/* * Copyright © 2014-2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "intel_guc.h" #include "intel_guc_ads.h" #include "intel_guc_submission.h" #include "i915_drv.h" static void gen8_guc_raise_irq(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER); } static void gen11_guc_raise_irq(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); I915_WRITE(GEN11_GUC_HOST_INTERRUPT, 0); } static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) { GEM_BUG_ON(!guc->send_regs.base); GEM_BUG_ON(!guc->send_regs.count); GEM_BUG_ON(i >= guc->send_regs.count); return _MMIO(guc->send_regs.base + 4 * i); } void intel_guc_init_send_regs(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); enum forcewake_domains fw_domains = 0; unsigned int i; if (HAS_GUC_CT(dev_priv) && INTEL_GEN(dev_priv) >= 11) { guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; } else { guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); } for (i = 0; i < guc->send_regs.count; i++) { fw_domains |= intel_uncore_forcewake_for_reg(&dev_priv->uncore, guc_send_reg(guc, i), FW_REG_READ | FW_REG_WRITE); } guc->send_regs.fw_domains = fw_domains; } void intel_guc_init_early(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_i915(guc); intel_guc_fw_init_early(guc); intel_guc_ct_init_early(&guc->ct); intel_guc_log_init_early(&guc->log); mutex_init(&guc->send_mutex); spin_lock_init(&guc->irq_lock); guc->send = intel_guc_send_nop; guc->handler = intel_guc_to_host_event_handler_nop; if (INTEL_GEN(i915) >= 11) { guc->notify = gen11_guc_raise_irq; guc->interrupts.reset = gen11_reset_guc_interrupts; guc->interrupts.enable = gen11_enable_guc_interrupts; guc->interrupts.disable = gen11_disable_guc_interrupts; } else { guc->notify = gen8_guc_raise_irq; guc->interrupts.reset = gen9_reset_guc_interrupts; guc->interrupts.enable = gen9_enable_guc_interrupts; guc->interrupts.disable = gen9_disable_guc_interrupts; } } static int guc_init_wq(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); /* * GuC log buffer flush work item has to do register access to * send the ack to GuC and this work item, if not synced before * suspend, can potentially get executed after the GFX device is * suspended. * By marking the WQ as freezable, we don't have to bother about * flushing of this work item from the suspend hooks, the pending * work item if any will be either executed before the suspend * or scheduled later on resume. This way the handling of work * item can be kept same between system suspend & rpm suspend. */ guc->log.relay.flush_wq = alloc_ordered_workqueue("i915-guc_log", WQ_HIGHPRI | WQ_FREEZABLE); if (!guc->log.relay.flush_wq) { DRM_ERROR("Couldn't allocate workqueue for GuC log\n"); return -ENOMEM; } /* * Even though both sending GuC action, and adding a new workitem to * GuC workqueue are serialized (each with its own locking), since * we're using mutliple engines, it's possible that we're going to * issue a preempt request with two (or more - each for different * engine) workitems in GuC queue. In this situation, GuC may submit * all of them, which will make us very confused. * Our preemption contexts may even already be complete - before we * even had the chance to sent the preempt action to GuC!. Rather * than introducing yet another lock, we can just use ordered workqueue * to make sure we're always sending a single preemption request with a * single workitem. */ if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) && USES_GUC_SUBMISSION(dev_priv)) { guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt", WQ_HIGHPRI); if (!guc->preempt_wq) { destroy_workqueue(guc->log.relay.flush_wq); DRM_ERROR("Couldn't allocate workqueue for GuC " "preemption\n"); return -ENOMEM; } } return 0; } static void guc_fini_wq(struct intel_guc *guc) { struct workqueue_struct *wq; wq = fetch_and_zero(&guc->preempt_wq); if (wq) destroy_workqueue(wq); wq = fetch_and_zero(&guc->log.relay.flush_wq); if (wq) destroy_workqueue(wq); } int intel_guc_init_misc(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_i915(guc); int ret; ret = guc_init_wq(guc); if (ret) return ret; intel_uc_fw_fetch(i915, &guc->fw); return 0; } void intel_guc_fini_misc(struct intel_guc *guc) { intel_uc_fw_cleanup_fetch(&guc->fw); guc_fini_wq(guc); } static int guc_shared_data_create(struct intel_guc *guc) { struct i915_vma *vma; void *vaddr; vma = intel_guc_allocate_vma(guc, PAGE_SIZE); if (IS_ERR(vma)) return PTR_ERR(vma); vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { i915_vma_unpin_and_release(&vma, 0); return PTR_ERR(vaddr); } guc->shared_data = vma; guc->shared_data_vaddr = vaddr; return 0; } static void guc_shared_data_destroy(struct intel_guc *guc) { i915_vma_unpin_and_release(&guc->shared_data, I915_VMA_RELEASE_MAP); } int intel_guc_init(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); int ret; ret = intel_uc_fw_init(&guc->fw); if (ret) goto err_fetch; ret = guc_shared_data_create(guc); if (ret) goto err_fw; GEM_BUG_ON(!guc->shared_data); ret = intel_guc_log_create(&guc->log); if (ret) goto err_shared; ret = intel_guc_ads_create(guc); if (ret) goto err_log; GEM_BUG_ON(!guc->ads_vma); if (HAS_GUC_CT(dev_priv)) { ret = intel_guc_ct_init(&guc->ct); if (ret) goto err_ads; } /* We need to notify the guc whenever we change the GGTT */ i915_ggtt_enable_guc(dev_priv); return 0; err_ads: intel_guc_ads_destroy(guc); err_log: intel_guc_log_destroy(&guc->log); err_shared: guc_shared_data_destroy(guc); err_fw: intel_uc_fw_fini(&guc->fw); err_fetch: intel_uc_fw_cleanup_fetch(&guc->fw); return ret; } void intel_guc_fini(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); i915_ggtt_disable_guc(dev_priv); if (HAS_GUC_CT(dev_priv)) intel_guc_ct_fini(&guc->ct); intel_guc_ads_destroy(guc); intel_guc_log_destroy(&guc->log); guc_shared_data_destroy(guc); intel_uc_fw_fini(&guc->fw); intel_uc_fw_cleanup_fetch(&guc->fw); } static u32 guc_ctl_debug_flags(struct intel_guc *guc) { u32 level = intel_guc_log_get_level(&guc->log); u32 flags = 0; if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) flags |= GUC_LOG_DISABLED; else flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << GUC_LOG_VERBOSITY_SHIFT; return flags; } static u32 guc_ctl_feature_flags(struct intel_guc *guc) { u32 flags = 0; if (!USES_GUC_SUBMISSION(guc_to_i915(guc))) flags |= GUC_CTL_DISABLE_SCHEDULER; return flags; } static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc) { u32 flags = 0; if (USES_GUC_SUBMISSION(guc_to_i915(guc))) { u32 ctxnum, base; base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool); ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16; base >>= PAGE_SHIFT; flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) | (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT); } return flags; } static u32 guc_ctl_log_params_flags(struct intel_guc *guc) { u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; u32 flags; #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) #define UNIT SZ_1M #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE #else #define UNIT SZ_4K #define FLAG 0 #endif BUILD_BUG_ON(!CRASH_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); BUILD_BUG_ON(!DPC_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); BUILD_BUG_ON(!ISR_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | FLAG | ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | (offset << GUC_LOG_BUF_ADDR_SHIFT); #undef UNIT #undef FLAG return flags; } static u32 guc_ctl_ads_flags(struct intel_guc *guc) { u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; u32 flags = ads << GUC_ADS_ADDR_SHIFT; return flags; } /* * Initialise the GuC parameter block before starting the firmware * transfer. These parameters are read by the firmware on startup * and cannot be changed thereafter. */ void intel_guc_init_params(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 params[GUC_CTL_MAX_DWORDS]; int i; memset(params, 0, sizeof(params)); params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc); params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); /* * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and * they are power context saved so it's ok to release forcewake * when we are done here and take it again at xfer time. */ intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_BLITTER); I915_WRITE(SOFT_SCRATCH(0), 0); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) I915_WRITE(SOFT_SCRATCH(1 + i), params[i]); intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_BLITTER); } int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size) { WARN(1, "Unexpected send: action=%#x\n", *action); return -ENODEV; } void intel_guc_to_host_event_handler_nop(struct intel_guc *guc) { WARN(1, "Unexpected event: no suitable handler\n"); } /* * This function implements the MMIO based host to GuC interface. */ int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_uncore *uncore = &dev_priv->uncore; u32 status; int i; int ret; GEM_BUG_ON(!len); GEM_BUG_ON(len > guc->send_regs.count); /* We expect only action code */ GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); /* If CT is available, we expect to use MMIO only during init/fini */ GEM_BUG_ON(HAS_GUC_CT(dev_priv) && *action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); mutex_lock(&guc->send_mutex); intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); for (i = 0; i < len; i++) intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]); intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); intel_guc_notify(guc); /* * No GuC command should ever take longer than 10ms. * Fast commands should still complete in 10us. */ ret = __intel_wait_for_register_fw(uncore, guc_send_reg(guc, 0), INTEL_GUC_MSG_TYPE_MASK, INTEL_GUC_MSG_TYPE_RESPONSE << INTEL_GUC_MSG_TYPE_SHIFT, 10, 10, &status); /* If GuC explicitly returned an error, convert it to -EIO */ if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) ret = -EIO; if (ret) { DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", action[0], ret, status); goto out; } if (response_buf) { int count = min(response_buf_size, guc->send_regs.count - 1); for (i = 0; i < count; i++) response_buf[i] = I915_READ(guc_send_reg(guc, i + 1)); } /* Use data from the GuC response as our return value */ ret = INTEL_GUC_MSG_TO_DATA(status); out: intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); mutex_unlock(&guc->send_mutex); return ret; } void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 msg, val; /* * Sample the log buffer flush related bits & clear them out now * itself from the message identity register to minimize the * probability of losing a flush interrupt, when there are back * to back flush interrupts. * There can be a new flush interrupt, for different log buffer * type (like for ISR), whilst Host is handling one (for DPC). * Since same bit is used in message register for ISR & DPC, it * could happen that GuC sets the bit for 2nd interrupt but Host * clears out the bit on handling the 1st interrupt. */ disable_rpm_wakeref_asserts(dev_priv); spin_lock(&guc->irq_lock); val = I915_READ(SOFT_SCRATCH(15)); msg = val & guc->msg_enabled_mask; I915_WRITE(SOFT_SCRATCH(15), val & ~msg); spin_unlock(&guc->irq_lock); enable_rpm_wakeref_asserts(dev_priv); intel_guc_to_host_process_recv_msg(guc, &msg, 1); } int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, const u32 *payload, u32 len) { u32 msg; if (unlikely(!len)) return -EPROTO; /* Make sure to handle only enabled messages */ msg = payload[0] & guc->msg_enabled_mask; if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) intel_guc_log_handle_flush_event(&guc->log); return 0; } int intel_guc_sample_forcewake(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 action[2]; action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE; /* WaRsDisableCoarsePowerGating:skl,cnl */ if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) action[1] = 0; else /* bit 0 and 1 are for Render and Media domain separately */ action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } /** * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode * @guc: intel_guc structure * @rsa_offset: rsa offset w.r.t ggtt base of huc vma * * Triggers a HuC firmware authentication request to the GuC via intel_guc_send * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by * intel_huc_auth(). * * Return: non-zero code on error */ int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) { u32 action[] = { INTEL_GUC_ACTION_AUTHENTICATE_HUC, rsa_offset }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } /** * intel_guc_suspend() - notify GuC entering suspend state * @guc: the guc */ int intel_guc_suspend(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); int ret; u32 status; u32 action[] = { INTEL_GUC_ACTION_ENTER_S_STATE, GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ }; /* * The ENTER_S_STATE action queues the save/restore operation in GuC FW * and then returns, so waiting on the H2G is not enough to guarantee * GuC is done. When all the processing is done, GuC writes * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll * on that. Note that GuC does not ensure that the value in the register * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is * in progress so we need to take care of that ourselves as well. */ I915_WRITE(SOFT_SCRATCH(14), INTEL_GUC_SLEEP_STATE_INVALID_MASK); ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); if (ret) return ret; ret = __intel_wait_for_register(&dev_priv->uncore, SOFT_SCRATCH(14), INTEL_GUC_SLEEP_STATE_INVALID_MASK, 0, 0, 10, &status); if (ret) return ret; if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) { DRM_ERROR("GuC failed to change sleep state. " "action=0x%x, err=%u\n", action[0], status); return -EIO; } return 0; } /** * intel_guc_reset_engine() - ask GuC to reset an engine * @guc: intel_guc structure * @engine: engine to be reset */ int intel_guc_reset_engine(struct intel_guc *guc, struct intel_engine_cs *engine) { u32 data[7]; GEM_BUG_ON(!guc->execbuf_client); data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET; data[1] = engine->guc_id; data[2] = 0; data[3] = 0; data[4] = 0; data[5] = guc->execbuf_client->stage_id; data[6] = intel_guc_ggtt_offset(guc, guc->shared_data); return intel_guc_send(guc, data, ARRAY_SIZE(data)); } /** * intel_guc_resume() - notify GuC resuming from suspend state * @guc: the guc */ int intel_guc_resume(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_EXIT_S_STATE, GUC_POWER_D0, }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } /** * DOC: GuC Address Space * * The layout of GuC address space is shown below: * * :: * * +===========> +====================+ <== FFFF_FFFF * ^ | Reserved | * | +====================+ <== GUC_GGTT_TOP * | | | * | | DRAM | * GuC | | * Address +===> +====================+ <== GuC ggtt_pin_bias * Space ^ | | * | | | | * | GuC | GuC | * | WOPCM | WOPCM | * | Size | | * | | | | * v v | | * +=======+===> +====================+ <== 0000_0000 * * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. */ /** * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage * @guc: the guc * @size: size of area to allocate (both virtual space and memory) * * This is a wrapper to create an object for use with the GuC. In order to * use it inside the GuC, an object needs to be pinned lifetime, so we allocate * both some backing storage and a range inside the Global GTT. We must pin * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that * range is reserved inside GuC. * * Return: A i915_vma if successful, otherwise an ERR_PTR. */ struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct drm_i915_gem_object *obj; struct i915_vma *vma; u64 flags; int ret; obj = i915_gem_object_create_shmem(dev_priv, size); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL); if (IS_ERR(vma)) goto err; flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); ret = i915_vma_pin(vma, 0, 0, flags); if (ret) { vma = ERR_PTR(ret); goto err; } return vma; err: i915_gem_object_put(obj); return vma; } /** * intel_guc_reserved_gtt_size() * @guc: intel_guc structure * * The GuC WOPCM mapping shadows the lower part of the GGTT, so if we are using * GuC we can't have any objects pinned in that region. This function returns * the size of the shadowed region. * * Returns: * 0 if GuC is not present or not in use. * Otherwise, the GuC WOPCM size. */ u32 intel_guc_reserved_gtt_size(struct intel_guc *guc) { return guc_to_i915(guc)->wopcm.guc.size; } int intel_guc_reserve_ggtt_top(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_i915(guc); struct i915_ggtt *ggtt = &i915->ggtt; u64 size; int ret; size = ggtt->vm.total - GUC_GGTT_TOP; ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size, GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, PIN_NOEVICT); if (ret) DRM_DEBUG_DRIVER("GuC: failed to reserve top of ggtt\n"); return ret; } void intel_guc_release_ggtt_top(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_i915(guc); struct i915_ggtt *ggtt = &i915->ggtt; if (drm_mm_node_allocated(&ggtt->uc_fw)) drm_mm_remove_node(&ggtt->uc_fw); }