write functions below will need * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is * used for the port in question */ if (dev_priv->card_type < NV_50) { if (port == NV_CIO_CRX__COLOR) return true; if (port == NV_VIO_SRX) return true; } else { if (port == NV_CIO_CRX__COLOR) return true; } NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n", port); return false; } static bool valid_port(struct nvbios *bios, uint16_t port) { struct drm_device *dev = bios->dev; /* * If adding more ports here, the read/write functions below will need * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is * used for the port in question */ if (port == NV_VIO_VSE2) return true; NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port); return false; } static uint32_t bios_rd32(struct nvbios *bios, uint32_t reg) { uint32_t data; reg = munge_reg(bios, reg); if (!valid_reg(bios, reg)) return 0; /* * C51 sometimes uses regs with bit0 set in the address. For these * cases there should exist a translation in a BIOS table to an IO * port address which the BIOS uses for accessing the reg * * These only seem to appear for the power control regs to a flat panel, * and the GPIO regs at 0x60081*. In C51 mmio traces the normal regs * for 0x1308 and 0x1310 are used - hence the mask below. An S3 * suspend-resume mmio trace from a C51 will be required to see if this * is true for the power microcode in 0x14.., or whether the direct IO * port access method is needed */ if (reg & 0x1) reg &= ~0x1; data = nv_rd32(bios->dev, reg); BIOSLOG(bios, " Read: Reg: 0x%08X, Data: 0x%08X\n", reg, data); return data; } static void bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data) { struct drm_nouveau_private *dev_priv = bios->dev->dev_private; reg = munge_reg(bios, reg); if (!valid_reg(bios, reg)) return; /* see note in bios_rd32 */ if (reg & 0x1) reg &= 0xfffffffe; LOG_OLD_VALUE(bios_rd32(bios, reg)); BIOSLOG(bios, " Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data); if (dev_priv->vbios.execute) { still_alive(); nv_wr32(bios->dev, reg, data); } } static uint8_t bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index) { struct drm_nouveau_private *dev_priv = bios->dev->dev_private; struct drm_device *dev = bios->dev; uint8_t data; if (!valid_idx_port(bios, port)) return 0; if (dev_priv->card_type < NV_50) { if (port == NV_VIO_SRX) data = NVReadVgaSeq(dev, bios->state.crtchead, index); else /* assume NV_CIO_CRX__COLOR */ data = NVReadVgaCrtc(dev, bios->state.crtchead, index); } else { uint32_t data32; data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3)); data = (data32 >> ((index & 3) << 3)) & 0xff; } BIOSLOG(bios, " Indexed IO read: Port: 0x%04X, Index: 0x%02X, " "Head: 0x%02X, Data: 0x%02X\n", port, index, bios->state.crtchead, data); return data; } static void bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data) { struct drm_nouveau_private *dev_priv = bios->dev->dev_private; struct drm_device *dev = bios->dev; if (!valid_idx_port(bios, port)) return; /* * The current head is maintained in the nvbios member state.crtchead. * We trap changes to CR44 and update the head variable and hence the * register set written. * As CR44 only exists on CRTC0, we update crtchead to head0 in advance * of the write, and to head1 after the write */ if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 && data != NV_CIO_CRE_44_HEADB) bios->state.crtchead = 0; LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index)); BIOSLOG(bios, " Indexed IO write: Port: 0x%04X, Index: 0x%02X, " "Head: 0x%02X, Data: 0x%02X\n", port, index, bios->state.crtchead, data); if (bios->execute && dev_priv->card_type < NV_50) { still_alive(); if (port == NV_VIO_SRX) NVWriteVgaSeq(dev, bios->state.crtchead, index, data); else /* assume NV_CIO_CRX__COLOR */ NVWriteVgaCrtc(dev, bios->state.crtchead, index, data); } else if (bios->execute) { uint32_t data32, shift = (index & 3) << 3; still_alive(); data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3)); data32 &= ~(0xff << shift); data32 |= (data << shift); bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32); } if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB) bios->state.crtchead = 1; } static uint8_t bios_port_rd(struct nvbios *bios, uint16_t port) { uint8_t data, head = bios->state.crtchead; if (!valid_port(bios, port)) return 0; data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port); BIOSLOG(bios, " IO read: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n", port, head, data); return data; } static void bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data) { int head = bios->state.crtchead; if (!valid_port(bios, port)) return; LOG_OLD_VALUE(bios_port_rd(bios, port)); BIOSLOG(bios, " IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n", port, head, data); if (!bios->execute) return; still_alive(); NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data); } static bool io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) { /* * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte * for the CRTC index; 1 byte for the mask to apply to the value * retrieved from the CRTC; 1 byte for the shift right to apply to the * masked CRTC value; 2 bytes for the offset to the flag array, to * which the shifted value is added; 1 byte for the mask applied to the * value read from the flag array; and 1 byte for the value to compare * against the masked byte from the flag table. */ uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE; uint16_t crtcport = ROM16(bios->data[condptr]); uint8_t crtcindex = bios->data[condptr + 2]; uint8_t mask = bios->data[condptr + 3]; uint8_t shift = bios->data[condptr + 4]; uint16_t flagarray = ROM16(bios->data[condptr + 5]); uint8_t flagarraymask = bios->data[condptr + 7]; uint8_t cmpval = bios->data[condptr + 8]; uint8_t data; BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, " "Cmpval: 0x%02X\n", offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval); data = bios_idxprt_rd(bios, crtcport, crtcindex); data = bios->data[flagarray + ((data & mask) >> shift)]; data &= flagarraymask; BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n", offset, data, cmpval); return (data == cmpval); } static bool bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) { /* * The condition table entry has 4 bytes for the address of the * register to check, 4 bytes for a mask to apply to the register and * 4 for a test comparison value */ uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE; uint32_t reg = ROM32(bios->data[condptr]); uint32_t mask = ROM32(bios->data[condptr + 4]); uint32_t cmpval = ROM32(bios->data[condptr + 8]); uint32_t data; BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n", offset, cond, reg, mask); data = bios_rd32(bios, reg) & mask; BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n", offset, data, cmpval); return (data == cmpval); } static bool io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) { /* * The IO condition entry has 2 bytes for the IO port address; 1 byte * for the index to write to io_port; 1 byte for the mask to apply to * the byte read from io_port+1; and 1 byte for the value to compare * against the masked byte. */ uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE; uint16_t io_port = ROM16(bios->data[condptr]); uint8_t port_index = bios->data[condptr + 2]; uint8_t mask = bios->data[condptr + 3]; uint8_t cmpval = bios->data[condptr + 4]; uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask; BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n", offset, data, cmpval); return (data == cmpval); } static int nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t reg0 = nv_rd32(dev, reg + 0); uint32_t reg1 = nv_rd32(dev, reg + 4); struct nouveau_pll_vals pll; struct pll_lims pll_limits; int ret; ret = get_pll_limits(dev, reg, &pll_limits); if (ret) return ret; clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll); if (!clk) return -ERANGE; reg0 = (reg0 & 0xfff8ffff) | (pll.log2P << 16); reg1 = (reg1 & 0xffff0000) | (pll.N1 << 8) | pll.M1; if (dev_priv->vbios.execute) { still_alive(); nv_wr32(dev, reg + 4, reg1); nv_wr32(dev, reg + 0, reg0); } return 0; } static int setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk) { struct drm_device *dev = bios->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; /* clk in kHz */ struct pll_lims pll_lim; struct nouveau_pll_vals pllvals; int ret; if (dev_priv->card_type >= NV_50) return nv50_pll_set(dev, reg, clk); /* high regs (such as in the mac g5 table) are not -= 4 */ ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim); if (ret) return ret; clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals); if (!clk) return -ERANGE; if (bios->execute) { still_alive(); nouveau_hw_setpll(dev, reg, &pllvals); } return 0; } static int dcb_entry_idx_from_crtchead(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; /* * For the results of this function to be correct, CR44 must have been * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0, * and the DCB table parsed, before the script calling the function is * run. run_digital_op_script is example of how to do such setup */ uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0); if (dcb_entry > bios->dcb.entries) { NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently " "(%02X)\n", dcb_entry); dcb_entry = 0x7f; /* unused / invalid marker */ } return dcb_entry; } static int read_dcb_i2c_entry(struct drm_device *dev, int dcb_version, uint8_t *i2ctable, int index, struct dcb_i2c_entry *i2c) { uint8_t dcb_i2c_ver = dcb_version, headerlen = 0, entry_len = 4; int i2c_entries = DCB_MAX_NUM_I2C_ENTRIES; int recordoffset = 0, rdofs = 1, wrofs = 0; uint8_t port_type = 0; if (!i2ctable) return -EINVAL; if (dcb_version >= 0x30) { if (i2ctable[0] != dcb_version) /* necessary? */ NV_WARN(dev, "DCB I2C table version mismatch (%02X vs %02X)\n", i2ctable[0], dcb_version); dcb_i2c_ver = i2ctable[0]; headerlen = i2ctable[1]; if (i2ctable[2] <= DCB_MAX_NUM_I2C_ENTRIES) i2c_entries = i2ctable[2]; else NV_WARN(dev, "DCB I2C table has more entries than indexable " "(%d entries, max %d)\n", i2ctable[2], DCB_MAX_NUM_I2C_ENTRIES); entry_len = i2ctable[3]; /* [4] is i2c_default_indices, read in parse_dcb_table() */ } /* * It's your own fault if you call this function on a DCB 1.1 BIOS -- * the test below is for DCB 1.2 */ if (dcb_version < 0x14) { recordoffset = 2; rdofs = 0; wrofs = 1; } if (index == 0xf) return 0; if (index >= i2c_entries) { NV_ERROR(dev, "DCB I2C index too big (%d >= %d)\n", index, i2ctable[2]); return -ENOENT; } if (i2ctable[headerlen + entry_len * index + 3] == 0xff) { NV_ERROR(dev, "DCB I2C entry invalid\n"); return -EINVAL; } if (dcb_i2c_ver >= 0x30) { port_type = i2ctable[headerlen + recordoffset + 3 + entry_len * index]; /* * Fixup for chips using same address offset for read and * write. */ if (port_type == 4) /* seen on C51 */ rdofs = wrofs = 1; if (port_type >= 5) /* G80+ */ rdofs = wrofs = 0; } if (dcb_i2c_ver >= 0x40) { if (port_type != 5 && port_type != 6) NV_WARN(dev, "DCB I2C table has port type %d\n", port_type); i2c->entry = ROM32(i2ctable[headerlen + recordoffset + entry_len * index]); } i2c->port_type = port_type; i2c->read = i2ctable[headerlen + recordoffset + rdofs + entry_len * index]; i2c->write = i2ctable[headerlen + recordoffset + wrofs + entry_len * index]; return 0; } static struct nouveau_i2c_chan * init_i2c_device_find(struct drm_device *dev, int i2c_index) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct dcb_table *dcb = &dev_priv->vbios.dcb; if (i2c_index == 0xff) { /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */ int idx = dcb_entry_idx_from_crtchead(dev), shift = 0; int default_indices = dcb->i2c_default_indices; if (idx != 0x7f && dcb->entry[idx].i2c_upper_default) shift = 4; i2c_index = (default_indices >> shift) & 0xf; } if (i2c_index == 0x80) /* g80+ */ i2c_index = dcb->i2c_default_indices & 0xf; else if (i2c_index == 0x81) i2c_index = (dcb->i2c_default_indices & 0xf0) >> 4; if (i2c_index >= DCB_MAX_NUM_I2C_ENTRIES) { NV_ERROR(dev, "invalid i2c_index 0x%x\n", i2c_index); return NULL; } /* Make sure i2c table entry has been parsed, it may not * have been if this is a bus not referenced by a DCB encoder */ read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table, i2c_index, &dcb->i2c[i2c_index]); return nouveau_i2c_find(dev, i2c_index); } static uint32_t get_tmds_index_reg(struct drm_device *dev, uint8_t mlv) { /* * For mlv < 0x80, it is an index into a table of TMDS base addresses. * For mlv == 0x80 use the "or" value of the dcb_entry indexed by * CR58 for CR57 = 0 to index a table of offsets to the basic * 0x6808b0 address. * For mlv == 0x81 use the "or" value of the dcb_entry indexed by * CR58 for CR57 = 0 to index a table of offsets to the basic * 0x6808b0 address, and then flip the offset by 8. */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; const int pramdac_offset[13] = { 0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 }; const uint32_t pramdac_table[4] = { 0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 }; if (mlv >= 0x80) { int dcb_entry, dacoffset; /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */ dcb_entry = dcb_entry_idx_from_crtchead(dev); if (dcb_entry == 0x7f) return 0; dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or]; if (mlv == 0x81) dacoffset ^= 8; return 0x6808b0 + dacoffset; } else { if (mlv >= ARRAY_SIZE(pramdac_table)) { NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n", mlv); return 0; } return pramdac_table[mlv]; } } static int init_io_restrict_prog(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_IO_RESTRICT_PROG opcode: 0x32 ('2') * * offset (8 bit): opcode * offset + 1 (16 bit): CRTC port * offset + 3 (8 bit): CRTC index * offset + 4 (8 bit): mask * offset + 5 (8 bit): shift * offset + 6 (8 bit): count * offset + 7 (32 bit): register * offset + 11 (32 bit): configuration 1 * ... * * Starting at offset + 11 there are "count" 32 bit values. * To find out which value to use read index "CRTC index" on "CRTC * port", AND this value with "mask" and then bit shift right "shift" * bits. Read the appropriate value using this index and write to * "register" */ uint16_t crtcport = ROM16(bios->data[offset + 1]); uint8_t crtcindex = bios->data[offset + 3]; uint8_t mask = bios->data[offset + 4]; uint8_t shift = bios->data[offset + 5]; uint8_t count = bios->data[offset + 6]; uint32_t reg = ROM32(bios->data[offset + 7]); uint8_t config; uint32_t configval; int len = 11 + count * 4; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n", offset, crtcport, crtcindex, mask, shift, count, reg); config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; if (config > count) { NV_ERROR(bios->dev, "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", offset, config, count); return len; } configval = ROM32(bios->data[offset + 11 + config * 4]); BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config); bios_wr32(bios, reg, configval); return len; } static int init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_REPEAT opcode: 0x33 ('3') * * offset (8 bit): opcode * offset + 1 (8 bit): count * * Execute script following this opcode up to INIT_REPEAT_END * "count" times */ uint8_t count = bios->data[offset + 1]; uint8_t i; /* no iexec->execute check by design */ BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n", offset, count); iexec->repeat = true; /* * count - 1, as the script block will execute once when we leave this * opcode -- this is compatible with bios behaviour as: * a) the block is always executed at least once, even if count == 0 * b) the bios interpreter skips to the op following INIT_END_REPEAT, * while we don't */ for (i = 0; i < count - 1; i++) parse_init_table(bios, offset + 2, iexec); iexec->repeat = false; return 2; } static int init_io_restrict_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_IO_RESTRICT_PLL opcode: 0x34 ('4') * * offset (8 bit): opcode * offset + 1 (16 bit): CRTC port * offset + 3 (8 bit): CRTC index * offset + 4 (8 bit): mask * offset + 5 (8 bit): shift * offset + 6 (8 bit): IO flag condition index * offset + 7 (8 bit): count * offset + 8 (32 bit): register * offset + 12 (16 bit): frequency 1 * ... * * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz). * Set PLL register "register" to coefficients for frequency n, * selected by reading index "CRTC index" of "CRTC port" ANDed with * "mask" and shifted right by "shift". * * If "IO flag condition index" > 0, and condition met, double * frequency before setting it. */ uint16_t crtcport = ROM16(bios->data[offset + 1]); uint8_t crtcindex = bios->data[offset + 3]; uint8_t mask = bios->data[offset + 4]; uint8_t shift = bios->data[offset + 5]; int8_t io_flag_condition_idx = bios->data[offset + 6]; uint8_t count = bios->data[offset + 7]; uint32_t reg = ROM32(bios->data[offset + 8]); uint8_t config; uint16_t freq; int len = 12 + count * 2; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " "Shift: 0x%02X, IO Flag Condition: 0x%02X, " "Count: 0x%02X, Reg: 0x%08X\n", offset, crtcport, crtcindex, mask, shift, io_flag_condition_idx, count, reg); config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; if (config > count) { NV_ERROR(bios->dev, "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", offset, config, count); return len; } freq = ROM16(bios->data[offset + 12 + config * 2]); if (io_flag_condition_idx > 0) { if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) { BIOSLOG(bios, "0x%04X: Condition fulfilled -- " "frequency doubled\n", offset); freq *= 2; } else BIOSLOG(bios, "0x%04X: Condition not fulfilled -- " "frequency unchanged\n", offset); } BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n", offset, reg, config, freq); setPLL(bios, reg, freq * 10); return len; } static int init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_END_REPEAT opcode: 0x36 ('6') * * offset (8 bit): opcode * * Marks the end of the block for INIT_REPEAT to repeat */ /* no iexec->execute check by design */ /* * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when * we're not in repeat mode */ if (iexec->repeat) return 0; return 1; } static int init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_COPY opcode: 0x37 ('7') * * offset (8 bit): opcode * offset + 1 (32 bit): register * offset + 5 (8 bit): shift * offset + 6 (8 bit): srcmask * offset + 7 (16 bit): CRTC port * offset + 9 (8 bit): CRTC index * offset + 10 (8 bit): mask * * Read index "CRTC index" on "CRTC port", AND with "mask", OR with * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC * port */ uint32_t reg = ROM32(bios->data[offset + 1]); uint8_t shift = bios->data[offset + 5]; uint8_t srcmask = bios->data[offset + 6]; uint16_t crtcport = ROM16(bios->data[offset + 7]); uint8_t crtcindex = bios->data[offset + 9]; uint8_t mask = bios->data[offset + 10]; uint32_t data; uint8_t crtcdata; if (!iexec->execute) return 11; BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, " "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n", offset, reg, shift, srcmask, crtcport, crtcindex, mask); data = bios_rd32(bios, reg); if (shift < 0x80) data >>= shift; else data <<= (0x100 - shift); data &= srcmask; crtcdata = bios_idxprt_rd(bios, crtcport, crtcindex) & mask; crtcdata |= (uint8_t)data; bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata); return 11; } static int init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_NOT opcode: 0x38 ('8') * * offset (8 bit): opcode * * Invert the current execute / no-execute condition (i.e. "else") */ if (iexec->execute) BIOSLOG(bios, "0x%04X: ------ Skipping following commands ------\n", offset); else BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset); iexec->execute = !iexec->execute; return 1; } static int init_io_flag_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_IO_FLAG_CONDITION opcode: 0x39 ('9') * * offset (8 bit): opcode * offset + 1 (8 bit): condition number * * Check condition "condition number" in the IO flag condition table. * If condition not met skip subsequent opcodes until condition is * inverted (INIT_NOT), or we hit INIT_RESUME */ uint8_t cond = bios->data[offset + 1]; if (!iexec->execute) return 2; if (io_flag_condition_met(bios, offset, cond)) BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); else { BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); iexec->execute = false; } return 2; } static int init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_DP_CONDITION opcode: 0x3A ('') * * offset (8 bit): opcode * offset + 1 (8 bit): "sub" opcode * offset + 2 (8 bit): unknown * */ struct bit_displayport_encoder_table *dpe = NULL; struct dcb_entry *dcb = bios->display.output; struct drm_device *dev = bios->dev; uint8_t cond = bios->data[offset + 1]; int dummy; BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond); if (!iexec->execute) return 3; dpe = nouveau_bios_dp_table(dev, dcb, &dummy); if (!dpe) { NV_ERROR(dev, "0x%04X: INIT_3A: no encoder table!!\n", offset); return 3; } switch (cond) { case 0: { struct dcb_connector_table_entry *ent = &bios->dcb.connector.entry[dcb->connector]; if (ent->type != DCB_CONNECTOR_eDP) iexec->execute = false; } break; case 1: case 2: if (!(dpe->unknown & cond)) iexec->execute = false; break; case 5: { struct nouveau_i2c_chan *auxch; int ret; auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index); if (!auxch) { NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset); return 3; } ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1); if (ret) { NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret); return 3; } if (cond & 1) iexec->execute = false; } break; default: NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond); break; } if (iexec->execute) BIOSLOG(bios, "0x%04X: continuing to execute\n", offset); else BIOSLOG(bios, "0x%04X: skipping following commands\n", offset); return 3; } static int init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_3B opcode: 0x3B ('') * * offset (8 bit): opcode * offset + 1 (8 bit): crtc index * */ uint8_t or = ffs(bios->display.output->or) - 1; uint8_t index = bios->data[offset + 1]; uint8_t data; if (!iexec->execute) return 2; data = bios_idxprt_rd(bios, 0x3d4, index); bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or)); return 2; } static int init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_3C opcode: 0x3C ('') * * offset (8 bit): opcode * offset + 1 (8 bit): crtc index * */ uint8_t or = ffs(bios->display.output->or) - 1; uint8_t index = bios->data[offset + 1]; uint8_t data; if (!iexec->execute) return 2; data = bios_idxprt_rd(bios, 0x3d4, index); bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or)); return 2; } static int init_idx_addr_latched(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_INDEX_ADDRESS_LATCHED opcode: 0x49 ('I') * * offset (8 bit): opcode * offset + 1 (32 bit): control register * offset + 5 (32 bit): data register * offset + 9 (32 bit): mask * offset + 13 (32 bit): data * offset + 17 (8 bit): count * offset + 18 (8 bit): address 1 * offset + 19 (8 bit): data 1 * ... * * For each of "count" address and data pairs, write "data n" to * "data register", read the current value of "control register", * and write it back once ANDed with "mask", ORed with "data", * and ORed with "address n" */ uint32_t controlreg = ROM32(bios->data[offset + 1]); uint32_t datareg = ROM32(bios->data[offset + 5]); uint32_t mask = ROM32(bios->data[offset + 9]); uint32_t data = ROM32(bios->data[offset + 13]); uint8_t count = bios->data[offset + 17]; int len = 18 + count * 2; uint32_t value; int i; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, " "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n", offset, controlreg, datareg, mask, data, count); for (i = 0; i < count; i++) { uint8_t instaddress = bios->data[offset + 18 + i * 2]; uint8_t instdata = bios->data[offset + 19 + i * 2]; BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n", offset, instaddress, instdata); bios_wr32(bios, datareg, instdata); value = bios_rd32(bios, controlreg) & mask; value |= data; value |= instaddress; bios_wr32(bios, controlreg, value); } return len; } static int init_io_restrict_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_IO_RESTRICT_PLL2 opcode: 0x4A ('J') * * offset (8 bit): opcode * offset + 1 (16 bit): CRTC port * offset + 3 (8 bit): CRTC index * offset + 4 (8 bit): mask * offset + 5 (8 bit): shift * offset + 6 (8 bit): count * offset + 7 (32 bit): register * offset + 11 (32 bit): frequency 1 * ... * * Starting at offset + 11 there are "count" 32 bit frequencies (kHz). * Set PLL register "register" to coefficients for frequency n, * selected by reading index "CRTC index" of "CRTC port" ANDed with * "mask" and shifted right by "shift". */ uint16_t crtcport = ROM16(bios->data[offset + 1]); uint8_t crtcindex = bios->data[offset + 3]; uint8_t mask = bios->data[offset + 4]; uint8_t shift = bios->data[offset + 5]; uint8_t count = bios->data[offset + 6]; uint32_t reg = ROM32(bios->data[offset + 7]); int len = 11 + count * 4; uint8_t config; uint32_t freq; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n", offset, crtcport, crtcindex, mask, shift, count, reg); if (!reg) return len; config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; if (config > count) { NV_ERROR(bios->dev, "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", offset, config, count); return len; } freq = ROM32(bios->data[offset + 11 + config * 4]); BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n", offset, reg, config, freq); setPLL(bios, reg, freq); return len; } static int init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_PLL2 opcode: 0x4B ('K') * * offset (8 bit): opcode * offset + 1 (32 bit): register * offset + 5 (32 bit): freq * * Set PLL register "register" to coefficients for frequency "freq" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint32_t freq = ROM32(bios->data[offset + 5]); if (!iexec->execute) return 9; BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n", offset, reg, freq); setPLL(bios, reg, freq); return 9; } static int init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_I2C_BYTE opcode: 0x4C ('L') * * offset (8 bit): opcode * offset + 1 (8 bit): DCB I2C table entry index * offset + 2 (8 bit): I2C slave address * offset + 3 (8 bit): count * offset + 4 (8 bit): I2C register 1 * offset + 5 (8 bit): mask 1 * offset + 6 (8 bit): data 1 * ... * * For each of "count" registers given by "I2C register n" on the device * addressed by "I2C slave address" on the I2C bus given by * "DCB I2C table entry index", read the register, AND the result with * "mask n" and OR it with "data n" before writing it back to the device */ struct drm_device *dev = bios->dev; uint8_t i2c_index = bios->data[offset + 1]; uint8_t i2c_address = bios->data[offset + 2] >> 1; uint8_t count = bios->data[offset + 3]; struct nouveau_i2c_chan *chan; int len = 4 + count * 3; int ret, i; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " "Count: 0x%02X\n", offset, i2c_index, i2c_address, count); chan = init_i2c_device_find(dev, i2c_index); if (!chan) { NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); return len; } for (i = 0; i < count; i++) { uint8_t reg = bios->data[offset + 4 + i * 3]; uint8_t mask = bios->data[offset + 5 + i * 3]; uint8_t data = bios->data[offset + 6 + i * 3]; union i2c_smbus_data val; ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, I2C_SMBUS_READ, reg, I2C_SMBUS_BYTE_DATA, &val); if (ret < 0) { NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret); return len; } BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, " "Mask: 0x%02X, Data: 0x%02X\n", offset, reg, val.byte, mask, data); if (!bios->execute) continue; val.byte &= mask; val.byte |= data; ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, I2C_SMBUS_WRITE, reg, I2C_SMBUS_BYTE_DATA, &val); if (ret < 0) { NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); return len; } } return len; } static int init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_I2C_BYTE opcode: 0x4D ('M') * * offset (8 bit): opcode * offset + 1 (8 bit): DCB I2C table entry index * offset + 2 (8 bit): I2C slave address * offset + 3 (8 bit): count * offset + 4 (8 bit): I2C register 1 * offset + 5 (8 bit): data 1 * ... * * For each of "count" registers given by "I2C register n" on the device * addressed by "I2C slave address" on the I2C bus given by * "DCB I2C table entry index", set the register to "data n" */ struct drm_device *dev = bios->dev; uint8_t i2c_index = bios->data[offset + 1]; uint8_t i2c_address = bios->data[offset + 2] >> 1; uint8_t count = bios->data[offset + 3]; struct nouveau_i2c_chan *chan; int len = 4 + count * 2; int ret, i; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " "Count: 0x%02X\n", offset, i2c_index, i2c_address, count); chan = init_i2c_device_find(dev, i2c_index); if (!chan) { NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); return len; } for (i = 0; i < count; i++) { uint8_t reg = bios->data[offset + 4 + i * 2]; union i2c_smbus_data val; val.byte = bios->data[offset + 5 + i * 2]; BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n", offset, reg, val.byte); if (!bios->execute) continue; ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, I2C_SMBUS_WRITE, reg, I2C_SMBUS_BYTE_DATA, &val); if (ret < 0) { NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); return len; } } return len; } static int init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_I2C opcode: 0x4E ('N') * * offset (8 bit): opcode * offset + 1 (8 bit): DCB I2C table entry index * offset + 2 (8 bit): I2C slave address * offset + 3 (8 bit): count * offset + 4 (8 bit): data 1 * ... * * Send "count" bytes ("data n") to the device addressed by "I2C slave * address" on the I2C bus given by "DCB I2C table entry index" */ struct drm_device *dev = bios->dev; uint8_t i2c_index = bios->data[offset + 1]; uint8_t i2c_address = bios->data[offset + 2] >> 1; uint8_t count = bios->data[offset + 3]; int len = 4 + count; struct nouveau_i2c_chan *chan; struct i2c_msg msg; uint8_t data[256]; int ret, i; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " "Count: 0x%02X\n", offset, i2c_index, i2c_address, count); chan = init_i2c_device_find(dev, i2c_index); if (!chan) { NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); return len; } for (i = 0; i < count; i++) { data[i] = bios->data[offset + 4 + i]; BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]); } if (bios->execute) { msg.addr = i2c_address; msg.flags = 0; msg.len = count; msg.buf = data; ret = i2c_transfer(&chan->adapter, &msg, 1); if (ret != 1) { NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); return len; } } return len; } static int init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_TMDS opcode: 0x4F ('O') (non-canon name) * * offset (8 bit): opcode * offset + 1 (8 bit): magic lookup value * offset + 2 (8 bit): TMDS address * offset + 3 (8 bit): mask * offset + 4 (8 bit): data * * Read the data reg for TMDS address "TMDS address", AND it with mask * and OR it with data, then write it back * "magic lookup value" determines which TMDS base address register is * used -- see get_tmds_index_reg() */ struct drm_device *dev = bios->dev; uint8_t mlv = bios->data[offset + 1]; uint32_t tmdsaddr = bios->data[offset + 2]; uint8_t mask = bios->data[offset + 3]; uint8_t data = bios->data[offset + 4]; uint32_t reg, value; if (!iexec->execute) return 5; BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, " "Mask: 0x%02X, Data: 0x%02X\n", offset, mlv, tmdsaddr, mask, data); reg = get_tmds_index_reg(bios->dev, mlv); if (!reg) { NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset); return 5; } bios_wr32(bios, reg, tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE); value = (bios_rd32(bios, reg + 4) & mask) | data; bios_wr32(bios, reg + 4, value); bios_wr32(bios, reg, tmdsaddr); return 5; } static int init_zm_tmds_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_TMDS_GROUP opcode: 0x50 ('P') (non-canon name) * * offset (8 bit): opcode * offset + 1 (8 bit): magic lookup value * offset + 2 (8 bit): count * offset + 3 (8 bit): addr 1 * offset + 4 (8 bit): data 1 * ... * * For each of "count" TMDS address and data pairs write "data n" to * "addr n". "magic lookup value" determines which TMDS base address * register is used -- see get_tmds_index_reg() */ struct drm_device *dev = bios->dev; uint8_t mlv = bios->data[offset + 1]; uint8_t count = bios->data[offset + 2]; int len = 3 + count * 2; uint32_t reg; int i; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n", offset, mlv, count); reg = get_tmds_index_reg(bios->dev, mlv); if (!reg) { NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset); return len; } for (i = 0; i < count; i++) { uint8_t tmdsaddr = bios->data[offset + 3 + i * 2]; uint8_t tmdsdata = bios->data[offset + 4 + i * 2]; bios_wr32(bios, reg + 4, tmdsdata); bios_wr32(bios, reg, tmdsaddr); } return len; } static int init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_CR_INDEX_ADDRESS_LATCHED opcode: 0x51 ('Q') * * offset (8 bit): opcode * offset + 1 (8 bit): CRTC index1 * offset + 2 (8 bit): CRTC index2 * offset + 3 (8 bit): baseaddr * offset + 4 (8 bit): count * offset + 5 (8 bit): data 1 * ... * * For each of "count" address and data pairs, write "baseaddr + n" to * "CRTC index1" and "data n" to "CRTC index2" * Once complete, restore initial value read from "CRTC index1" */ uint8_t crtcindex1 = bios->data[offset + 1]; uint8_t crtcindex2 = bios->data[offset + 2]; uint8_t baseaddr = bios->data[offset + 3]; uint8_t count = bios->data[offset + 4]; int len = 5 + count; uint8_t oldaddr, data; int i; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, " "BaseAddr: 0x%02X, Count: 0x%02X\n", offset, crtcindex1, crtcindex2, baseaddr, count); oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1); for (i = 0; i < count; i++) { bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, baseaddr + i); data = bios->data[offset + 5 + i]; bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data); } bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr); return len; } static int init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_CR opcode: 0x52 ('R') * * offset (8 bit): opcode * offset + 1 (8 bit): CRTC index * offset + 2 (8 bit): mask * offset + 3 (8 bit): data * * Assign the value of at "CRTC index" ANDed with mask and ORed with * data back to "CRTC index" */ uint8_t crtcindex = bios->data[offset + 1]; uint8_t mask = bios->data[offset + 2]; uint8_t data = bios->data[offset + 3]; uint8_t value; if (!iexec->execute) return 4; BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n", offset, crtcindex, mask, data); value = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask; value |= data; bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value); return 4; } static int init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_CR opcode: 0x53 ('S') * * offset (8 bit): opcode * offset + 1 (8 bit): CRTC index * offset + 2 (8 bit): value * * Assign "value" to CRTC register with index "CRTC index". */ uint8_t crtcindex = ROM32(bios->data[offset + 1]); uint8_t data = bios->data[offset + 2]; if (!iexec->execute) return 3; bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data); return 3; } static int init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_CR_GROUP opcode: 0x54 ('T') * * offset (8 bit): opcode * offset + 1 (8 bit): count * offset + 2 (8 bit): CRTC index 1 * offset + 3 (8 bit): value 1 * ... * * For "count", assign "value n" to CRTC register with index * "CRTC index n". */ uint8_t count = bios->data[offset + 1]; int len = 2 + count * 2; int i; if (!iexec->execute) return len; for (i = 0; i < count; i++) init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec); return len; } static int init_condition_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_CONDITION_TIME opcode: 0x56 ('V') * * offset (8 bit): opcode * offset + 1 (8 bit): condition number * offset + 2 (8 bit): retries / 50 * * Check condition "condition number" in the condition table. * Bios code then sleeps for 2ms if the condition is not met, and * repeats up to "retries" times, but on one C51 this has proved * insufficient. In mmiotraces the driver sleeps for 20ms, so we do * this, and bail after "retries" times, or 2s, whichever is less. * If still not met after retries, clear execution flag for this table. */ uint8_t cond = bios->data[offset + 1]; uint16_t retries = bios->data[offset + 2] * 50; unsigned cnt; if (!iexec->execute) return 3; if (retries > 100) retries = 100; BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n", offset, cond, retries); if (!bios->execute) /* avoid 2s delays when "faking" execution */ retries = 1; for (cnt = 0; cnt < retries; cnt++) { if (bios_condition_met(bios, offset, cond)) { BIOSLOG(bios, "0x%04X: Condition met, continuing\n", offset); break; } else { BIOSLOG(bios, "0x%04X: " "Condition not met, sleeping for 20ms\n", offset); msleep(20); } } if (!bios_condition_met(bios, offset, cond)) { NV_WARN(bios->dev, "0x%04X: Condition still not met after %dms, " "skipping following opcodes\n", offset, 20 * retries); iexec->execute = false; } return 3; } static int init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_LTIME opcode: 0x57 ('V') * * offset (8 bit): opcode * offset + 1 (16 bit): time * * Sleep for "time" miliseconds. */ unsigned time = ROM16(bios->data[offset + 1]); if (!iexec->execute) return 3; BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X miliseconds\n", offset, time); msleep(time); return 3; } static int init_zm_reg_sequence(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_REG_SEQUENCE opcode: 0x58 ('X') * * offset (8 bit): opcode * offset + 1 (32 bit): base register * offset + 5 (8 bit): count * offset + 6 (32 bit): value 1 * ... * * Starting at offset + 6 there are "count" 32 bit values. * For "count" iterations set "base register" + 4 * current_iteration * to "value current_iteration" */ uint32_t basereg = ROM32(bios->data[offset + 1]); uint32_t count = bios->data[offset + 5]; int len = 6 + count * 4; int i; if (!iexec->execute) return len; BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n", offset, basereg, count); for (i = 0; i < count; i++) { uint32_t reg = basereg + i * 4; uint32_t data = ROM32(bios->data[offset + 6 + i * 4]); bios_wr32(bios, reg, data); } return len; } static int init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_SUB_DIRECT opcode: 0x5B ('[') * * offset (8 bit): opcode * offset + 1 (16 bit): subroutine offset (in bios) * * Calls a subroutine that will execute commands until INIT_DONE * is found. */ uint16_t sub_offset = ROM16(bios->data[offset + 1]); if (!iexec->execute) return 3; BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n", offset, sub_offset); parse_init_table(bios, sub_offset, iexec); BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset); return 3; } static int init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_I2C_IF opcode: 0x5E ('^') * * offset (8 bit): opcode * offset + 1 (8 bit): DCB I2C table entry index * offset + 2 (8 bit): I2C slave address * offset + 3 (8 bit): I2C register * offset + 4 (8 bit): mask * offset + 5 (8 bit): data * * Read the register given by "I2C register" on the device addressed * by "I2C slave address" on the I2C bus given by "DCB I2C table * entry index". Compare the result AND "mask" to "data". * If they're not equal, skip subsequent opcodes until condition is * inverted (INIT_NOT), or we hit INIT_RESUME */ uint8_t i2c_index = bios->data[offset + 1]; uint8_t i2c_address = bios->data[offset + 2] >> 1; uint8_t reg = bios->data[offset + 3]; uint8_t mask = bios->data[offset + 4]; uint8_t data = bios->data[offset + 5]; struct nouveau_i2c_chan *chan; union i2c_smbus_data val; int ret; /* no execute check by design */ BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n", offset, i2c_index, i2c_address); chan = init_i2c_device_find(bios->dev, i2c_index); if (!chan) return -ENODEV; ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, I2C_SMBUS_READ, reg, I2C_SMBUS_BYTE_DATA, &val); if (ret < 0) { BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], " "Mask: 0x%02X, Data: 0x%02X\n", offset, reg, mask, data); iexec->execute = 0; return 6; } BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, " "Mask: 0x%02X, Data: 0x%02X\n", offset, reg, val.byte, mask, data); iexec->execute = ((val.byte & mask) == data); return 6; } static int init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_COPY_NV_REG opcode: 0x5F ('_') * * offset (8 bit): opcode * offset + 1 (32 bit): src reg * offset + 5 (8 bit): shift * offset + 6 (32 bit): src mask * offset + 10 (32 bit): xor * offset + 14 (32 bit): dst reg * offset + 18 (32 bit): dst mask * * Shift REGVAL("src reg") right by (signed) "shift", AND result with * "src mask", then XOR with "xor". Write this OR'd with * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg" */ uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1])); uint8_t shift = bios->data[offset + 5]; uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6])); uint32_t xor = *((uint32_t *)(&bios->data[offset + 10])); uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14])); uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18])); uint32_t srcvalue, dstvalue; if (!iexec->execute) return 22; BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, " "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n", offset, srcreg, shift, srcmask, xor, dstreg, dstmask); srcvalue = bios_rd32(bios, srcreg); if (shift < 0x80) srcvalue >>= shift; else srcvalue <<= (0x100 - shift); srcvalue = (srcvalue & srcmask) ^ xor; dstvalue = bios_rd32(bios, dstreg) & dstmask; bios_wr32(bios, dstreg, dstvalue | srcvalue); return 22; } static int init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_INDEX_IO opcode: 0x62 ('b') * * offset (8 bit): opcode * offset + 1 (16 bit): CRTC port * offset + 3 (8 bit): CRTC index * offset + 4 (8 bit): data * * Write "data" to index "CRTC index" of "CRTC port" */ uint16_t crtcport = ROM16(bios->data[offset + 1]); uint8_t crtcindex = bios->data[offset + 3]; uint8_t data = bios->data[offset + 4]; if (!iexec->execute) return 5; bios_idxprt_wr(bios, crtcport, crtcindex, data); return 5; } static inline void bios_md32(struct nvbios *bios, uint32_t reg, uint32_t mask, uint32_t val) { bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val); } static uint32_t peek_fb(struct drm_device *dev, struct io_mapping *fb, uint32_t off) { uint32_t val = 0; if (off < pci_resource_len(dev->pdev, 1)) { uint8_t __iomem *p = io_mapping_map_atomic_wc(fb, off & PAGE_MASK, KM_USER0); val = ioread32(p + (off & ~PAGE_MASK)); io_mapping_unmap_atomic(p, KM_USER0); } return val; } static void poke_fb(struct drm_device *dev, struct io_mapping *fb, uint32_t off, uint32_t val) { if (off < pci_resource_len(dev->pdev, 1)) { uint8_t __iomem *p = io_mapping_map_atomic_wc(fb, off & PAGE_MASK, KM_USER0); iowrite32(val, p + (off & ~PAGE_MASK)); wmb(); io_mapping_unmap_atomic(p, KM_USER0); } } static inline bool read_back_fb(struct drm_device *dev, struct io_mapping *fb, uint32_t off, uint32_t val) { poke_fb(dev, fb, off, val); return val == peek_fb(dev, fb, off); } static int nv04_init_compute_mem(struct nvbios *bios) { struct drm_device *dev = bios->dev; uint32_t patt = 0xdeadbeef; struct io_mapping *fb; int i; /* Map the framebuffer aperture */ fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1)); if (!fb) return -ENOMEM; /* Sequencer and refresh off */ NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20); bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF); bios_md32(bios, NV04_PFB_BOOT_0, ~0, NV04_PFB_BOOT_0_RAM_AMOUNT_16MB | NV04_PFB_BOOT_0_RAM_WIDTH_128 | NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT); for (i = 0; i < 4; i++) poke_fb(dev, fb, 4 * i, patt); poke_fb(dev, fb, 0x400000, patt + 1); if (peek_fb(dev, fb, 0) == patt + 1) { bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE, NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT); bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0); for (i = 0; i < 4; i++) poke_fb(dev, fb, 4 * i, patt); if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff)) bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_WIDTH_128 | NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); } else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) != (patt & 0xffff0000)) { bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_WIDTH_128 | NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); } else if (peek_fb(dev, fb, 0) != patt) { if (read_back_fb(dev, fb, 0x800000, patt)) bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); else bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE, NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT); } else if (!read_back_fb(dev, fb, 0x800000, patt)) { bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); } /* Refresh on, sequencer on */ bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0); NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20); io_mapping_free(fb); return 0; } static const uint8_t * nv05_memory_config(struct nvbios *bios) { /* Defaults for BIOSes lacking a memory config table */ static const uint8_t default_config_tab[][2] = { { 0x24, 0x00 }, { 0x28, 0x00 }, { 0x24, 0x01 }, { 0x1f, 0x00 }, { 0x0f, 0x00 }, { 0x17, 0x00 }, { 0x06, 0x00 }, { 0x00, 0x00 } }; int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_RAMCFG) >> 2; if (bios->legacy.mem_init_tbl_ptr) return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i]; else return default_config_tab[i]; } static int nv05_init_compute_mem(struct nvbios *bios) { struct drm_device *dev = bios->dev; const uint8_t *ramcfg = nv05_memory_config(bios); uint32_t patt = 0xdeadbeef; struct io_mapping *fb; int i, v; /* Map the framebuffer aperture */ fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1)); if (!fb) return -ENOMEM; /* Sequencer off */ NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20); if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE) goto out; bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0); /* If present load the hardcoded scrambling table */ if (bios->legacy.mem_init_tbl_ptr) { uint32_t *scramble_tab = (uint32_t *)&bios->data[ bios->legacy.mem_init_tbl_ptr + 0x10]; for (i = 0; i < 8; i++) bios_wr32(bios, NV04_PFB_SCRAMBLE(i), ROM32(scramble_tab[i])); } /* Set memory type/width/length defaults depending on the straps */ bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]); if (ramcfg[1] & 0x80) bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE); bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20); bios_md32(bios, NV04_PFB_CFG1, 0, 1); /* Probe memory bus width */ for (i = 0; i < 4; i++) poke_fb(dev, fb, 4 * i, patt); if (peek_fb(dev, fb, 0xc) != patt) bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_WIDTH_128, 0); /* Probe memory length */ v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT; if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB && (!read_back_fb(dev, fb, 0x1000000, ++patt) || !read_back_fb(dev, fb, 0, ++patt))) bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_16MB); if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB && !read_back_fb(dev, fb, 0x800000, ++patt)) bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); if (!read_back_fb(dev, fb, 0x400000, ++patt)) bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); out: /* Sequencer on */ NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20); io_mapping_free(fb); return 0; } static int nv10_init_compute_mem(struct nvbios *bios) { struct drm_device *dev = bios->dev; struct drm_nouveau_private *dev_priv = bios->dev->dev_private; const int mem_width[] = { 0x10, 0x00, 0x20 }; const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2); uint32_t patt = 0xdeadbeef; struct io_mapping *fb; int i, j, k; /* Map the framebuffer aperture */ fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1)); if (!fb) return -ENOMEM; bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1); /* Probe memory bus width */ for (i = 0; i < mem_width_count; i++) { bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]); for (j = 0; j < 4; j++) { for (k = 0; k < 4; k++) poke_fb(dev, fb, 0x1c, 0); poke_fb(dev, fb, 0x1c, patt); poke_fb(dev, fb, 0x3c, 0); if (peek_fb(dev, fb, 0x1c) == patt) goto mem_width_found; } } mem_width_found: patt <<= 1; /* Probe amount of installed memory */ for (i = 0; i < 4; i++) { int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000; poke_fb(dev, fb, off, patt); poke_fb(dev, fb, 0, 0); peek_fb(dev, fb, 0); peek_fb(dev, fb, 0); peek_fb(dev, fb, 0); peek_fb(dev, fb, 0); if (peek_fb(dev, fb, off) == patt) goto amount_found; } /* IC missing - disable the upper half memory space. */ bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0); amount_found: io_mapping_free(fb); return 0; } static int nv20_init_compute_mem(struct nvbios *bios) { struct drm_device *dev = bios->dev; struct drm_nouveau_private *dev_priv = bios->dev->dev_private; uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900); uint32_t amount, off; struct io_mapping *fb; /* Map the framebuffer aperture */ fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1)); if (!fb) return -ENOMEM; bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1); /* Allow full addressing */ bios_md32(bios, NV04_PFB_CFG0, 0, mask); amount = bios_rd32(bios, NV04_PFB_FIFO_DATA); for (off = amount; off > 0x2000000; off -= 0x2000000) poke_fb(dev, fb, off - 4, off); amount = bios_rd32(bios, NV04_PFB_FIFO_DATA); if (amount != peek_fb(dev, fb, amount - 4)) /* IC missing - disable the upper half memory space. */ bios_md32(bios, NV04_PFB_CFG0, mask, 0); io_mapping_free(fb); return 0; } static int init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_COMPUTE_MEM opcode: 0x63 ('c') * * offset (8 bit): opcode * * This opcode is meant to set the PFB memory config registers * appropriately so that we can correctly calculate how much VRAM it * has (on nv10 and better chipsets the amount of installed VRAM is * subsequently reported in NV_PFB_CSTATUS (0x10020C)). * * The implementation of this opcode in general consists of several * parts: * * 1) Determination of memory type and density. Only necessary for * really old chipsets, the memory type reported by the strap bits * (0x101000) is assumed to be accurate on nv05 and newer. * * 2) Determination of the memory bus width. Usually done by a cunning * combination of writes to offsets 0x1c and 0x3c in the fb, and * seeing whether the written values are read back correctly. * * Only necessary on nv0x-nv1x and nv34, on the other cards we can * trust the straps. * * 3) Determination of how many of the card's RAM pads have ICs * attached, usually done by a cunning combination of writes to an * offset slightly less than the maximum memory reported by * NV_PFB_CSTATUS, then seeing if the test pattern can be read back. * * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io * logs of the VBIOS and kmmio traces of the binary driver POSTing the * card show nothing being done for this opcode. Why is it still listed * in the table?! */ /* no iexec->execute check by design */ struct drm_nouveau_private *dev_priv = bios->dev->dev_private; int ret; if (dev_priv->chipset >= 0x40 || dev_priv->chipset == 0x1a || dev_priv->chipset == 0x1f) ret = 0; else if (dev_priv->chipset >= 0x20 && dev_priv->chipset != 0x34) ret = nv20_init_compute_mem(bios); else if (dev_priv->chipset >= 0x10) ret = nv10_init_compute_mem(bios); else if (dev_priv->chipset >= 0x5) ret = nv05_init_compute_mem(bios); else ret = nv04_init_compute_mem(bios); if (ret) return ret; return 1; } static int init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_RESET opcode: 0x65 ('e') * * offset (8 bit): opcode * offset + 1 (32 bit): register * offset + 5 (32 bit): value1 * offset + 9 (32 bit): value2 * * Assign "value1" to "register", then assign "value2" to "register" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint32_t value1 = ROM32(bios->data[offset + 5]); uint32_t value2 = ROM32(bios->data[offset + 9]); uint32_t pci_nv_19, pci_nv_20; /* no iexec->execute check by design */ pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19); bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00); bios_wr32(bios, reg, value1); udelay(10); bios_wr32(bios, reg, value2); bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19); pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20); pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED; /* 0xfffffffe */ bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20); return 13; } static int init_configure_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_CONFIGURE_MEM opcode: 0x66 ('f') * * offset (8 bit): opcode * * Equivalent to INIT_DONE on bios version 3 or greater. * For early bios versions, sets up the memory registers, using values * taken from the memory init table */ /* no iexec->execute check by design */ uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4); uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6; uint32_t reg, data; if (bios->major_version > 2) return 0; bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd( bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20); if (bios->data[meminitoffs] & 1) seqtbloffs = bios->legacy.ddr_seq_tbl_ptr; for (reg = ROM32(bios->data[seqtbloffs]); reg != 0xffffffff; reg = ROM32(bios->data[seqtbloffs += 4])) { switch (reg) { case NV04_PFB_PRE: data = NV04_PFB_PRE_CMD_PRECHARGE; break; case NV04_PFB_PAD: data = NV04_PFB_PAD_CKE_NORMAL; break; case NV04_PFB_REF: data = NV04_PFB_REF_CMD_REFRESH; break; default: data = ROM32(bios->data[meminitdata]); meminitdata += 4; if (data == 0xffffffff) continue; } bios_wr32(bios, reg, data); } return 1; } static int init_configure_clk(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_CONFIGURE_CLK opcode: 0x67 ('g') * * offset (8 bit): opcode * * Equivalent to INIT_DONE on bios version 3 or greater. * For early bios versions, sets up the NVClk and MClk PLLs, using * values taken from the memory init table */ /* no iexec->execute check by design */ uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4); int clock; if (bios->major_version > 2) return 0; clock = ROM16(bios->data[meminitoffs + 4]) * 10; setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock); clock = ROM16(bios->data[meminitoffs + 2]) * 10; if (bios->data[meminitoffs] & 1) /* DDR */ clock *= 2; setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock); return 1; } static int init_configure_preinit(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_CONFIGURE_PREINIT opcode: 0x68 ('h') * * offset (8 bit): opcode * * Equivalent to INIT_DONE on bios version 3 or greater. * For early bios versions, does early init, loading ram and crystal * configuration from straps into CR3C */ /* no iexec->execute check by design */ uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0); uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6; if (bios->major_version > 2) return 0; bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX, cr3c); return 1; } static int init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_IO opcode: 0x69 ('i') * * offset (8 bit): opcode * offset + 1 (16 bit): CRTC port * offset + 3 (8 bit): mask * offset + 4 (8 bit): data * * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port" */ struct drm_nouveau_private *dev_priv = bios->dev->dev_private; uint16_t crtcport = ROM16(bios->data[offset + 1]); uint8_t mask = bios->data[offset + 3]; uint8_t data = bios->data[offset + 4]; if (!iexec->execute) return 5; BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n", offset, crtcport, mask, data); /* * I have no idea what this does, but NVIDIA do this magic sequence * in the places where this INIT_IO happens.. */ if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) { int i; bios_wr32(bios, 0x614100, (bios_rd32( bios, 0x614100) & 0x0fffffff) | 0x00800000); bios_wr32(bios, 0x00e18c, bios_rd32( bios, 0x00e18c) | 0x00020000); bios_wr32(bios, 0x614900, (bios_rd32( bios, 0x614900) & 0x0fffffff) | 0x00800000); bios_wr32(bios, 0x000200, bios_rd32( bios, 0x000200) & ~0x40000000); mdelay(10); bios_wr32(bios, 0x00e18c, bios_rd32( bios, 0x00e18c) & ~0x00020000); bios_wr32(bios, 0x000200, bios_rd32( bios, 0x000200) | 0x40000000); bios_wr32(bios, 0x614100, 0x00800018); bios_wr32(bios, 0x614900, 0x00800018); mdelay(10); bios_wr32(bios, 0x614100, 0x10000018); bios_wr32(bios, 0x614900, 0x10000018); for (i = 0; i < 3; i++) bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32( bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0); for (i = 0; i < 2; i++) bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32( bios, 0x614300 + (i*0x800)) & 0xfffff0f0); for (i = 0; i < 3; i++) bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32( bios, 0x614380 + (i*0x800)) & 0xfffff0f0); for (i = 0; i < 2; i++) bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32( bios, 0x614200 + (i*0x800)) & 0xfffffff0); for (i = 0; i < 2; i++) bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32( bios, 0x614108 + (i*0x800)) & 0x0fffffff); return 5; } bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) | data); return 5; } static int init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_SUB opcode: 0x6B ('k') * * offset (8 bit): opcode * offset + 1 (8 bit): script number * * Execute script number "script number", as a subroutine */ uint8_t sub = bios->data[offset + 1]; if (!iexec->execute) return 2; BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub); parse_init_table(bios, ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]), iexec); BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub); return 2; } static int init_ram_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_RAM_CONDITION opcode: 0x6D ('m') * * offset (8 bit): opcode * offset + 1 (8 bit): mask * offset + 2 (8 bit): cmpval * * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval". * If condition not met skip subsequent opcodes until condition is * inverted (INIT_NOT), or we hit INIT_RESUME */ uint8_t mask = bios->data[offset + 1]; uint8_t cmpval = bios->data[offset + 2]; uint8_t data; if (!iexec->execute) return 3; data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask; BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n", offset, data, cmpval); if (data == cmpval) BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); else { BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); iexec->execute = false; } return 3; } static int init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_NV_REG opcode: 0x6E ('n') * * offset (8 bit): opcode * offset + 1 (32 bit): register * offset + 5 (32 bit): mask * offset + 9 (32 bit): data * * Assign ((REGVAL("register") & "mask") | "data") to "register" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint32_t mask = ROM32(bios->data[offset + 5]); uint32_t data = ROM32(bios->data[offset + 9]); if (!iexec->execute) return 13; BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n", offset, reg, mask, data); bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data); return 13; } static int init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_MACRO opcode: 0x6F ('o') * * offset (8 bit): opcode * offset + 1 (8 bit): macro number * * Look up macro index "macro number" in the macro index table. * The macro index table entry has 1 byte for the index in the macro * table, and 1 byte for the number of times to repeat the macro. * The macro table entry has 4 bytes for the register address and * 4 bytes for the value to write to that register */ uint8_t macro_index_tbl_idx = bios->data[offset + 1]; uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE); uint8_t macro_tbl_idx = bios->data[tmp]; uint8_t count = bios->data[tmp + 1]; uint32_t reg, data; int i; if (!iexec->execute) return 2; BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, " "Count: 0x%02X\n", offset, macro_index_tbl_idx, macro_tbl_idx, count); for (i = 0; i < count; i++) { uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE; reg = ROM32(bios->data[macroentryptr]); data = ROM32(bios->data[macroentryptr + 4]); bios_wr32(bios, reg, data); } return 2; } static int init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_DONE opcode: 0x71 ('q') * * offset (8 bit): opcode * * End the current script */ /* mild retval abuse to stop parsing this table */ return 0; } static int init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_RESUME opcode: 0x72 ('r') * * offset (8 bit): opcode * * End the current execute / no-execute condition */ if (iexec->execute) return 1; iexec->execute = true; BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset); return 1; } static int init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_TIME opcode: 0x74 ('t') * * offset (8 bit): opcode * offset + 1 (16 bit): time * * Sleep for "time" microseconds. */ unsigned time = ROM16(bios->data[offset + 1]); if (!iexec->execute) return 3; BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n", offset, time); if (time < 1000) udelay(time); else msleep((time + 900) / 1000); return 3; } static int init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_CONDITION opcode: 0x75 ('u') * * offset (8 bit): opcode * offset + 1 (8 bit): condition number * * Check condition "condition number" in the condition table. * If condition not met skip subsequent opcodes until condition is * inverted (INIT_NOT), or we hit INIT_RESUME */ uint8_t cond = bios->data[offset + 1]; if (!iexec->execute) return 2; BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond); if (bios_condition_met(bios, offset, cond)) BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); else { BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); iexec->execute = false; } return 2; } static int init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_IO_CONDITION opcode: 0x76 * * offset (8 bit): opcode * offset + 1 (8 bit): condition number * * Check condition "condition number" in the io condition table. * If condition not met skip subsequent opcodes until condition is * inverted (INIT_NOT), or we hit INIT_RESUME */ uint8_t cond = bios->data[offset + 1]; if (!iexec->execute) return 2; BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond); if (io_condition_met(bios, offset, cond)) BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); else { BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); iexec->execute = false; } return 2; } static int init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_INDEX_IO opcode: 0x78 ('x') * * offset (8 bit): opcode * offset + 1 (16 bit): CRTC port * offset + 3 (8 bit): CRTC index * offset + 4 (8 bit): mask * offset + 5 (8 bit): data * * Read value at index "CRTC index" on "CRTC port", AND with "mask", * OR with "data", write-back */ uint16_t crtcport = ROM16(bios->data[offset + 1]); uint8_t crtcindex = bios->data[offset + 3]; uint8_t mask = bios->data[offset + 4]; uint8_t data = bios->data[offset + 5]; uint8_t value; if (!iexec->execute) return 6; BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " "Data: 0x%02X\n", offset, crtcport, crtcindex, mask, data); value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data; bios_idxprt_wr(bios, crtcport, crtcindex, value); return 6; } static int init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_PLL opcode: 0x79 ('y') * * offset (8 bit): opcode * offset + 1 (32 bit): register * offset + 5 (16 bit): freq * * Set PLL register "register" to coefficients for frequency (10kHz) * "freq" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint16_t freq = ROM16(bios->data[offset + 5]); if (!iexec->execute) return 7; BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq); setPLL(bios, reg, freq * 10); return 7; } static int init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_REG opcode: 0x7A ('z') * * offset (8 bit): opcode * offset + 1 (32 bit): register * offset + 5 (32 bit): value * * Assign "value" to "register" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint32_t value = ROM32(bios->data[offset + 5]); if (!iexec->execute) return 9; if (reg == 0x000200) value |= 1; bios_wr32(bios, reg, value); return 9; } static int init_ram_restrict_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_RAM_RESTRICT_PLL opcode: 0x87 ('') * * offset (8 bit): opcode * offset + 1 (8 bit): PLL type * offset + 2 (32 bit): frequency 0 * * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at * ram_restrict_table_ptr. The value read from there is used to select * a frequency from the table starting at 'frequency 0' to be * programmed into the PLL corresponding to 'type'. * * The PLL limits table on cards using this opcode has a mapping of * 'type' to the relevant registers. */ struct drm_device *dev = bios->dev; uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2; uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap]; uint8_t type = bios->data[offset + 1]; uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]); uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry; int len = 2 + bios->ram_restrict_group_count * 4; int i; if (!iexec->execute) return len; if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) { NV_ERROR(dev, "PLL limits table not version 3.x\n"); return len; /* deliberate, allow default clocks to remain */ } entry = pll_limits + pll_limits[1]; for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) { if (entry[0] == type) { uint32_t reg = ROM32(entry[3]); BIOSLOG(bios, "0x%04X: " "Type %02x Reg 0x%08x Freq %dKHz\n", offset, type, reg, freq); setPLL(bios, reg, freq); return len; } } NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type); return len; } static int init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_8C opcode: 0x8C ('') * * NOP so far.... * */ return 1; } static int init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_8D opcode: 0x8D ('') * * NOP so far.... * */ return 1; } static int init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_GPIO opcode: 0x8E ('') * * offset (8 bit): opcode * * Loop over all entries in the DCB GPIO table, and initialise * each GPIO according to various values listed in each entry */ struct drm_nouveau_private *dev_priv = bios->dev->dev_private; struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio; const uint32_t nv50_gpio_ctl[2] = { 0xe100, 0xe28c }; int i; if (dev_priv->card_type < NV_50) { NV_ERROR(bios->dev, "INIT_GPIO on unsupported chipset\n"); return 1; } if (!iexec->execute) return 1; for (i = 0; i < bios->dcb.gpio.entries; i++) { struct dcb_gpio_entry *gpio = &bios->dcb.gpio.entry[i]; uint32_t r, s, v; BIOSLOG(bios, "0x%04X: Entry: 0x%08X\n", offset, gpio->entry); BIOSLOG(bios, "0x%04X: set gpio 0x%02x, state %d\n", offset, gpio->tag, gpio->state_default); if (bios->execute) pgpio->set(bios->dev, gpio->tag, gpio->state_default); /* The NVIDIA binary driver doesn't appear to actually do * any of this, my VBIOS does however. */ /* Not a clue, needs de-magicing */ r = nv50_gpio_ctl[gpio->line >> 4]; s = (gpio->line & 0x0f); v = bios_rd32(bios, r) & ~(0x00010001 << s); switch ((gpio->entry & 0x06000000) >> 25) { case 1: v |= (0x00000001 << s); break; case 2: v |= (0x00010000 << s); break; default: break; } bios_wr32(bios, r, v); } return 1; } static int init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode: 0x8F ('') * * offset (8 bit): opcode * offset + 1 (32 bit): reg * offset + 5 (8 bit): regincrement * offset + 6 (8 bit): count * offset + 7 (32 bit): value 1,1 * ... * * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at * ram_restrict_table_ptr. The value read from here is 'n', and * "value 1,n" gets written to "reg". This repeats "count" times and on * each iteration 'm', "reg" increases by "regincrement" and * "value m,n" is used. The extent of n is limited by a number read * from the 'M' BIT table, herein called "blocklen" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint8_t regincrement = bios->data[offset + 5]; uint8_t count = bios->data[offset + 6]; uint32_t strap_ramcfg, data; /* previously set by 'M' BIT table */ uint16_t blocklen = bios->ram_restrict_group_count * 4; int len = 7 + count * blocklen; uint8_t index; int i; /* critical! to know the length of the opcode */; if (!blocklen) { NV_ERROR(bios->dev, "0x%04X: Zero block length - has the M table " "been parsed?\n", offset); return -EINVAL; } if (!iexec->execute) return len; strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf; index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg]; BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, " "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n", offset, reg, regincrement, count, strap_ramcfg, index); for (i = 0; i < count; i++) { data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]); bios_wr32(bios, reg, data); reg += regincrement; } return len; } static int init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_COPY_ZM_REG opcode: 0x90 ('') * * offset (8 bit): opcode * offset + 1 (32 bit): src reg * offset + 5 (32 bit): dst reg * * Put contents of "src reg" into "dst reg" */ uint32_t srcreg = ROM32(bios->data[offset + 1]); uint32_t dstreg = ROM32(bios->data[offset + 5]); if (!iexec->execute) return 9; bios_wr32(bios, dstreg, bios_rd32(bios, srcreg)); return 9; } static int init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_REG_GROUP_ADDRESS_LATCHED opcode: 0x91 ('') * * offset (8 bit): opcode * offset + 1 (32 bit): dst reg * offset + 5 (8 bit): count * offset + 6 (32 bit): data 1 * ... * * For each of "count" values write "data n" to "dst reg" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint8_t count = bios->data[offset + 5]; int len = 6 + count * 4; int i; if (!iexec->execute) return len; for (i = 0; i < count; i++) { uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]); bios_wr32(bios, reg, data); } return len; } static int init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_RESERVED opcode: 0x92 ('') * * offset (8 bit): opcode * * Seemingly does nothing */ return 1; } static int init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_96 opcode: 0x96 ('') * * offset (8 bit): opcode * offset + 1 (32 bit): sreg * offset + 5 (8 bit): sshift * offset + 6 (8 bit): smask * offset + 7 (8 bit): index * offset + 8 (32 bit): reg * offset + 12 (32 bit): mask * offset + 16 (8 bit): shift * */ uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2); uint32_t reg = ROM32(bios->data[offset + 8]); uint32_t mask = ROM32(bios->data[offset + 12]); uint32_t val; val = bios_rd32(bios, ROM32(bios->data[offset + 1])); if (bios->data[offset + 5] < 0x80) val >>= bios->data[offset + 5]; else val <<= (0x100 - bios->data[offset + 5]); val &= bios->data[offset + 6]; val = bios->data[ROM16(bios->data[xlatptr]) + val]; val <<= bios->data[offset + 16]; if (!iexec->execute) return 17; bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val); return 17; } static int init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_97 opcode: 0x97 ('') * * offset (8 bit): opcode * offset + 1 (32 bit): register * offset + 5 (32 bit): mask * offset + 9 (32 bit): value * * Adds "value" to "register" preserving the fields specified * by "mask" */ uint32_t reg = ROM32(bios->data[offset + 1]); uint32_t mask = ROM32(bios->data[offset + 5]); uint32_t add = ROM32(bios->data[offset + 9]); uint32_t val; val = bios_rd32(bios, reg); val = (val & mask) | ((val + add) & ~mask); if (!iexec->execute) return 13; bios_wr32(bios, reg, val); return 13; } static int init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_AUXCH opcode: 0x98 ('') * * offset (8 bit): opcode * offset + 1 (32 bit): address * offset + 5 (8 bit): count * offset + 6 (8 bit): mask 0 * offset + 7 (8 bit): data 0 * ... * */ struct drm_device *dev = bios->dev; struct nouveau_i2c_chan *auxch; uint32_t addr = ROM32(bios->data[offset + 1]); uint8_t count = bios->data[offset + 5]; int len = 6 + count * 2; int ret, i; if (!bios->display.output) { NV_ERROR(dev, "INIT_AUXCH: no active output\n"); return len; } auxch = init_i2c_device_find(dev, bios->display.output->i2c_index); if (!auxch) { NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n", bios->display.output->i2c_index); return len; } if (!iexec->execute) return len; offset += 6; for (i = 0; i < count; i++, offset += 2) { uint8_t data; ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1); if (ret) { NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret); return len; } data &= bios->data[offset + 0]; data |= bios->data[offset + 1]; ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1); if (ret) { NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret); return len; } } return len; } static int init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_ZM_AUXCH opcode: 0x99 ('') * * offset (8 bit): opcode * offset + 1 (32 bit): address * offset + 5 (8 bit): count * offset + 6 (8 bit): data 0 * ... * */ struct drm_device *dev = bios->dev; struct nouveau_i2c_chan *auxch; uint32_t addr = ROM32(bios->data[offset + 1]); uint8_t count = bios->data[offset + 5]; int len = 6 + count; int ret, i; if (!bios->display.output) { NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n"); return len; } auxch = init_i2c_device_find(dev, bios->display.output->i2c_index); if (!auxch) { NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n", bios->display.output->i2c_index); return len; } if (!iexec->execute) return len; offset += 6; for (i = 0; i < count; i++, offset++) { ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1); if (ret) { NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret); return len; } } return len; } static int init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) { /* * INIT_I2C_LONG_IF opcode: 0x9A ('') * * offset (8 bit): opcode * offset + 1 (8 bit): DCB I2C table entry index * offset + 2 (8 bit): I2C slave address * offset + 3 (16 bit): I2C register * offset + 5 (8 bit): mask * offset + 6 (8 bit): data * * Read the register given by "I2C register" on the device addressed * by "I2C slave address" on the I2C bus given by "DCB I2C table * entry index". Compare the result AND "mask" to "data". * If they're not equal, skip subsequent opcodes until condition is * inverted (INIT_NOT), or we hit INIT_RESUME */ uint8_t i2c_index = bios->data[offset + 1]; uint8_t i2c_address = bios->data[offset + 2] >> 1; uint8_t reglo = bios->data[offset + 3]; uint8_t reghi = bios->data[offset + 4]; uint8_t mask = bios->data[offset + 5]; uint8_t data = bios->data[offset + 6]; struct nouveau_i2c_chan *chan; uint8_t buf0[2] = { reghi, reglo }; uint8_t buf1[1]; struct i2c_msg msg[2] = { { i2c_address, 0, 1, buf0 }, { i2c_address, I2C_M_RD, 1, buf1 }, }; int ret; /* no execute check by design */ BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n", offset, i2c_index, i2c_address); chan = init_i2c_device_find(bios->dev, i2c_index); if (!chan) return -ENODEV; ret = i2c_transfer(&chan->adapter, msg, 2); if (ret < 0) { BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], " "Mask: 0x%02X, Data: 0x%02X\n", offset, reghi, reglo, mask, data); iexec->execute = 0; return 7; } BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, " "Mask: 0x%02X, Data: 0x%02X\n", offset, reghi, reglo, buf1[0], mask, data); iexec->execute = ((buf1[0] & mask) == data); return 7; } static struct init_tbl_entry itbl_entry[] = { /* command name , id , length , offset , mult , command handler */ /* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */ { "INIT_IO_RESTRICT_PROG" , 0x32, init_io_restrict_prog }, { "INIT_REPEAT" , 0x33, init_repeat }, { "INIT_IO_RESTRICT_PLL" , 0x34, init_io_restrict_pll }, { "INIT_END_REPEAT" , 0x36, init_end_repeat }, { "INIT_COPY" , 0x37, init_copy }, { "INIT_NOT" , 0x38, init_not }, { "INIT_IO_FLAG_CONDITION" , 0x39, init_io_flag_condition }, { "INIT_DP_CONDITION" , 0x3A, init_dp_condition }, { "INIT_OP_3B" , 0x3B, init_op_3b }, { "INIT_OP_3C" , 0x3C, init_op_3c }, { "INIT_INDEX_ADDRESS_LATCHED" , 0x49, init_idx_addr_latched }, { "INIT_IO_RESTRICT_PLL2" , 0x4A, init_io_restrict_pll2 }, { "INIT_PLL2" , 0x4B, init_pll2 }, { "INIT_I2C_BYTE" , 0x4C, init_i2c_byte }, { "INIT_ZM_I2C_BYTE" , 0x4D, init_zm_i2c_byte }, { "INIT_ZM_I2C" , 0x4E, init_zm_i2c }, { "INIT_TMDS" , 0x4F, init_tmds }, { "INIT_ZM_TMDS_GROUP" , 0x50, init_zm_tmds_group }, { "INIT_CR_INDEX_ADDRESS_LATCHED" , 0x51, init_cr_idx_adr_latch }, { "INIT_CR" , 0x52, init_cr }, { "INIT_ZM_CR" , 0x53, init_zm_cr }, { "INIT_ZM_CR_GROUP" , 0x54, init_zm_cr_group }, { "INIT_CONDITION_TIME" , 0x56, init_condition_time }, { "INIT_LTIME" , 0x57, init_ltime }, { "INIT_ZM_REG_SEQUENCE" , 0x58, init_zm_reg_sequence }, /* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */ { "INIT_SUB_DIRECT" , 0x5B, init_sub_direct }, { "INIT_I2C_IF" , 0x5E, init_i2c_if }, { "INIT_COPY_NV_REG" , 0x5F, init_copy_nv_reg }, { "INIT_ZM_INDEX_IO" , 0x62, init_zm_index_io }, { "INIT_COMPUTE_MEM" , 0x63, init_compute_mem }, { "INIT_RESET" , 0x65, init_reset }, { "INIT_CONFIGURE_MEM" , 0x66, init_configure_mem }, { "INIT_CONFIGURE_CLK" , 0x67, init_configure_clk }, { "INIT_CONFIGURE_PREINIT" , 0x68, init_configure_preinit }, { "INIT_IO" , 0x69, init_io }, { "INIT_SUB" , 0x6B, init_sub }, { "INIT_RAM_CONDITION" , 0x6D, init_ram_condition }, { "INIT_NV_REG" , 0x6E, init_nv_reg }, { "INIT_MACRO" , 0x6F, init_macro }, { "INIT_DONE" , 0x71, init_done }, { "INIT_RESUME" , 0x72, init_resume }, /* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */ { "INIT_TIME" , 0x74, init_time }, { "INIT_CONDITION" , 0x75, init_condition }, { "INIT_IO_CONDITION" , 0x76, init_io_condition }, { "INIT_INDEX_IO" , 0x78, init_index_io }, { "INIT_PLL" , 0x79, init_pll }, { "INIT_ZM_REG" , 0x7A, init_zm_reg }, { "INIT_RAM_RESTRICT_PLL" , 0x87, init_ram_restrict_pll }, { "INIT_8C" , 0x8C, init_8c }, { "INIT_8D" , 0x8D, init_8d }, { "INIT_GPIO" , 0x8E, init_gpio }, { "INIT_RAM_RESTRICT_ZM_REG_GROUP" , 0x8F, init_ram_restrict_zm_reg_group }, { "INIT_COPY_ZM_REG" , 0x90, init_copy_zm_reg }, { "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched }, { "INIT_RESERVED" , 0x92, init_reserved }, { "INIT_96" , 0x96, init_96 }, { "INIT_97" , 0x97, init_97 }, { "INIT_AUXCH" , 0x98, init_auxch }, { "INIT_ZM_AUXCH" , 0x99, init_zm_auxch }, { "INIT_I2C_LONG_IF" , 0x9A, init_i2c_long_if }, { NULL , 0 , NULL } }; #define MAX_TABLE_OPS 1000 static int parse_init_table(struct nvbios *bios, unsigned int offset, struct init_exec *iexec) { /* * Parses all commands in an init table. * * We start out executing all commands found in the init table. Some * opcodes may change the status of iexec->execute to SKIP, which will * cause the following opcodes to perform no operation until the value * is changed back to EXECUTE. */ int count = 0, i, ret; uint8_t id; /* * Loop until INIT_DONE causes us to break out of the loop * (or until offset > bios length just in case... ) * (and no more than MAX_TABLE_OPS iterations, just in case... ) */ while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) { id = bios->data[offset]; /* Find matching id in itbl_entry */ for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++) ; if (!itbl_entry[i].name) { NV_ERROR(bios->dev, "0x%04X: Init table command not found: " "0x%02X\n", offset, id); return -ENOENT; } BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset, itbl_entry[i].id, itbl_entry[i].name); /* execute eventual command handler */ ret = (*itbl_entry[i].handler)(bios, offset, iexec); if (ret < 0) { NV_ERROR(bios->dev, "0x%04X: Failed parsing init " "table opcode: %s %d\n", offset, itbl_entry[i].name, ret); } if (ret <= 0) break; /* * Add the offset of the current command including all data * of that command. The offset will then be pointing on the * next op code. */ offset += ret; } if (offset >= bios->length) NV_WARN(bios->dev, "Offset 0x%04X greater than known bios image length. " "Corrupt image?\n", offset); if (count >= MAX_TABLE_OPS) NV_WARN(bios->dev, "More than %d opcodes to a table is unlikely, " "is the bios image corrupt?\n", MAX_TABLE_OPS); return 0; } static void parse_init_tables(struct nvbios *bios) { /* Loops and calls parse_init_table() for each present table. */ int i = 0; uint16_t table; struct init_exec iexec = {true, false}; if (bios->old_style_init) { if (bios->init_script_tbls_ptr) parse_init_table(bios, bios->init_script_tbls_ptr, &iexec); if (bios->extra_init_script_tbl_ptr) parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec); return; } while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) { NV_INFO(bios->dev, "Parsing VBIOS init table %d at offset 0x%04X\n", i / 2, table); BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table); parse_init_table(bios, table, &iexec); i += 2; } } static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk) { int compare_record_len, i = 0; uint16_t compareclk, scriptptr = 0; if (bios->major_version < 5) /* pre BIT */ compare_record_len = 3; else compare_record_len = 4; do { compareclk = ROM16(bios->data[clktable + compare_record_len * i]); if (pxclk >= compareclk * 10) { if (bios->major_version < 5) { uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i]; scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]); } else scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]); break; } i++; } while (compareclk); return scriptptr; } static void run_digital_op_script(struct drm_device *dev, uint16_t scriptptr, struct dcb_entry *dcbent, int head, bool dl) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; struct init_exec iexec = {true, false}; NV_TRACE(dev, "0x%04X: Parsing digital output script table\n", scriptptr); bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44, head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA); /* note: if dcb entries have been merged, index may be misleading */ NVWriteVgaCrtc5758(dev, head, 0, dcbent->index); parse_init_table(bios, scriptptr, &iexec); nv04_dfp_bind_head(dev, dcbent, head, dl); } static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0); uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]); if (!bios->fp.xlated_entry || !sub || !scriptofs) return -EINVAL; run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link); if (script == LVDS_PANEL_OFF) { /* off-on delay in ms */ msleep(ROM16(bios->data[bios->fp.xlated_entry + 7])); } #ifdef __powerpc__ /* Powerbook specific quirks */ if ((dev->pci_device & 0xffff) == 0x0179 || (dev->pci_device & 0xffff) == 0x0189 || (dev->pci_device & 0xffff) == 0x0329) { if (script == LVDS_RESET) { nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72); } else if (script == LVDS_PANEL_ON) { bios_wr32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL, bios_rd32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL) | (1 << 31)); bios_wr32(bios, NV_PCRTC_GPIO_EXT, bios_rd32(bios, NV_PCRTC_GPIO_EXT) | 1); } else if (script == LVDS_PANEL_OFF) { bios_wr32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL, bios_rd32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL) & ~(1 << 31)); bios_wr32(bios, NV_PCRTC_GPIO_EXT, bios_rd32(bios, NV_PCRTC_GPIO_EXT) & ~3); } } #endif return 0; } static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk) { /* * The BIT LVDS table's header has the information to setup the * necessary registers. Following the standard 4 byte header are: * A bitmask byte and a dual-link transition pxclk value for use in * selecting the init script when not using straps; 4 script pointers * for panel power, selected by output and on/off; and 8 table pointers * for panel init, the needed one determined by output, and bits in the * conf byte. These tables are similar to the TMDS tables, consisting * of a list of pxclks and script pointers. */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; unsigned int outputset = (dcbent->or == 4) ? 1 : 0; uint16_t scriptptr = 0, clktable; /* * For now we assume version 3.0 table - g80 support will need some * changes */ switch (script) { case LVDS_INIT: return -ENOSYS; case LVDS_BACKLIGHT_ON: case LVDS_PANEL_ON: scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]); break; case LVDS_BACKLIGHT_OFF: case LVDS_PANEL_OFF: scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]); break; case LVDS_RESET: clktable = bios->fp.lvdsmanufacturerpointer + 15; if (dcbent->or == 4) clktable += 8; if (dcbent->lvdsconf.use_straps_for_mode) { if (bios->fp.dual_link) clktable += 4; if (bios->fp.if_is_24bit) clktable += 2; } else { /* using EDID */ int cmpval_24bit = (dcbent->or == 4) ? 4 : 1; if (bios->fp.dual_link) { clktable += 4; cmpval_24bit <<= 1; } if (bios->fp.strapless_is_24bit & cmpval_24bit) clktable += 2; } clktable = ROM16(bios->data[clktable]); if (!clktable) { NV_ERROR(dev, "Pixel clock comparison table not found\n"); return -ENOENT; } scriptptr = clkcmptable(bios, clktable, pxclk); } if (!scriptptr) { NV_ERROR(dev, "LVDS output init script not found\n"); return -ENOENT; } run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link); return 0; } int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk) { /* * LVDS operations are multiplexed in an effort to present a single API * which works with two vastly differing underlying structures. * This acts as the demux */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; uint32_t sel_clk_binding, sel_clk; int ret; if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver || (lvds_ver >= 0x30 && script == LVDS_INIT)) return 0; if (!bios->fp.lvds_init_run) { bios->fp.lvds_init_run = true; call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk); } if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change) call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk); if (script == LVDS_RESET && bios->fp.power_off_for_reset) call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk); NV_TRACE(dev, "Calling LVDS script %d:\n", script); /* don't let script change pll->head binding */ sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000; if (lvds_ver < 0x30) ret = call_lvds_manufacturer_script(dev, dcbent, head, script); else ret = run_lvds_table(dev, dcbent, head, script, pxclk); bios->fp.last_script_invoc = (script << 1 | head); sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); /* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */ nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0); return ret; } struct lvdstableheader { uint8_t lvds_ver, headerlen, recordlen; }; static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth) { /* * BMP version (0xa) LVDS table has a simple header of version and * record length. The BIT LVDS table has the typical BIT table header: * version byte, header length byte, record length byte, and a byte for * the maximum number of records that can be held in the table. */ uint8_t lvds_ver, headerlen, recordlen; memset(lth, 0, sizeof(struct lvdstableheader)); if (bios->fp.lvdsmanufacturerpointer == 0x0) { NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n"); return -EINVAL; } lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; switch (lvds_ver) { case 0x0a: /* pre NV40 */ headerlen = 2; recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; break; case 0x30: /* NV4x */ headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; if (headerlen < 0x1f) { NV_ERROR(dev, "LVDS table header not understood\n"); return -EINVAL; } recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; break; case 0x40: /* G80/G90 */ headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; if (headerlen < 0x7) { NV_ERROR(dev, "LVDS table header not understood\n"); return -EINVAL; } recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; break; default: NV_ERROR(dev, "LVDS table revision %d.%d not currently supported\n", lvds_ver >> 4, lvds_ver & 0xf); return -ENOSYS; } lth->lvds_ver = lvds_ver; lth->headerlen = headerlen; lth->recordlen = recordlen; return 0; } static int get_fp_strap(struct drm_device *dev, struct nvbios *bios) { struct drm_nouveau_private *dev_priv = dev->dev_private; /* * The fp strap is normally dictated by the "User Strap" in * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the * Internal_Flags struct at 0x48 is set, the user strap gets overriden * by the PCI subsystem ID during POST, but not before the previous user * strap has been committed to CR58 for CR57=0xf on head A, which may be * read and used instead */ if (bios->major_version < 5 && bios->data[0x48] & 0x4) return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf; if (dev_priv->card_type >= NV_50) return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf; else return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf; } static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios) { uint8_t *fptable; uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex; int ret, ofs, fpstrapping; struct lvdstableheader lth; if (bios->fp.fptablepointer == 0x0) { /* Apple cards don't have the fp table; the laptops use DDC */ /* The table is also missing on some x86 IGPs */ #ifndef __powerpc__ NV_ERROR(dev, "Pointer to flat panel table invalid\n"); #endif bios->digital_min_front_porch = 0x4b; return 0; } fptable = &bios->data[bios->fp.fptablepointer]; fptable_ver = fptable[0]; switch (fptable_ver) { /* * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no * version field, and miss one of the spread spectrum/PWM bytes. * This could affect early GF2Go parts (not seen any appropriate ROMs * though). Here we assume that a version of 0x05 matches this case * (combining with a BMP version check would be better), as the * common case for the panel type field is 0x0005, and that is in * fact what we are reading the first byte of. */ case 0x05: /* some NV10, 11, 15, 16 */ recordlen = 42; ofs = -1; break; case 0x10: /* some NV15/16, and NV11+ */ recordlen = 44; ofs = 0; break; case 0x20: /* NV40+ */ headerlen = fptable[1]; recordlen = fptable[2]; fpentries = fptable[3]; /* * fptable[4] is the minimum * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap */ bios->digital_min_front_porch = fptable[4]; ofs = -7; break; default: NV_ERROR(dev, "FP table revision %d.%d not currently supported\n", fptable_ver >> 4, fptable_ver & 0xf); return -ENOSYS; } if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */ return 0; ret = parse_lvds_manufacturer_table_header(dev, bios, <h); if (ret) return ret; if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) { bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer + lth.headerlen + 1; bios->fp.xlatwidth = lth.recordlen; } if (bios->fp.fpxlatetableptr == 0x0) { NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n"); return -EINVAL; } fpstrapping = get_fp_strap(dev, bios); fpindex = bios->data[bios->fp.fpxlatetableptr + fpstrapping * bios->fp.xlatwidth]; if (fpindex > fpentries) { NV_ERROR(dev, "Bad flat panel table index\n"); return -ENOENT; } /* nv4x cards need both a strap value and fpindex of 0xf to use DDC */ if (lth.lvds_ver > 0x10) bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf; /* * If either the strap or xlated fpindex value are 0xf there is no * panel using a strap-derived bios mode present. this condition * includes, but is different from, the DDC panel indicator above */ if (fpstrapping == 0xf || fpindex == 0xf) return 0; bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen + recordlen * fpindex + ofs; NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n", ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1, ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1, ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10); return 0; } bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr]; if (!mode) /* just checking whether we can produce a mode */ return bios->fp.mode_ptr; memset(mode, 0, sizeof(struct drm_display_mode)); /* * For version 1.0 (version in byte 0): * bytes 1-2 are "panel type", including bits on whether Colour/mono, * single/dual link, and type (TFT etc.) * bytes 3-6 are bits per colour in RGBX */ mode->clock = ROM16(mode_entry[7]) * 10; /* bytes 9-10 is HActive */ mode->hdisplay = ROM16(mode_entry[11]) + 1; /* * bytes 13-14 is HValid Start * bytes 15-16 is HValid End */ mode->hsync_start = ROM16(mode_entry[17]) + 1; mode->hsync_end = ROM16(mode_entry[19]) + 1; mode->htotal = ROM16(mode_entry[21]) + 1; /* bytes 23-24, 27-30 similarly, but vertical */ mode->vdisplay = ROM16(mode_entry[25]) + 1; mode->vsync_start = ROM16(mode_entry[31]) + 1; mode->vsync_end = ROM16(mode_entry[33]) + 1; mode->vtotal = ROM16(mode_entry[35]) + 1; mode->flags |= (mode_entry[37] & 0x10) ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= (mode_entry[37] & 0x1) ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; /* * bytes 38-39 relate to spread spectrum settings * bytes 40-43 are something to do with PWM */ mode->status = MODE_OK; mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED; drm_mode_set_name(mode); return bios->fp.mode_ptr; } int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit) { /* * The LVDS table header is (mostly) described in * parse_lvds_manufacturer_table_header(): the BIT header additionally * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if * straps are not being used for the panel, this specifies the frequency * at which modes should be set up in the dual link style. * * Following the header, the BMP (ver 0xa) table has several records, * indexed by a separate xlat table, indexed in turn by the fp strap in * EXTDEV_BOOT. Each record had a config byte, followed by 6 script * numbers for use by INIT_SUB which controlled panel init and power, * and finally a dword of ms to sleep between power off and on * operations. * * In the BIT versions, the table following the header serves as an * integrated config and xlat table: the records in the table are * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has * two bytes - the first as a config byte, the second for indexing the * fp mode table pointed to by the BIT 'D' table * * DDC is not used until after card init, so selecting the correct table * entry and setting the dual link flag for EDID equipped panels, * requiring tests against the native-mode pixel clock, cannot be done * until later, when this function should be called with non-zero pxclk */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0; struct lvdstableheader lth; uint16_t lvdsofs; int ret, chip_version = bios->chip_version; ret = parse_lvds_manufacturer_table_header(dev, bios, <h); if (ret) return ret; switch (lth.lvds_ver) { case 0x0a: /* pre NV40 */ lvdsmanufacturerindex = bios->data[ bios->fp.fpxlatemanufacturertableptr + fpstrapping]; /* we're done if this isn't the EDID panel case */ if (!pxclk) break; if (chip_version < 0x25) { /* nv17 behaviour * * It seems the old style lvds script pointer is reused * to select 18/24 bit colour depth for EDID panels. */ lvdsmanufacturerindex = (bios->legacy.lvds_single_a_script_ptr & 1) ? 2 : 0; if (pxclk >= bios->fp.duallink_transition_clk) lvdsmanufacturerindex++; } else if (chip_version < 0x30) { /* nv28 behaviour (off-chip encoder) * * nv28 does a complex dance of first using byte 121 of * the EDID to choose the lvdsmanufacturerindex, then * later attempting to match the EDID manufacturer and * product IDs in a table (signature 'pidt' (panel id * table?)), setting an lvdsmanufacturerindex of 0 and * an fp strap of the match index (or 0xf if none) */ lvdsmanufacturerindex = 0; } else { /* nv31, nv34 behaviour */ lvdsmanufacturerindex = 0; if (pxclk >= bios->fp.duallink_transition_clk) lvdsmanufacturerindex = 2; if (pxclk >= 140000) lvdsmanufacturerindex = 3; } /* * nvidia set the high nibble of (cr57=f, cr58) to * lvdsmanufacturerindex in this case; we don't */ break; case 0x30: /* NV4x */ case 0x40: /* G80/G90 */ lvdsmanufacturerindex = fpstrapping; break; default: NV_ERROR(dev, "LVDS table revision not currently supported\n"); return -ENOSYS; } lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex; switch (lth.lvds_ver) { case 0x0a: bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1; bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2; bios->fp.dual_link = bios->data[lvdsofs] & 4; bios->fp.link_c_increment = bios->data[lvdsofs] & 8; *if_is_24bit = bios->data[lvdsofs] & 16; break; case 0x30: case 0x40: /* * No sign of the "power off for reset" or "reset for panel * on" bits, but it's safer to assume we should */ bios->fp.power_off_for_reset = true; bios->fp.reset_after_pclk_change = true; /* * It's ok lvdsofs is wrong for nv4x edid case; dual_link is * over-written, and if_is_24bit isn't used */ bios->fp.dual_link = bios->data[lvdsofs] & 1; bios->fp.if_is_24bit = bios->data[lvdsofs] & 2; bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4]; bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10; break; } /* Dell Latitude D620 reports a too-high value for the dual-link * transition freq, causing us to program the panel incorrectly. * * It doesn't appear the VBIOS actually uses its transition freq * (90000kHz), instead it uses the "Number of LVDS channels" field * out of the panel ID structure (http://www.spwg.org/). * * For the moment, a quirk will do :) */ if ((dev->pdev->device == 0x01d7) && (dev->pdev->subsystem_vendor == 0x1028) && (dev->pdev->subsystem_device == 0x01c2)) { bios->fp.duallink_transition_clk = 80000; } /* set dual_link flag for EDID case */ if (pxclk && (chip_version < 0x25 || chip_version > 0x28)) bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk); *dl = bios->fp.dual_link; return 0; } static uint8_t * bios_output_config_match(struct drm_device *dev, struct dcb_entry *dcbent, uint16_t record, int record_len, int record_nr, bool match_link) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; uint32_t entry; uint16_t table; int i, v; switch (dcbent->type) { case OUTPUT_TMDS: case OUTPUT_LVDS: case OUTPUT_DP: break; default: match_link = false; break; } for (i = 0; i < record_nr; i++, record += record_len) { table = ROM16(bios->data[record]); if (!table) continue; entry = ROM32(bios->data[table]); if (match_link) { v = (entry & 0x00c00000) >> 22; if (!(v & dcbent->sorconf.link)) continue; } v = (entry & 0x000f0000) >> 16; if (!(v & dcbent->or)) continue; v = (entry & 0x000000f0) >> 4; if (v != dcbent->location) continue; v = (entry & 0x0000000f); if (v != dcbent->type) continue; return &bios->data[table]; } return NULL; } void * nouveau_bios_dp_table(struct drm_device *dev, struct dcb_entry *dcbent, int *length) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; uint8_t *table; if (!bios->display.dp_table_ptr) { NV_ERROR(dev, "No pointer to DisplayPort table\n"); return NULL; } table = &bios->data[bios->display.dp_table_ptr]; if (table[0] != 0x20 && table[0] != 0x21) { NV_ERROR(dev, "DisplayPort table version 0x%02x unknown\n", table[0]); return NULL; } *length = table[4]; return bios_output_config_match(dev, dcbent, bios->display.dp_table_ptr + table[1], table[2], table[3], table[0] >= 0x21); } int nouveau_bios_run_display_table(struct drm_device *dev, struct dcb_entry *dcbent, uint32_t sub, int pxclk) { /* * The display script table is located by the BIT 'U' table. * * It contains an array of pointers to various tables describing * a particular output type. The first 32-bits of the output * tables contains similar information to a DCB entry, and is * used to decide whether that particular table is suitable for * the output you want to access. * * The "record header length" field here seems to indicate the * offset of the first configuration entry in the output tables. * This is 10 on most cards I've seen, but 12 has been witnessed * on DP cards, and there's another script pointer within the * header. * * offset + 0 ( 8 bits): version * offset + 1 ( 8 bits): header length * offset + 2 ( 8 bits): record length * offset + 3 ( 8 bits): number of records * offset + 4 ( 8 bits): record header length * offset + 5 (16 bits): pointer to first output script table */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; uint8_t *table = &bios->data[bios->display.script_table_ptr]; uint8_t *otable = NULL; uint16_t script; int i = 0; if (!bios->display.script_table_ptr) { NV_ERROR(dev, "No pointer to output script table\n"); return 1; } /* * Nothing useful has been in any of the pre-2.0 tables I've seen, * so until they are, we really don't need to care. */ if (table[0] < 0x20) return 1; if (table[0] != 0x20 && table[0] != 0x21) { NV_ERROR(dev, "Output script table version 0x%02x unknown\n", table[0]); return 1; } /* * The output script tables describing a particular output type * look as follows: * * offset + 0 (32 bits): output this table matches (hash of DCB) * offset + 4 ( 8 bits): unknown * offset + 5 ( 8 bits): number of configurations * offset + 6 (16 bits): pointer to some script * offset + 8 (16 bits): pointer to some script * * headerlen == 10 * offset + 10 : configuration 0 * * headerlen == 12 * offset + 10 : pointer to some script * offset + 12 : configuration 0 * * Each config entry is as follows: * * offset + 0 (16 bits): unknown, assumed to be a match value * offset + 2 (16 bits): pointer to script table (clock set?) * offset + 4 (16 bits): pointer to script table (reset?) * * There doesn't appear to be a count value to say how many * entries exist in each script table, instead, a 0 value in * the first 16-bit word seems to indicate both the end of the * list and the default entry. The second 16-bit word in the * script tables is a pointer to the script to execute. */ NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n", dcbent->type, dcbent->location, dcbent->or); otable = bios_output_config_match(dev, dcbent, table[1] + bios->display.script_table_ptr, table[2], table[3], table[0] >= 0x21); if (!otable) { NV_DEBUG_KMS(dev, "failed to match any output table\n"); return 1; } if (pxclk < -2 || pxclk > 0) { /* Try to find matching script table entry */ for (i = 0; i < otable[5]; i++) { if (ROM16(otable[table[4] + i*6]) == sub) break; } if (i == otable[5]) { NV_ERROR(dev, "Table 0x%04x not found for %d/%d, " "using first\n", sub, dcbent->type, dcbent->or); i = 0; } } if (pxclk == 0) { script = ROM16(otable[6]); if (!script) { NV_DEBUG_KMS(dev, "output script 0 not found\n"); return 1; } NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script); nouveau_bios_run_init_table(dev, script, dcbent); } else if (pxclk == -1) { script = ROM16(otable[8]); if (!script) { NV_DEBUG_KMS(dev, "output script 1 not found\n"); return 1; } NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script); nouveau_bios_run_init_table(dev, script, dcbent); } else if (pxclk == -2) { if (table[4] >= 12) script = ROM16(otable[10]); else script = 0; if (!script) { NV_DEBUG_KMS(dev, "output script 2 not found\n"); return 1; } NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script); nouveau_bios_run_init_table(dev, script, dcbent); } else if (pxclk > 0) { script = ROM16(otable[table[4] + i*6 + 2]); if (script) script = clkcmptable(bios, script, pxclk); if (!script) { NV_DEBUG_KMS(dev, "clock script 0 not found\n"); return 1; } NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script); nouveau_bios_run_init_table(dev, script, dcbent); } else if (pxclk < 0) { script = ROM16(otable[table[4] + i*6 + 4]); if (script) script = clkcmptable(bios, script, -pxclk); if (!script) { NV_DEBUG_KMS(dev, "clock script 1 not found\n"); return 1; } NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script); nouveau_bios_run_init_table(dev, script, dcbent); } return 0; } int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk) { /* * the pxclk parameter is in kHz * * This runs the TMDS regs setting code found on BIT bios cards * * For ffs(or) == 1 use the first table, for ffs(or) == 2 and * ffs(or) == 3, use the second. */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; int cv = bios->chip_version; uint16_t clktable = 0, scriptptr; uint32_t sel_clk_binding, sel_clk; /* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */ if (cv >= 0x17 && cv != 0x1a && cv != 0x20 && dcbent->location != DCB_LOC_ON_CHIP) return 0; switch (ffs(dcbent->or)) { case 1: clktable = bios->tmds.output0_script_ptr; break; case 2: case 3: clktable = bios->tmds.output1_script_ptr; break; } if (!clktable) { NV_ERROR(dev, "Pixel clock comparison table not found\n"); return -EINVAL; } scriptptr = clkcmptable(bios, clktable, pxclk); if (!scriptptr) { NV_ERROR(dev, "TMDS output init script not found\n"); return -ENOENT; } /* don't let script change pll->head binding */ sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000; run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000); sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); return 0; } int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim) { /* * PLL limits table * * Version 0x10: NV30, NV31 * One byte header (version), one record of 24 bytes * Version 0x11: NV36 - Not implemented * Seems to have same record style as 0x10, but 3 records rather than 1 * Version 0x20: Found on Geforce 6 cards * Trivial 4 byte BIT header. 31 (0x1f) byte record length * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record * length in general, some (integrated) have an extra configuration byte * Version 0x30: Found on Geforce 8, separates the register mapping * from the limits tables. */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; int cv = bios->chip_version, pllindex = 0; uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0; uint32_t crystal_strap_mask, crystal_straps; if (!bios->pll_limit_tbl_ptr) { if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 || cv >= 0x40) { NV_ERROR(dev, "Pointer to PLL limits table invalid\n"); return -EINVAL; } } else pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr]; crystal_strap_mask = 1 << 6; /* open coded dev->twoHeads test */ if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20) crystal_strap_mask |= 1 << 22; crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & crystal_strap_mask; switch (pll_lim_ver) { /* * We use version 0 to indicate a pre limit table bios (single stage * pll) and load the hard coded limits instead. */ case 0: break; case 0x10: case 0x11: /* * Strictly v0x11 has 3 entries, but the last two don't seem * to get used. */ headerlen = 1; recordlen = 0x18; entries = 1; pllindex = 0; break; case 0x20: case 0x21: case 0x30: case 0x40: headerlen = bios->data[bios->pll_limit_tbl_ptr + 1]; recordlen = bios->data[bios->pll_limit_tbl_ptr + 2]; entries = bios->data[bios->pll_limit_tbl_ptr + 3]; break; default: NV_ERROR(dev, "PLL limits table revision 0x%X not currently " "supported\n", pll_lim_ver); return -ENOSYS; } /* initialize all members to zero */ memset(pll_lim, 0, sizeof(struct pll_lims)); if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) { uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex]; pll_lim->vco1.minfreq = ROM32(pll_rec[0]); pll_lim->vco1.maxfreq = ROM32(pll_rec[4]); pll_lim->vco2.minfreq = ROM32(pll_rec[8]); pll_lim->vco2.maxfreq = ROM32(pll_rec[12]); pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]); pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]); pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX; /* these values taken from nv30/31/36 */ pll_lim->vco1.min_n = 0x1; if (cv == 0x36) pll_lim->vco1.min_n = 0x5; pll_lim->vco1.max_n = 0xff; pll_lim->vco1.min_m = 0x1; pll_lim->vco1.max_m = 0xd; pll_lim->vco2.min_n = 0x4; /* * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this * table version (apart from nv35)), N2 is compared to * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and * save a comparison */ pll_lim->vco2.max_n = 0x28; if (cv == 0x30 || cv == 0x35) /* only 5 bits available for N2 on nv30/35 */ pll_lim->vco2.max_n = 0x1f; pll_lim->vco2.min_m = 0x1; pll_lim->vco2.max_m = 0x4; pll_lim->max_log2p = 0x7; pll_lim->max_usable_log2p = 0x6; } else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) { uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen; uint32_t reg = 0; /* default match */ uint8_t *pll_rec; int i; /* * First entry is default match, if nothing better. warn if * reg field nonzero */ if (ROM32(bios->data[plloffs])) NV_WARN(dev, "Default PLL limit entry has non-zero " "register field\n"); if (limit_match > MAX_PLL_TYPES) /* we've been passed a reg as the match */ reg = limit_match; else /* limit match is a pll type */ for (i = 1; i < entries && !reg; i++) { uint32_t cmpreg = ROM32(bios->data[plloffs + recordlen * i]); if (limit_match == NVPLL && (cmpreg == NV_PRAMDAC_NVPLL_COEFF || cmpreg == 0x4000)) reg = cmpreg; if (limit_match == MPLL && (cmpreg == NV_PRAMDAC_MPLL_COEFF || cmpreg == 0x4020)) reg = cmpreg; if (limit_match == VPLL1 && (cmpreg == NV_PRAMDAC_VPLL_COEFF || cmpreg == 0x4010)) reg = cmpreg; if (limit_match == VPLL2 && (cmpreg == NV_RAMDAC_VPLL2 || cmpreg == 0x4018)) reg = cmpreg; } for (i = 1; i < entries; i++) if (ROM32(bios->data[plloffs + recordlen * i]) == reg) { pllindex = i; break; } pll_rec = &bios->data[plloffs + recordlen * pllindex]; BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n", pllindex ? reg : 0); /* * Frequencies are stored in tables in MHz, kHz are more * useful, so we convert. */ /* What output frequencies can each VCO generate? */ pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000; pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000; pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000; pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000; /* What input frequencies they accept (past the m-divider)? */ pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000; pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000; pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000; pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000; /* What values are accepted as multiplier and divider? */ pll_lim->vco1.min_n = pll_rec[20]; pll_lim->vco1.max_n = pll_rec[21]; pll_lim->vco1.min_m = pll_rec[22]; pll_lim->vco1.max_m = pll_rec[23]; pll_lim->vco2.min_n = pll_rec[24]; pll_lim->vco2.max_n = pll_rec[25]; pll_lim->vco2.min_m = pll_rec[26]; pll_lim->vco2.max_m = pll_rec[27]; pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29]; if (pll_lim->max_log2p > 0x7) /* pll decoding in nv_hw.c assumes never > 7 */ NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n", pll_lim->max_log2p); if (cv < 0x60) pll_lim->max_usable_log2p = 0x6; pll_lim->log2p_bias = pll_rec[30]; if (recordlen > 0x22) pll_lim->refclk = ROM32(pll_rec[31]); if (recordlen > 0x23 && pll_rec[35]) NV_WARN(dev, "Bits set in PLL configuration byte (%x)\n", pll_rec[35]); /* C51 special not seen elsewhere */ if (cv == 0x51 && !pll_lim->refclk) { uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK); if (((limit_match == NV_PRAMDAC_VPLL_COEFF || limit_match == VPLL1) && sel_clk & 0x20) || ((limit_match == NV_RAMDAC_VPLL2 || limit_match == VPLL2) && sel_clk & 0x80)) { if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3) pll_lim->refclk = 200000; else pll_lim->refclk = 25000; } } } else if (pll_lim_ver == 0x30) { /* ver 0x30 */ uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen]; uint8_t *record = NULL; int i; BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n", limit_match); for (i = 0; i < entries; i++, entry += recordlen) { if (ROM32(entry[3]) == limit_match) { record = &bios->data[ROM16(entry[1])]; break; } } if (!record) { NV_ERROR(dev, "Register 0x%08x not found in PLL " "limits table", limit_match); return -ENOENT; } pll_lim->vco1.minfreq = ROM16(record[0]) * 1000; pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000; pll_lim->vco2.minfreq = ROM16(record[4]) * 1000; pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000; pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000; pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000; pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000; pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000; pll_lim->vco1.min_n = record[16]; pll_lim->vco1.max_n = record[17]; pll_lim->vco1.min_m = record[18]; pll_lim->vco1.max_m = record[19]; pll_lim->vco2.min_n = record[20]; pll_lim->vco2.max_n = record[21]; pll_lim->vco2.min_m = record[22]; pll_lim->vco2.max_m = record[23]; pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25]; pll_lim->log2p_bias = record[27]; pll_lim->refclk = ROM32(record[28]); } else if (pll_lim_ver) { /* ver 0x40 */ uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen]; uint8_t *record = NULL; int i; BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n", limit_match); for (i = 0; i < entries; i++, entry += recordlen) { if (ROM32(entry[3]) == limit_match) { record = &bios->data[ROM16(entry[1])]; break; } } if (!record) { NV_ERROR(dev, "Register 0x%08x not found in PLL " "limits table", limit_match); return -ENOENT; } pll_lim->vco1.minfreq = ROM16(record[0]) * 1000; pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000; pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000; pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000; pll_lim->vco1.min_m = record[8]; pll_lim->vco1.max_m = record[9]; pll_lim->vco1.min_n = record[10]; pll_lim->vco1.max_n = record[11]; pll_lim->min_p = record[12]; pll_lim->max_p = record[13]; /* where did this go to?? */ if ((entry[0] & 0xf0) == 0x80) pll_lim->refclk = 27000; else pll_lim->refclk = 100000; } /* * By now any valid limit table ought to have set a max frequency for * vco1, so if it's zero it's either a pre limit table bios, or one * with an empty limit table (seen on nv18) */ if (!pll_lim->vco1.maxfreq) { pll_lim->vco1.minfreq = bios->fminvco; pll_lim->vco1.maxfreq = bios->fmaxvco; pll_lim->vco1.min_inputfreq = 0; pll_lim->vco1.max_inputfreq = INT_MAX; pll_lim->vco1.min_n = 0x1; pll_lim->vco1.max_n = 0xff; pll_lim->vco1.min_m = 0x1; if (crystal_straps == 0) { /* nv05 does this, nv11 doesn't, nv10 unknown */ if (cv < 0x11) pll_lim->vco1.min_m = 0x7; pll_lim->vco1.max_m = 0xd; } else { if (cv < 0x11) pll_lim->vco1.min_m = 0x8; pll_lim->vco1.max_m = 0xe; } if (cv < 0x17 || cv == 0x1a || cv == 0x20) pll_lim->max_log2p = 4; else pll_lim->max_log2p = 5; pll_lim->max_usable_log2p = pll_lim->max_log2p; } if (!pll_lim->refclk) switch (crystal_straps) { case 0: pll_lim->refclk = 13500; break; case (1 << 6): pll_lim->refclk = 14318; break; case (1 << 22): pll_lim->refclk = 27000; break; case (1 << 22 | 1 << 6): pll_lim->refclk = 25000; break; } NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq); NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq); NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq); NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq); NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n); NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n); NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m); NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m); if (pll_lim->vco2.maxfreq) { NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq); NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq); NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq); NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq); NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n); NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n); NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m); NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m); } if (!pll_lim->max_p) { NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p); NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias); } else { NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p); NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p); } NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk); return 0; } static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset) { /* * offset + 0 (8 bits): Micro version * offset + 1 (8 bits): Minor version * offset + 2 (8 bits): Chip version * offset + 3 (8 bits): Major version */ bios->major_version = bios->data[offset + 3]; bios->chip_version = bios->data[offset + 2]; NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n", bios->data[offset + 3], bios->data[offset + 2], bios->data[offset + 1], bios->data[offset]); } static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset) { /* * Parses the init table segment for pointers used in script execution. * * offset + 0 (16 bits): init script tables pointer * offset + 2 (16 bits): macro index table pointer * offset + 4 (16 bits): macro table pointer * offset + 6 (16 bits): condition table pointer * offset + 8 (16 bits): io condition table pointer * offset + 10 (16 bits): io flag condition table pointer * offset + 12 (16 bits): init function table pointer */ bios->init_script_tbls_ptr = ROM16(bios->data[offset]); bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]); bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]); bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]); bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]); bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]); bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]); } static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the load detect values for g80 cards. * * offset + 0 (16 bits): loadval table pointer */ uint16_t load_table_ptr; uint8_t version, headerlen, entrylen, num_entries; if (bitentry->length != 3) { NV_ERROR(dev, "Do not understand BIT A table\n"); return -EINVAL; } load_table_ptr = ROM16(bios->data[bitentry->offset]); if (load_table_ptr == 0x0) { NV_ERROR(dev, "Pointer to BIT loadval table invalid\n"); return -EINVAL; } version = bios->data[load_table_ptr]; if (version != 0x10) { NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n", version >> 4, version & 0xF); return -ENOSYS; } headerlen = bios->data[load_table_ptr + 1]; entrylen = bios->data[load_table_ptr + 2]; num_entries = bios->data[load_table_ptr + 3]; if (headerlen != 4 || entrylen != 4 || num_entries != 2) { NV_ERROR(dev, "Do not understand BIT loadval table\n"); return -EINVAL; } /* First entry is normal dac, 2nd tv-out perhaps? */ bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff; return 0; } static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * offset + 8 (16 bits): PLL limits table pointer * * There's more in here, but that's unknown. */ if (bitentry->length < 10) { NV_ERROR(dev, "Do not understand BIT C table\n"); return -EINVAL; } bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]); return 0; } static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the flat panel table segment that the bit entry points to. * Starting at bitentry->offset: * * offset + 0 (16 bits): ??? table pointer - seems to have 18 byte * records beginning with a freq. * offset + 2 (16 bits): mode table pointer */ if (bitentry->length != 4) { NV_ERROR(dev, "Do not understand BIT display table\n"); return -EINVAL; } bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]); return 0; } static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the init table segment that the bit entry points to. * * See parse_script_table_pointers for layout */ if (bitentry->length < 14) { NV_ERROR(dev, "Do not understand init table\n"); return -EINVAL; } parse_script_table_pointers(bios, bitentry->offset); if (bitentry->length >= 16) bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]); if (bitentry->length >= 18) bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]); return 0; } static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * BIT 'i' (info?) table * * offset + 0 (32 bits): BIOS version dword (as in B table) * offset + 5 (8 bits): BIOS feature byte (same as for BMP?) * offset + 13 (16 bits): pointer to table containing DAC load * detection comparison values * * There's other things in the table, purpose unknown */ uint16_t daccmpoffset; uint8_t dacver, dacheaderlen; if (bitentry->length < 6) { NV_ERROR(dev, "BIT i table too short for needed information\n"); return -EINVAL; } parse_bios_version(dev, bios, bitentry->offset); /* * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's * Quadro identity crisis), other bits possibly as for BMP feature byte */ bios->feature_byte = bios->data[bitentry->offset + 5]; bios->is_mobile = bios->feature_byte & FEATURE_MOBILE; if (bitentry->length < 15) { NV_WARN(dev, "BIT i table not long enough for DAC load " "detection comparison table\n"); return -EINVAL; } daccmpoffset = ROM16(bios->data[bitentry->offset + 13]); /* doesn't exist on g80 */ if (!daccmpoffset) return 0; /* * The first value in the table, following the header, is the * comparison value, the second entry is a comparison value for * TV load detection. */ dacver = bios->data[daccmpoffset]; dacheaderlen = bios->data[daccmpoffset + 1]; if (dacver != 0x00 && dacver != 0x10) { NV_WARN(dev, "DAC load detection comparison table version " "%d.%d not known\n", dacver >> 4, dacver & 0xf); return -ENOSYS; } bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]); bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]); return 0; } static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the LVDS table segment that the bit entry points to. * Starting at bitentry->offset: * * offset + 0 (16 bits): LVDS strap xlate table pointer */ if (bitentry->length != 2) { NV_ERROR(dev, "Do not understand BIT LVDS table\n"); return -EINVAL; } /* * No idea if it's still called the LVDS manufacturer table, but * the concept's close enough. */ bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]); return 0; } static int parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * offset + 2 (8 bits): number of options in an * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set * offset + 3 (16 bits): pointer to strap xlate table for RAM * restrict option selection * * There's a bunch of bits in this table other than the RAM restrict * stuff that we don't use - their use currently unknown */ /* * Older bios versions don't have a sufficiently long table for * what we want */ if (bitentry->length < 0x5) return 0; if (bitentry->id[1] < 2) { bios->ram_restrict_group_count = bios->data[bitentry->offset + 2]; bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]); } else { bios->ram_restrict_group_count = bios->data[bitentry->offset + 0]; bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]); } return 0; } static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the pointer to the TMDS table * * Starting at bitentry->offset: * * offset + 0 (16 bits): TMDS table pointer * * The TMDS table is typically found just before the DCB table, with a * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being * length?) * * At offset +7 is a pointer to a script, which I don't know how to * run yet. * At offset +9 is a pointer to another script, likewise * Offset +11 has a pointer to a table where the first word is a pxclk * frequency and the second word a pointer to a script, which should be * run if the comparison pxclk frequency is less than the pxclk desired. * This repeats for decreasing comparison frequencies * Offset +13 has a pointer to a similar table * The selection of table (and possibly +7/+9 script) is dictated by * "or" from the DCB. */ uint16_t tmdstableptr, script1, script2; if (bitentry->length != 2) { NV_ERROR(dev, "Do not understand BIT TMDS table\n"); return -EINVAL; } tmdstableptr = ROM16(bios->data[bitentry->offset]); if (!tmdstableptr) { NV_ERROR(dev, "Pointer to TMDS table invalid\n"); return -EINVAL; } NV_INFO(dev, "TMDS table version %d.%d\n", bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf); /* nv50+ has v2.0, but we don't parse it atm */ if (bios->data[tmdstableptr] != 0x11) return -ENOSYS; /* * These two scripts are odd: they don't seem to get run even when * they are not stubbed. */ script1 = ROM16(bios->data[tmdstableptr + 7]); script2 = ROM16(bios->data[tmdstableptr + 9]); if (bios->data[script1] != 'q' || bios->data[script2] != 'q') NV_WARN(dev, "TMDS table script pointers not stubbed\n"); bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]); bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]); return 0; } static int parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the pointer to the G80 output script tables * * Starting at bitentry->offset: * * offset + 0 (16 bits): output script table pointer */ uint16_t outputscripttableptr; if (bitentry->length != 3) { NV_ERROR(dev, "Do not understand BIT U table\n"); return -EINVAL; } outputscripttableptr = ROM16(bios->data[bitentry->offset]); bios->display.script_table_ptr = outputscripttableptr; return 0; } static int parse_bit_displayport_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { bios->display.dp_table_ptr = ROM16(bios->data[bitentry->offset]); return 0; } struct bit_table { const char id; int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *); }; #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry }) static int parse_bit_table(struct nvbios *bios, const uint16_t bitoffset, struct bit_table *table) { struct drm_device *dev = bios->dev; uint8_t maxentries = bios->data[bitoffset + 4]; int i, offset; struct bit_entry bitentry; for (i = 0, offset = bitoffset + 6; i < maxentries; i++, offset += 6) { bitentry.id[0] = bios->data[offset]; if (bitentry.id[0] != table->id) continue; bitentry.id[1] = bios->data[offset + 1]; bitentry.length = ROM16(bios->data[offset + 2]); bitentry.offset = ROM16(bios->data[offset + 4]); return table->parse_fn(dev, bios, &bitentry); } NV_INFO(dev, "BIT table '%c' not found\n", table->id); return -ENOSYS; } static int parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset) { int ret; /* * The only restriction on parsing order currently is having 'i' first * for use of bios->*_version or bios->feature_byte while parsing; * functions shouldn't be actually *doing* anything apart from pulling * data from the image into the bios struct, thus no interdependencies */ ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i)); if (ret) /* info? */ return ret; if (bios->major_version >= 0x60) /* g80+ */ parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A)); ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C)); if (ret) return ret; parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display)); ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init)); if (ret) return ret; parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */ parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds)); parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds)); parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U)); parse_bit_table(bios, bitoffset, &BIT_TABLE('d', displayport)); return 0; } static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset) { /* * Parses the BMP structure for useful things, but does not act on them * * offset + 5: BMP major version * offset + 6: BMP minor version * offset + 9: BMP feature byte * offset + 10: BCD encoded BIOS version * * offset + 18: init script table pointer (for bios versions < 5.10h) * offset + 20: extra init script table pointer (for bios * versions < 5.10h) * * offset + 24: memory init table pointer (used on early bios versions) * offset + 26: SDR memory sequencing setup data table * offset + 28: DDR memory sequencing setup data table * * offset + 54: index of I2C CRTC pair to use for CRT output * offset + 55: index of I2C CRTC pair to use for TV output * offset + 56: index of I2C CRTC pair to use for flat panel output * offset + 58: write CRTC index for I2C pair 0 * offset + 59: read CRTC index for I2C pair 0 * offset + 60: write CRTC index for I2C pair 1 * offset + 61: read CRTC index for I2C pair 1 * * offset + 67: maximum internal PLL frequency (single stage PLL) * offset + 71: minimum internal PLL frequency (single stage PLL) * * offset + 75: script table pointers, as described in * parse_script_table_pointers * * offset + 89: TMDS single link output A table pointer * offset + 91: TMDS single link output B table pointer * offset + 95: LVDS single link output A table pointer * offset + 105: flat panel timings table pointer * offset + 107: flat panel strapping translation table pointer * offset + 117: LVDS manufacturer panel config table pointer * offset + 119: LVDS manufacturer strapping translation table pointer * * offset + 142: PLL limits table pointer * * offset + 156: minimum pixel clock for LVDS dual link */ uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor; uint16_t bmplength; uint16_t legacy_scripts_offset, legacy_i2c_offset; /* load needed defaults in case we can't parse this info */ bios->dcb.i2c[0].write = NV_CIO_CRE_DDC_WR__INDEX; bios->dcb.i2c[0].read = NV_CIO_CRE_DDC_STATUS__INDEX; bios->dcb.i2c[1].write = NV_CIO_CRE_DDC0_WR__INDEX; bios->dcb.i2c[1].read = NV_CIO_CRE_DDC0_STATUS__INDEX; bios->digital_min_front_porch = 0x4b; bios->fmaxvco = 256000; bios->fminvco = 128000; bios->fp.duallink_transition_clk = 90000; bmp_version_major = bmp[5]; bmp_version_minor = bmp[6]; NV_TRACE(dev, "BMP version %d.%d\n", bmp_version_major, bmp_version_minor); /* * Make sure that 0x36 is blank and can't be mistaken for a DCB * pointer on early versions */ if (bmp_version_major < 5) *(uint16_t *)&bios->data[0x36] = 0; /* * Seems that the minor version was 1 for all major versions prior * to 5. Version 6 could theoretically exist, but I suspect BIT * happened instead. */ if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) { NV_ERROR(dev, "You have an unsupported BMP version. " "Please send in your bios\n"); return -ENOSYS; } if (bmp_version_major == 0) /* nothing that's currently useful in this version */ return 0; else if (bmp_version_major == 1) bmplength = 44; /* exact for 1.01 */ else if (bmp_version_major == 2) bmplength = 48; /* exact for 2.01 */ else if (bmp_version_major == 3) bmplength = 54; /* guessed - mem init tables added in this version */ else if (bmp_version_major == 4 || bmp_version_minor < 0x1) /* don't know if 5.0 exists... */ bmplength = 62; /* guessed - BMP I2C indices added in version 4*/ else if (bmp_version_minor < 0x6) bmplength = 67; /* exact for 5.01 */ else if (bmp_version_minor < 0x10) bmplength = 75; /* exact for 5.06 */ else if (bmp_version_minor == 0x10) bmplength = 89; /* exact for 5.10h */ else if (bmp_version_minor < 0x14) bmplength = 118; /* exact for 5.11h */ else if (bmp_version_minor < 0x24) /* * Not sure of version where pll limits came in; * certainly exist by 0x24 though. */ /* length not exact: this is long enough to get lvds members */ bmplength = 123; else if (bmp_version_minor < 0x27) /* * Length not exact: this is long enough to get pll limit * member */ bmplength = 144; else /* * Length not exact: this is long enough to get dual link * transition clock. */ bmplength = 158; /* checksum */ if (nv_cksum(bmp, 8)) { NV_ERROR(dev, "Bad BMP checksum\n"); return -EINVAL; } /* * Bit 4 seems to indicate either a mobile bios or a quadro card -- * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl * (not nv10gl), bit 5 that the flat panel tables are present, and * bit 6 a tv bios. */ bios->feature_byte = bmp[9]; parse_bios_version(dev, bios, offset + 10); if (bmp_version_major < 5 || bmp_version_minor < 0x10) bios->old_style_init = true; legacy_scripts_offset = 18; if (bmp_version_major < 2) legacy_scripts_offset -= 4; bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]); bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]); if (bmp_version_major > 2) { /* appears in BMP 3 */ bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]); bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]); bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]); } legacy_i2c_offset = 0x48; /* BMP version 2 & 3 */ if (bmplength > 61) legacy_i2c_offset = offset + 54; bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset]; bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1]; bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2]; if (bios->data[legacy_i2c_offset + 4]) bios->dcb.i2c[0].write = bios->data[legacy_i2c_offset + 4]; if (bios->data[legacy_i2c_offset + 5]) bios->dcb.i2c[0].read = bios->data[legacy_i2c_offset + 5]; if (bios->data[legacy_i2c_offset + 6]) bios->dcb.i2c[1].write = bios->data[legacy_i2c_offset + 6]; if (bios->data[legacy_i2c_offset + 7]) bios->dcb.i2c[1].read = bios->data[legacy_i2c_offset + 7]; if (bmplength > 74) { bios->fmaxvco = ROM32(bmp[67]); bios->fminvco = ROM32(bmp[71]); } if (bmplength > 88) parse_script_table_pointers(bios, offset + 75); if (bmplength > 94) { bios->tmds.output0_script_ptr = ROM16(bmp[89]); bios->tmds.output1_script_ptr = ROM16(bmp[91]); /* * Never observed in use with lvds scripts, but is reused for * 18/24 bit panel interface default for EDID equipped panels * (if_is_24bit not set directly to avoid any oscillation). */ bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]); } if (bmplength > 108) { bios->fp.fptablepointer = ROM16(bmp[105]); bios->fp.fpxlatetableptr = ROM16(bmp[107]); bios->fp.xlatwidth = 1; } if (bmplength > 120) { bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]); bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]); } if (bmplength > 143) bios->pll_limit_tbl_ptr = ROM16(bmp[142]); if (bmplength > 157) bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10; return 0; } static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len) { int i, j; for (i = 0; i <= (n - len); i++) { for (j = 0; j < len; j++) if (data[i + j] != str[j]) break; if (j == len) return i; } return 0; } static struct dcb_gpio_entry * new_gpio_entry(struct nvbios *bios) { struct dcb_gpio_table *gpio = &bios->dcb.gpio; return &gpio->entry[gpio->entries++]; } struct dcb_gpio_entry * nouveau_bios_gpio_entry(struct drm_device *dev, enum dcb_gpio_tag tag) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; int i; for (i = 0; i < bios->dcb.gpio.entries; i++) { if (bios->dcb.gpio.entry[i].tag != tag) continue; return &bios->dcb.gpio.entry[i]; } return NULL; } static void parse_dcb30_gpio_entry(struct nvbios *bios, uint16_t offset) { struct dcb_gpio_entry *gpio; uint16_t ent = ROM16(bios->data[offset]); uint8_t line = ent & 0x1f, tag = ent >> 5 & 0x3f, flags = ent >> 11 & 0x1f; if (tag == 0x3f) return; gpio = new_gpio_entry(bios); gpio->tag = tag; gpio->line = line; gpio->invert = flags != 4; gpio->entry = ent; } static void parse_dcb40_gpio_entry(struct nvbios *bios, uint16_t offset) { uint32_t entry = ROM32(bios->data[offset]); struct dcb_gpio_entry *gpio; if ((entry & 0x0000ff00) == 0x0000ff00) return; gpio = new_gpio_entry(bios); gpio->tag = (entry & 0x0000ff00) >> 8; gpio->line = (entry & 0x0000001f) >> 0; gpio->state_default = (entry & 0x01000000) >> 24; gpio->state[0] = (entry & 0x18000000) >> 27; gpio->state[1] = (entry & 0x60000000) >> 29; gpio->entry = entry; } static void parse_dcb_gpio_table(struct nvbios *bios) { struct drm_device *dev = bios->dev; uint16_t gpio_table_ptr = bios->dcb.gpio_table_ptr; uint8_t *gpio_table = &bios->data[gpio_table_ptr]; int header_len = gpio_table[1], entries = gpio_table[2], entry_len = gpio_table[3]; void (*parse_entry)(struct nvbios *, uint16_t) = NULL; int i; if (bios->dcb.version >= 0x40) { if (gpio_table_ptr && entry_len != 4) { NV_WARN(dev, "Invalid DCB GPIO table entry length.\n"); return; } parse_entry = parse_dcb40_gpio_entry; } else if (bios->dcb.version >= 0x30) { if (gpio_table_ptr && entry_len != 2) { NV_WARN(dev, "Invalid DCB GPIO table entry length.\n"); return; } parse_entry = parse_dcb30_gpio_entry; } else if (bios->dcb.version >= 0x22) { /* * DCBs older than v3.0 don't really have a GPIO * table, instead they keep some GPIO info at fixed * locations. */ uint16_t dcbptr = ROM16(bios->data[0x36]); uint8_t *tvdac_gpio = &bios->data[dcbptr - 5]; if (tvdac_gpio[0] & 1) { struct dcb_gpio_entry *gpio = new_gpio_entry(bios); gpio->tag = DCB_GPIO_TVDAC0; gpio->line = tvdac_gpio[1] >> 4; gpio->invert = tvdac_gpio[0] & 2; } } else { /* * No systematic way to store GPIO info on pre-v2.2 * DCBs, try to match the PCI device IDs. */ /* Apple iMac G4 NV18 */ if (dev->pdev->device == 0x0189 && dev->pdev->subsystem_vendor == 0x10de && dev->pdev->subsystem_device == 0x0010) { struct dcb_gpio_entry *gpio = new_gpio_entry(bios); gpio->tag = DCB_GPIO_TVDAC0; gpio->line = 4; } } if (!gpio_table_ptr) return; if (entries > DCB_MAX_NUM_GPIO_ENTRIES) { NV_WARN(dev, "Too many entries in the DCB GPIO table.\n"); entries = DCB_MAX_NUM_GPIO_ENTRIES; } for (i = 0; i < entries; i++) parse_entry(bios, gpio_table_ptr + header_len + entry_len * i); } struct dcb_connector_table_entry * nouveau_bios_connector_entry(struct drm_device *dev, int index) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; struct dcb_connector_table_entry *cte; if (index >= bios->dcb.connector.entries) return NULL; cte = &bios->dcb.connector.entry[index]; if (cte->type == 0xff) return NULL; return cte; } static enum dcb_connector_type divine_connector_type(struct nvbios *bios, int index) { struct dcb_table *dcb = &bios->dcb; unsigned encoders = 0, type = DCB_CONNECTOR_NONE; int i; for (i = 0; i < dcb->entries; i++) { if (dcb->entry[i].connector == index) encoders |= (1 << dcb->entry[i].type); } if (encoders & (1 << OUTPUT_DP)) { if (encoders & (1 << OUTPUT_TMDS)) type = DCB_CONNECTOR_DP; else type = DCB_CONNECTOR_eDP; } else if (encoders & (1 << OUTPUT_TMDS)) { if (encoders & (1 << OUTPUT_ANALOG)) type = DCB_CONNECTOR_DVI_I; else type = DCB_CONNECTOR_DVI_D; } else if (encoders & (1 << OUTPUT_ANALOG)) { type = DCB_CONNECTOR_VGA; } else if (encoders & (1 << OUTPUT_LVDS)) { type = DCB_CONNECTOR_LVDS; } else if (encoders & (1 << OUTPUT_TV)) { type = DCB_CONNECTOR_TV_0; } return type; } static void apply_dcb_connector_quirks(struct nvbios *bios, int idx) { struct dcb_connector_table_entry *cte = &bios->dcb.connector.entry[idx]; struct drm_device *dev = bios->dev; /* Gigabyte NX85T */ if ((dev->pdev->device == 0x0421) && (dev->pdev->subsystem_vendor == 0x1458) && (dev->pdev->subsystem_device == 0x344c)) { if (cte->type == DCB_CONNECTOR_HDMI_1) cte->type = DCB_CONNECTOR_DVI_I; } } static void parse_dcb_connector_table(struct nvbios *bios) { struct drm_device *dev = bios->dev; struct dcb_connector_table *ct = &bios->dcb.connector; struct dcb_connector_table_entry *cte; uint8_t *conntab = &bios->data[bios->dcb.connector_table_ptr]; uint8_t *entry; int i; if (!bios->dcb.connector_table_ptr) { NV_DEBUG_KMS(dev, "No DCB connector table present\n"); return; } NV_INFO(dev, "DCB connector table: VHER 0x%02x %d %d %d\n", conntab[0], conntab[1], conntab[2], conntab[3]); if ((conntab[0] != 0x30 && conntab[0] != 0x40) || (conntab[3] != 2 && conntab[3] != 4)) { NV_ERROR(dev, " Unknown! Please report.\n"); return; } ct->entries = conntab[2]; entry = conntab + conntab[1]; cte = &ct->entry[0]; for (i = 0; i < conntab[2]; i++, entry += conntab[3], cte++) { cte->index = i; if (conntab[3] == 2) cte->entry = ROM16(entry[0]); else cte->entry = ROM32(entry[0]); cte->type = (cte->entry & 0x000000ff) >> 0; cte->index2 = (cte->entry & 0x00000f00) >> 8; switch (cte->entry & 0x00033000) { case 0x00001000: cte->gpio_tag = 0x07; break; case 0x00002000: cte->gpio_tag = 0x08; break; case 0x00010000: cte->gpio_tag = 0x51; break; case 0x00020000: cte->gpio_tag = 0x52; break; default: cte->gpio_tag = 0xff; break; } if (cte->type == 0xff) continue; apply_dcb_connector_quirks(bios, i); NV_INFO(dev, " %d: 0x%08x: type 0x%02x idx %d tag 0x%02x\n", i, cte->entry, cte->type, cte->index, cte->gpio_tag); /* check for known types, fallback to guessing the type * from attached encoders if we hit an unknown. */ switch (cte->type) { case DCB_CONNECTOR_VGA: case DCB_CONNECTOR_TV_0: case DCB_CONNECTOR_TV_1: case DCB_CONNECTOR_TV_3: case DCB_CONNECTOR_DVI_I: case DCB_CONNECTOR_DVI_D: case DCB_CONNECTOR_LVDS: case DCB_CONNECTOR_DP: case DCB_CONNECTOR_eDP: case DCB_CONNECTOR_HDMI_0: case DCB_CONNECTOR_HDMI_1: break; default: cte->type = divine_connector_type(bios, cte->index); NV_WARN(dev, "unknown type, using 0x%02x\n", cte->type); break; } if (nouveau_override_conntype) { int type = divine_connector_type(bios, cte->index); if (type != cte->type) NV_WARN(dev, " -> type 0x%02x\n", cte->type); } } } static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb) { struct dcb_entry *entry = &dcb->entry[dcb->entries]; memset(entry, 0, sizeof(struct dcb_entry)); entry->index = dcb->entries++; return entry; } static void fabricate_vga_output(struct dcb_table *dcb, int i2c, int heads) { struct dcb_entry *entry = new_dcb_entry(dcb); entry->type = 0; entry->i2c_index = i2c; entry->heads = heads; entry->location = DCB_LOC_ON_CHIP; entry->or = 1; } static void fabricate_dvi_i_output(struct dcb_table *dcb, bool twoHeads) { struct dcb_entry *entry = new_dcb_entry(dcb); entry->type = 2; entry->i2c_index = LEGACY_I2C_PANEL; entry->heads = twoHeads ? 3 : 1; entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */ entry->or = 1; /* means |0x10 gets set on CRE_LCD__INDEX */ entry->duallink_possible = false; /* SiI164 and co. are single link */ #if 0 /* * For dvi-a either crtc probably works, but my card appears to only * support dvi-d. "nvidia" still attempts to program it for dvi-a, * doing the full fp output setup (program 0x6808.. fp dimension regs, * setting 0x680848 to 0x10000111 to enable, maybe setting 0x680880); * the monitor picks up the mode res ok and lights up, but no pixel * data appears, so the board manufacturer probably connected up the * sync lines, but missed the video traces / components * * with this introduction, dvi-a left as an exercise for the reader. */ fabricate_vga_output(dcb, LEGACY_I2C_PANEL, entry->heads); #endif } static void fabricate_tv_output(struct dcb_table *dcb, bool twoHeads) { struct dcb_entry *entry = new_dcb_entry(dcb); entry->type = 1; entry->i2c_index = LEGACY_I2C_TV; entry->heads = twoHeads ? 3 : 1; entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */ } static bool parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb, uint32_t conn, uint32_t conf, struct dcb_entry *entry) { entry->type = conn & 0xf; entry->i2c_index = (conn >> 4) & 0xf; entry->heads = (conn >> 8) & 0xf; if (dcb->version >= 0x40) entry->connector = (conn >> 12) & 0xf; entry->bus = (conn >> 16) & 0xf; entry->location = (conn >> 20) & 0x3; entry->or = (conn >> 24) & 0xf; switch (entry->type) { case OUTPUT_ANALOG: /* * Although the rest of a CRT conf dword is usually * zeros, mac biosen have stuff there so we must mask */ entry->crtconf.maxfreq = (dcb->version < 0x30) ? (conf & 0xffff) * 10 : (conf & 0xff) * 10000; break; case OUTPUT_LVDS: { uint32_t mask; if (conf & 0x1) entry->lvdsconf.use_straps_for_mode = true; if (dcb->version < 0x22) { mask = ~0xd; /* * The laptop in bug 14567 lies and claims to not use * straps when it does, so assume all DCB 2.0 laptops * use straps, until a broken EDID using one is produced */ entry->lvdsconf.use_straps_for_mode = true; /* * Both 0x4 and 0x8 show up in v2.0 tables; assume they * mean the same thing (probably wrong, but might work) */ if (conf & 0x4 || conf & 0x8) entry->lvdsconf.use_power_scripts = true; } else { mask = ~0x7; if (conf & 0x2) entry->lvdsconf.use_acpi_for_edid = true; if (conf & 0x4) entry->lvdsconf.use_power_scripts = true; entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4; } if (conf & mask) { /* * Until we even try to use these on G8x, it's * useless reporting unknown bits. They all are. */ if (dcb->version >= 0x40) break; NV_ERROR(dev, "Unknown LVDS configuration bits, " "please report\n"); } break; } case OUTPUT_TV: { if (dcb->version >= 0x30) entry->tvconf.has_component_output = conf & (0x8 << 4); else entry->tvconf.has_component_output = false; break; } case OUTPUT_DP: entry->dpconf.sor.link = (conf & 0x00000030) >> 4; entry->dpconf.link_bw = (conf & 0x00e00000) >> 21; switch ((conf & 0x0f000000) >> 24) { case 0xf: entry->dpconf.link_nr = 4; break; case 0x3: entry->dpconf.link_nr = 2; break; default: entry->dpconf.link_nr = 1; break; } break; case OUTPUT_TMDS: if (dcb->version >= 0x40) entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4; else if (dcb->version >= 0x30) entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8; else if (dcb->version >= 0x22) entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4; break; case OUTPUT_EOL: /* weird g80 mobile type that "nv" treats as a terminator */ dcb->entries--; return false; default: break; } if (dcb->version < 0x40) { /* Normal entries consist of a single bit, but dual link has * the next most significant bit set too */ entry->duallink_possible = ((1 << (ffs(entry->or) - 1)) * 3 == entry->or); } else { entry->duallink_possible = (entry->sorconf.link == 3); } /* unsure what DCB version introduces this, 3.0? */ if (conf & 0x100000) entry->i2c_upper_default = true; return true; } static bool parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb, uint32_t conn, uint32_t conf, struct dcb_entry *entry) { switch (conn & 0x0000000f) { case 0: entry->type = OUTPUT_ANALOG; break; case 1: entry->type = OUTPUT_TV; break; case 2: case 3: entry->type = OUTPUT_LVDS; break; case 4: switch ((conn & 0x000000f0) >> 4) { case 0: entry->type = OUTPUT_TMDS; break; case 1: entry->type = OUTPUT_LVDS; break; default: NV_ERROR(dev, "Unknown DCB subtype 4/%d\n", (conn & 0x000000f0) >> 4); return false; } break; default: NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f); return false; } entry->i2c_index = (conn & 0x0003c000) >> 14; entry->heads = ((conn & 0x001c0000) >> 18) + 1; entry->or = entry->heads; /* same as heads, hopefully safe enough */ entry->location = (conn & 0x01e00000) >> 21; entry->bus = (conn & 0x0e000000) >> 25; entry->duallink_possible = false; switch (entry->type) { case OUTPUT_ANALOG: entry->crtconf.maxfreq = (conf & 0xffff) * 10; break; case OUTPUT_TV: entry->tvconf.has_component_output = false; break; case OUTPUT_LVDS: if ((conn & 0x00003f00) != 0x10) entry->lvdsconf.use_straps_for_mode = true; entry->lvdsconf.use_power_scripts = true; break; default: break; } return true; } static bool parse_dcb_entry(struct drm_device *dev, struct dcb_table *dcb, uint32_t conn, uint32_t conf) { struct dcb_entry *entry = new_dcb_entry(dcb); bool ret; if (dcb->version >= 0x20) ret = parse_dcb20_entry(dev, dcb, conn, conf, entry); else ret = parse_dcb15_entry(dev, dcb, conn, conf, entry); if (!ret) return ret; read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table, entry->i2c_index, &dcb->i2c[entry->i2c_index]); return true; } static void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb) { /* * DCB v2.0 lists each output combination separately. * Here we merge compatible entries to have fewer outputs, with * more options */ int i, newentries = 0; for (i = 0; i < dcb->entries; i++) { struct dcb_entry *ient = &dcb->entry[i]; int j; for (j = i + 1; j < dcb->entries; j++) { struct dcb_entry *jent = &dcb->entry[j]; if (jent->type == 100) /* already merged entry */ continue; /* merge heads field when all other fields the same */ if (jent->i2c_index == ient->i2c_index && jent->type == ient->type && jent->location == ient->location && jent->or == ient->or) { NV_TRACE(dev, "Merging DCB entries %d and %d\n", i, j); ient->heads |= jent->heads; jent->type = 100; /* dummy value */ } } } /* Compact entries merged into others out of dcb */ for (i = 0; i < dcb->entries; i++) { if (dcb->entry[i].type == 100) continue; if (newentries != i) { dcb->entry[newentries] = dcb->entry[i]; dcb->entry[newentries].index = newentries; } newentries++; } dcb->entries = newentries; } static bool apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf) { /* Dell Precision M6300 * DCB entry 2: 02025312 00000010 * DCB entry 3: 02026312 00000020 * * Identical, except apparently a different connector on a * different SOR link. Not a clue how we're supposed to know * which one is in use if it even shares an i2c line... * * Ignore the connector on the second SOR link to prevent * nasty problems until this is sorted (assuming it's not a * VBIOS bug). */ if ((dev->pdev->device == 0x040d) && (dev->pdev->subsystem_vendor == 0x1028) && (dev->pdev->subsystem_device == 0x019b)) { if (*conn == 0x02026312 && *conf == 0x00000020) return false; } return true; } static int parse_dcb_table(struct drm_device *dev, struct nvbios *bios, bool twoHeads) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct dcb_table *dcb = &bios->dcb; uint16_t dcbptr = 0, i2ctabptr = 0; uint8_t *dcbtable; uint8_t headerlen = 0x4, entries = DCB_MAX_NUM_ENTRIES; bool configblock = true; int recordlength = 8, confofs = 4; int i; /* get the offset from 0x36 */ if (dev_priv->card_type > NV_04) { dcbptr = ROM16(bios->data[0x36]); if (dcbptr == 0x0000) NV_WARN(dev, "No output data (DCB) found in BIOS\n"); } /* this situation likely means a really old card, pre DCB */ if (dcbptr == 0x0) { NV_INFO(dev, "Assuming a CRT output exists\n"); fabricate_vga_output(dcb, LEGACY_I2C_CRT, 1); if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0) fabricate_tv_output(dcb, twoHeads); return 0; } dcbtable = &bios->data[dcbptr]; /* get DCB version */ dcb->version = dcbtable[0]; NV_TRACE(dev, "Found Display Configuration Block version %d.%d\n", dcb->version >> 4, dcb->version & 0xf); if (dcb->version >= 0x20) { /* NV17+ */ uint32_t sig; if (dcb->version >= 0x30) { /* NV40+ */ headerlen = dcbtable[1]; entries = dcbtable[2]; recordlength = dcbtable[3]; i2ctabptr = ROM16(dcbtable[4]); sig = ROM32(dcbtable[6]); dcb->gpio_table_ptr = ROM16(dcbtable[10]); dcb->connector_table_ptr = ROM16(dcbtable[20]); } else { i2ctabptr = ROM16(dcbtable[2]); sig = ROM32(dcbtable[4]); headerlen = 8; } if (sig != 0x4edcbdcb) { NV_ERROR(dev, "Bad Display Configuration Block " "signature (%08X)\n", sig); return -EINVAL; } } else if (dcb->version >= 0x15) { /* some NV11 and NV20 */ char sig[8] = { 0 }; strncpy(sig, (char *)&dcbtable[-7], 7); i2ctabptr = ROM16(dcbtable[2]); recordlength = 10; confofs = 6; if (strcmp(sig, "DEV_REC")) { NV_ERROR(dev, "Bad Display Configuration Block " "signature (%s)\n", sig); return -EINVAL; } } else { /* * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but always * has the same single (crt) entry, even when tv-out present, so * the conclusion is this version cannot really be used. * v1.2 tables (some NV6/10, and NV15+) normally have the same * 5 entries, which are not specific to the card and so no use. * v1.2 does have an I2C table that read_dcb_i2c_table can * handle, but cards exist (nv11 in #14821) with a bad i2c table * pointer, so use the indices parsed in parse_bmp_structure. * v1.1 (NV5+, maybe some NV4) is entirely unhelpful */ NV_TRACEWARN(dev, "No useful information in BIOS output table; " "adding all possible outputs\n"); fabricate_vga_output(dcb, LEGACY_I2C_CRT, 1); /* * Attempt to detect TV before DVI because the test * for the former is more accurate and it rules the * latter out. */ if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0) fabricate_tv_output(dcb, twoHeads); else if (bios->tmds.output0_script_ptr || bios->tmds.output1_script_ptr) fabricate_dvi_i_output(dcb, twoHeads); return 0; } if (!i2ctabptr) NV_WARN(dev, "No pointer to DCB I2C port table\n"); else { dcb->i2c_table = &bios->data[i2ctabptr]; if (dcb->version >= 0x30) dcb->i2c_default_indices = dcb->i2c_table[4]; /* * Parse the "management" I2C bus, used for hardware * monitoring and some external TMDS transmitters. */ if (dcb->version >= 0x22) { int idx = (dcb->version >= 0x40 ? dcb->i2c_default_indices & 0xf : 2); read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table, idx, &dcb->i2c[idx]); } } if (entries > DCB_MAX_NUM_ENTRIES) entries = DCB_MAX_NUM_ENTRIES; for (i = 0; i < entries; i++) { uint32_t connection, config = 0; connection = ROM32(dcbtable[headerlen + recordlength * i]); if (configblock) config = ROM32(dcbtable[headerlen + confofs + recordlength * i]); /* seen on an NV11 with DCB v1.5 */ if (connection == 0x00000000) break; /* seen on an NV17 with DCB v2.0 */ if (connection == 0xffffffff) break; if ((connection & 0x0000000f) == 0x0000000f) continue; if (!apply_dcb_encoder_quirks(dev, i, &connection, &config)) continue; NV_TRACEWARN(dev, "Raw DCB entry %d: %08x %08x\n", dcb->entries, connection, config); if (!parse_dcb_entry(dev, dcb, connection, config)) break; } /* * apart for v2.1+ not being known for requiring merging, this * guarantees dcbent->index is the index of the entry in the rom image */ if (dcb->version < 0x21) merge_like_dcb_entries(dev, dcb); if (!dcb->entries) return -ENXIO; parse_dcb_gpio_table(bios); parse_dcb_connector_table(bios); return 0; } static void fixup_legacy_connector(struct nvbios *bios) { struct dcb_table *dcb = &bios->dcb; int i, i2c, i2c_conn[DCB_MAX_NUM_I2C_ENTRIES] = { }; /* * DCB 3.0 also has the table in most cases, but there are some cards * where the table is filled with stub entries, and the DCB entriy * indices are all 0. We don't need the connector indices on pre-G80 * chips (yet?) so limit the use to DCB 4.0 and above. */ if (dcb->version >= 0x40) return; dcb->connector.entries = 0; /* * No known connector info before v3.0, so make it up. the rule here * is: anything on the same i2c bus is considered to be on the same * connector. any output without an associated i2c bus is assigned * its own unique connector index. */ for (i = 0; i < dcb->entries; i++) { /* * Ignore the I2C index for on-chip TV-out, as there * are cards with bogus values (nv31m in bug 23212), * and it's otherwise useless. */ if (dcb->entry[i].type == OUTPUT_TV && dcb->entry[i].location == DCB_LOC_ON_CHIP) dcb->entry[i].i2c_index = 0xf; i2c = dcb->entry[i].i2c_index; if (i2c_conn[i2c]) { dcb->entry[i].connector = i2c_conn[i2c] - 1; continue; } dcb->entry[i].connector = dcb->connector.entries++; if (i2c != 0xf) i2c_conn[i2c] = dcb->connector.entries; } /* Fake the connector table as well as just connector indices */ for (i = 0; i < dcb->connector.entries; i++) { dcb->connector.entry[i].index = i; dcb->connector.entry[i].type = divine_connector_type(bios, i); dcb->connector.entry[i].gpio_tag = 0xff; } } static void fixup_legacy_i2c(struct nvbios *bios) { struct dcb_table *dcb = &bios->dcb; int i; for (i = 0; i < dcb->entries; i++) { if (dcb->entry[i].i2c_index == LEGACY_I2C_CRT) dcb->entry[i].i2c_index = bios->legacy.i2c_indices.crt; if (dcb->entry[i].i2c_index == LEGACY_I2C_PANEL) dcb->entry[i].i2c_index = bios->legacy.i2c_indices.panel; if (dcb->entry[i].i2c_index == LEGACY_I2C_TV) dcb->entry[i].i2c_index = bios->legacy.i2c_indices.tv; } } static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry) { /* * The header following the "HWSQ" signature has the number of entries, * and the entry size * * An entry consists of a dword to write to the sequencer control reg * (0x00001304), followed by the ucode bytes, written sequentially, * starting at reg 0x00001400 */ uint8_t bytes_to_write; uint16_t hwsq_entry_offset; int i; if (bios->data[hwsq_offset] <= entry) { NV_ERROR(dev, "Too few entries in HW sequencer table for " "requested entry\n"); return -ENOENT; } bytes_to_write = bios->data[hwsq_offset + 1]; if (bytes_to_write != 36) { NV_ERROR(dev, "Unknown HW sequencer entry size\n"); return -EINVAL; } NV_TRACE(dev, "Loading NV17 power sequencing microcode\n"); hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write; /* set sequencer control */ bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset])); bytes_to_write -= 4; /* write ucode */ for (i = 0; i < bytes_to_write; i += 4) bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4])); /* twiddle NV_PBUS_DEBUG_4 */ bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18); return 0; } static int load_nv17_hw_sequencer_ucode(struct drm_device *dev, struct nvbios *bios) { /* * BMP based cards, from NV17, need a microcode loading to correctly * control the GPIO etc for LVDS panels * * BIT based cards seem to do this directly in the init scripts * * The microcode entries are found by the "HWSQ" signature. */ const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' }; const int sz = sizeof(hwsq_signature); int hwsq_offset; hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz); if (!hwsq_offset) return 0; /* always use entry 0? */ return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0); } uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; const uint8_t edid_sig[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; uint16_t offset = 0; uint16_t newoffset; int searchlen = NV_PROM_SIZE; if (bios->fp.edid) return bios->fp.edid; while (searchlen) { newoffset = findstr(&bios->data[offset], searchlen, edid_sig, 8); if (!newoffset) return NULL; offset += newoffset; if (!nv_cksum(&bios->data[offset], EDID1_LEN)) break; searchlen -= offset; offset++; } NV_TRACE(dev, "Found EDID in BIOS\n"); return bios->fp.edid = &bios->data[offset]; } void nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table, struct dcb_entry *dcbent) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; struct init_exec iexec = { true, false }; mutex_lock(&bios->lock); bios->display.output = dcbent; parse_init_table(bios, table, &iexec); bios->display.output = NULL; mutex_unlock(&bios->lock); } static bool NVInitVBIOS(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; memset(bios, 0, sizeof(struct nvbios)); mutex_init(&bios->lock); bios->dev = dev; if (!NVShadowVBIOS(dev, bios->data)) return false; bios->length = NV_PROM_SIZE; return true; } static int nouveau_parse_vbios_struct(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' }; const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 }; int offset; offset = findstr(bios->data, bios->length, bit_signature, sizeof(bit_signature)); if (offset) { NV_TRACE(dev, "BIT BIOS found\n"); return parse_bit_structure(bios, offset + 6); } offset = findstr(bios->data, bios->length, bmp_signature, sizeof(bmp_signature)); if (offset) { NV_TRACE(dev, "BMP BIOS found\n"); return parse_bmp_structure(dev, bios, offset); } NV_ERROR(dev, "No known BIOS signature found\n"); return -ENODEV; } int nouveau_run_vbios_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; int i, ret = 0; /* Reset the BIOS head to 0. */ bios->state.crtchead = 0; if (bios->major_version < 5) /* BMP only */ load_nv17_hw_sequencer_ucode(dev, bios); if (bios->execute) { bios->fp.last_script_invoc = 0; bios->fp.lvds_init_run = false; } parse_init_tables(bios); /* * Runs some additional script seen on G8x VBIOSen. The VBIOS' * parser will run this right after the init tables, the binary * driver appears to run it at some point later. */ if (bios->some_script_ptr) { struct init_exec iexec = {true, false}; NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n", bios->some_script_ptr); parse_init_table(bios, bios->some_script_ptr, &iexec); } if (dev_priv->card_type >= NV_50) { for (i = 0; i < bios->dcb.entries; i++) { nouveau_bios_run_display_table(dev, &bios->dcb.entry[i], 0, 0); } } return ret; } static void nouveau_bios_i2c_devices_takedown(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; struct dcb_i2c_entry *entry; int i; entry = &bios->dcb.i2c[0]; for (i = 0; i < DCB_MAX_NUM_I2C_ENTRIES; i++, entry++) nouveau_i2c_fini(dev, entry); } static bool nouveau_bios_posted(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; unsigned htotal; if (dev_priv->chipset >= NV_50) { if (NVReadVgaCrtc(dev, 0, 0x00) == 0 && NVReadVgaCrtc(dev, 0, 0x1a) == 0) return false; return true; } htotal = NVReadVgaCrtc(dev, 0, 0x06); htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8; htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4; htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10; htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11; return (htotal != 0); } int nouveau_bios_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; int ret; if (!NVInitVBIOS(dev)) return -ENODEV; ret = nouveau_parse_vbios_struct(dev); if (ret) return ret; ret = parse_dcb_table(dev, bios, nv_two_heads(dev)); if (ret) return ret; fixup_legacy_i2c(bios); fixup_legacy_connector(bios); if (!bios->major_version) /* we don't run version 0 bios */ return 0; /* init script execution disabled */ bios->execute = false; /* ... unless card isn't POSTed already */ if (!nouveau_bios_posted(dev)) { NV_INFO(dev, "Adaptor not initialised, " "running VBIOS init tables.\n"); bios->execute = true; } ret = nouveau_run_vbios_init(dev); if (ret) return ret; /* feature_byte on BMP is poor, but init always sets CR4B */ if (bios->major_version < 5) bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40; /* all BIT systems need p_f_m_t for digital_min_front_porch */ if (bios->is_mobile || bios->major_version >= 5) ret = parse_fp_mode_table(dev, bios); /* allow subsequent scripts to execute */ bios->execute = true; return 0; } void nouveau_bios_takedown(struct drm_device *dev) { nouveau_bios_i2c_devices_takedown(dev); }