/* * GTT virtualization * * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Zhi Wang * Zhenyu Wang * Xiao Zheng * * Contributors: * Min He * Bing Niu * */ #include "i915_drv.h" #include "gvt.h" #include "i915_pvinfo.h" #include "trace.h" static bool enable_out_of_sync = false; static int preallocated_oos_pages = 8192; /* * validate a gm address and related range size, * translate it to host gm address */ bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) { if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) { gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n", addr, size); return false; } return true; } /* translate a guest gmadr to host gmadr */ int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) { if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), "invalid guest gmadr %llx\n", g_addr)) return -EACCES; if (vgpu_gmadr_is_aperture(vgpu, g_addr)) *h_addr = vgpu_aperture_gmadr_base(vgpu) + (g_addr - vgpu_aperture_offset(vgpu)); else *h_addr = vgpu_hidden_gmadr_base(vgpu) + (g_addr - vgpu_hidden_offset(vgpu)); return 0; } /* translate a host gmadr to guest gmadr */ int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) { if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), "invalid host gmadr %llx\n", h_addr)) return -EACCES; if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) *g_addr = vgpu_aperture_gmadr_base(vgpu) + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); else *g_addr = vgpu_hidden_gmadr_base(vgpu) + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); return 0; } int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, unsigned long *h_index) { u64 h_addr; int ret; ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT, &h_addr); if (ret) return ret; *h_index = h_addr >> GTT_PAGE_SHIFT; return 0; } int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, unsigned long *g_index) { u64 g_addr; int ret; ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT, &g_addr); if (ret) return ret; *g_index = g_addr >> GTT_PAGE_SHIFT; return 0; } #define gtt_type_is_entry(type) \ (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ && type != GTT_TYPE_PPGTT_PTE_ENTRY \ && type != GTT_TYPE_PPGTT_ROOT_ENTRY) #define gtt_type_is_pt(type) \ (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) #define gtt_type_is_pte_pt(type) \ (type == GTT_TYPE_PPGTT_PTE_PT) #define gtt_type_is_root_pointer(type) \ (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) #define gtt_init_entry(e, t, p, v) do { \ (e)->type = t; \ (e)->pdev = p; \ memcpy(&(e)->val64, &v, sizeof(v)); \ } while (0) /* * Mappings between GTT_TYPE* enumerations. * Following information can be found according to the given type: * - type of next level page table * - type of entry inside this level page table * - type of entry with PSE set * * If the given type doesn't have such a kind of information, * e.g. give a l4 root entry type, then request to get its PSE type, * give a PTE page table type, then request to get its next level page * table type, as we know l4 root entry doesn't have a PSE bit, * and a PTE page table doesn't have a next level page table type, * GTT_TYPE_INVALID will be returned. This is useful when traversing a * page table. */ struct gtt_type_table_entry { int entry_type; int next_pt_type; int pse_entry_type; }; #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \ [type] = { \ .entry_type = e_type, \ .next_pt_type = npt_type, \ .pse_entry_type = pse_type, \ } static struct gtt_type_table_entry gtt_type_table[] = { GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, GTT_TYPE_PPGTT_ROOT_L4_ENTRY, GTT_TYPE_PPGTT_PML4_PT, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, GTT_TYPE_PPGTT_PML4_ENTRY, GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, GTT_TYPE_PPGTT_PML4_ENTRY, GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, GTT_TYPE_PPGTT_ROOT_L3_ENTRY, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_PPGTT_PTE_2M_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_PPGTT_PTE_2M_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_PPGTT_PTE_4K_ENTRY, GTT_TYPE_INVALID, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, GTT_TYPE_PPGTT_PTE_4K_ENTRY, GTT_TYPE_INVALID, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PTE_2M_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, GTT_TYPE_GGTT_PTE, GTT_TYPE_INVALID, GTT_TYPE_INVALID), }; static inline int get_next_pt_type(int type) { return gtt_type_table[type].next_pt_type; } static inline int get_entry_type(int type) { return gtt_type_table[type].entry_type; } static inline int get_pse_type(int type) { return gtt_type_table[type].pse_entry_type; } static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) { void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; return readq(addr); } static void write_pte64(struct drm_i915_private *dev_priv, unsigned long index, u64 pte) { void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; writeq(pte, addr); I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt, struct intel_gvt_gtt_entry *e, unsigned long index, bool hypervisor_access, unsigned long gpa, struct intel_vgpu *vgpu) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; if (WARN_ON(info->gtt_entry_size != 8)) return e; if (hypervisor_access) { ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + (index << info->gtt_entry_size_shift), &e->val64, 8); WARN_ON(ret); } else if (!pt) { e->val64 = read_pte64(vgpu->gvt->dev_priv, index); } else { e->val64 = *((u64 *)pt + index); } return e; } static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt, struct intel_gvt_gtt_entry *e, unsigned long index, bool hypervisor_access, unsigned long gpa, struct intel_vgpu *vgpu) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; if (WARN_ON(info->gtt_entry_size != 8)) return e; if (hypervisor_access) { ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + (index << info->gtt_entry_size_shift), &e->val64, 8); WARN_ON(ret); } else if (!pt) { write_pte64(vgpu->gvt->dev_priv, index, e->val64); } else { *((u64 *)pt + index) = e->val64; } return e; } #define GTT_HAW 46 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30) #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21) #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12) static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) { unsigned long pfn; if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) pfn = (e->val64 & ADDR_1G_MASK) >> 12; else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) pfn = (e->val64 & ADDR_2M_MASK) >> 12; else pfn = (e->val64 & ADDR_4K_MASK) >> 12; return pfn; } static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) { if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { e->val64 &= ~ADDR_1G_MASK; pfn &= (ADDR_1G_MASK >> 12); } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { e->val64 &= ~ADDR_2M_MASK; pfn &= (ADDR_2M_MASK >> 12); } else { e->val64 &= ~ADDR_4K_MASK; pfn &= (ADDR_4K_MASK >> 12); } e->val64 |= (pfn << 12); } static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) { /* Entry doesn't have PSE bit. */ if (get_pse_type(e->type) == GTT_TYPE_INVALID) return false; e->type = get_entry_type(e->type); if (!(e->val64 & (1 << 7))) return false; e->type = get_pse_type(e->type); return true; } static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) { /* * i915 writes PDP root pointer registers without present bit, * it also works, so we need to treat root pointer entry * specifically. */ if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) return (e->val64 != 0); else return (e->val64 & (1 << 0)); } static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) { e->val64 &= ~(1 << 0); } /* * Per-platform GMA routines. */ static unsigned long gma_to_ggtt_pte_index(unsigned long gma) { unsigned long x = (gma >> GTT_PAGE_SHIFT); trace_gma_index(__func__, gma, x); return x; } #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ { \ unsigned long x = (exp); \ trace_gma_index(__func__, gma, x); \ return x; \ } DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { .get_entry = gtt_get_entry64, .set_entry = gtt_set_entry64, .clear_present = gtt_entry_clear_present, .test_present = gen8_gtt_test_present, .test_pse = gen8_gtt_test_pse, .get_pfn = gen8_gtt_get_pfn, .set_pfn = gen8_gtt_set_pfn, }; static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, .gma_to_pte_index = gen8_gma_to_pte_index, .gma_to_pde_index = gen8_gma_to_pde_index, .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, .gma_to_pml4_index = gen8_gma_to_pml4_index, }; static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p, struct intel_gvt_gtt_entry *m) { struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; unsigned long gfn, mfn; *m = *p; if (!ops->test_present(p)) return 0; gfn = ops->get_pfn(p); mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn); if (mfn == INTEL_GVT_INVALID_ADDR) { gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn); return -ENXIO; } ops->set_pfn(m, mfn); return 0; } /* * MM helpers. */ struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm, void *page_table, struct intel_gvt_gtt_entry *e, unsigned long index) { struct intel_gvt *gvt = mm->vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; e->type = mm->page_table_entry_type; ops->get_entry(page_table, e, index, false, 0, mm->vgpu); ops->test_pse(e); return e; } struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm, void *page_table, struct intel_gvt_gtt_entry *e, unsigned long index) { struct intel_gvt *gvt = mm->vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; return ops->set_entry(page_table, e, index, false, 0, mm->vgpu); } /* * PPGTT shadow page table helpers. */ static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry( struct intel_vgpu_ppgtt_spt *spt, void *page_table, int type, struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) { struct intel_gvt *gvt = spt->vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; e->type = get_entry_type(type); if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) return e; ops->get_entry(page_table, e, index, guest, spt->guest_page.gfn << GTT_PAGE_SHIFT, spt->vgpu); ops->test_pse(e); return e; } static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry( struct intel_vgpu_ppgtt_spt *spt, void *page_table, int type, struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) { struct intel_gvt *gvt = spt->vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) return e; return ops->set_entry(page_table, e, index, guest, spt->guest_page.gfn << GTT_PAGE_SHIFT, spt->vgpu); } #define ppgtt_get_guest_entry(spt, e, index) \ ppgtt_spt_get_entry(spt, NULL, \ spt->guest_page_type, e, index, true) #define ppgtt_set_guest_entry(spt, e, index) \ ppgtt_spt_set_entry(spt, NULL, \ spt->guest_page_type, e, index, true) #define ppgtt_get_shadow_entry(spt, e, index) \ ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ spt->shadow_page.type, e, index, false) #define ppgtt_set_shadow_entry(spt, e, index) \ ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ spt->shadow_page.type, e, index, false) /** * intel_vgpu_init_guest_page - init a guest page data structure * @vgpu: a vGPU * @p: a guest page data structure * @gfn: guest memory page frame number * @handler: function will be called when target guest memory page has * been modified. * * This function is called when user wants to track a guest memory page. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu, struct intel_vgpu_guest_page *p, unsigned long gfn, int (*handler)(void *, u64, void *, int), void *data) { INIT_HLIST_NODE(&p->node); p->writeprotection = false; p->gfn = gfn; p->handler = handler; p->data = data; p->oos_page = NULL; p->write_cnt = 0; hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn); return 0; } static int detach_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_oos_page *oos_page); /** * intel_vgpu_clean_guest_page - release the resource owned by guest page data * structure * @vgpu: a vGPU * @p: a tracked guest page * * This function is called when user tries to stop tracking a guest memory * page. */ void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu, struct intel_vgpu_guest_page *p) { if (!hlist_unhashed(&p->node)) hash_del(&p->node); if (p->oos_page) detach_oos_page(vgpu, p->oos_page); if (p->writeprotection) intel_gvt_hypervisor_unset_wp_page(vgpu, p); } /** * intel_vgpu_find_guest_page - find a guest page data structure by GFN. * @vgpu: a vGPU * @gfn: guest memory page frame number * * This function is called when emulation logic wants to know if a trapped GFN * is a tracked guest page. * * Returns: * Pointer to guest page data structure, NULL if failed. */ struct intel_vgpu_guest_page *intel_vgpu_find_guest_page( struct intel_vgpu *vgpu, unsigned long gfn) { struct intel_vgpu_guest_page *p; hash_for_each_possible(vgpu->gtt.guest_page_hash_table, p, node, gfn) { if (p->gfn == gfn) return p; } return NULL; } static inline int init_shadow_page(struct intel_vgpu *vgpu, struct intel_vgpu_shadow_page *p, int type) { struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; dma_addr_t daddr; daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(kdev, daddr)) { gvt_vgpu_err("fail to map dma addr\n"); return -EINVAL; } p->vaddr = page_address(p->page); p->type = type; INIT_HLIST_NODE(&p->node); p->mfn = daddr >> GTT_PAGE_SHIFT; hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn); return 0; } static inline void clean_shadow_page(struct intel_vgpu *vgpu, struct intel_vgpu_shadow_page *p) { struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096, PCI_DMA_BIDIRECTIONAL); if (!hlist_unhashed(&p->node)) hash_del(&p->node); } static inline struct intel_vgpu_shadow_page *find_shadow_page( struct intel_vgpu *vgpu, unsigned long mfn) { struct intel_vgpu_shadow_page *p; hash_for_each_possible(vgpu->gtt.shadow_page_hash_table, p, node, mfn) { if (p->mfn == mfn) return p; } return NULL; } #define guest_page_to_ppgtt_spt(ptr) \ container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page) #define shadow_page_to_ppgtt_spt(ptr) \ container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page) static void *alloc_spt(gfp_t gfp_mask) { struct intel_vgpu_ppgtt_spt *spt; spt = kzalloc(sizeof(*spt), gfp_mask); if (!spt) return NULL; spt->shadow_page.page = alloc_page(gfp_mask); if (!spt->shadow_page.page) { kfree(spt); return NULL; } return spt; } static void free_spt(struct intel_vgpu_ppgtt_spt *spt) { __free_page(spt->shadow_page.page); kfree(spt); } static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt) { trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type); clean_shadow_page(spt->vgpu, &spt->shadow_page); intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page); list_del_init(&spt->post_shadow_list); free_spt(spt); } static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu) { struct hlist_node *n; struct intel_vgpu_shadow_page *sp; int i; hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node) ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp)); } static int ppgtt_handle_guest_write_page_table_bytes(void *gp, u64 pa, void *p_data, int bytes); static int ppgtt_write_protection_handler(void *gp, u64 pa, void *p_data, int bytes) { struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp; int ret; if (bytes != 4 && bytes != 8) return -EINVAL; if (!gpt->writeprotection) return -EINVAL; ret = ppgtt_handle_guest_write_page_table_bytes(gp, pa, p_data, bytes); if (ret) return ret; return ret; } static int reclaim_one_mm(struct intel_gvt *gvt); static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page( struct intel_vgpu *vgpu, int type, unsigned long gfn) { struct intel_vgpu_ppgtt_spt *spt = NULL; int ret; retry: spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); if (!spt) { if (reclaim_one_mm(vgpu->gvt)) goto retry; gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); return ERR_PTR(-ENOMEM); } spt->vgpu = vgpu; spt->guest_page_type = type; atomic_set(&spt->refcount, 1); INIT_LIST_HEAD(&spt->post_shadow_list); /* * TODO: guest page type may be different with shadow page type, * when we support PSE page in future. */ ret = init_shadow_page(vgpu, &spt->shadow_page, type); if (ret) { gvt_vgpu_err("fail to initialize shadow page for spt\n"); goto err; } ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page, gfn, ppgtt_write_protection_handler, NULL); if (ret) { gvt_vgpu_err("fail to initialize guest page for spt\n"); goto err; } trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); return spt; err: ppgtt_free_shadow_page(spt); return ERR_PTR(ret); } static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page( struct intel_vgpu *vgpu, unsigned long mfn) { struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn); if (p) return shadow_page_to_ppgtt_spt(p); gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn); return NULL; } #define pt_entry_size_shift(spt) \ ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) #define pt_entries(spt) \ (GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) #define for_each_present_guest_entry(spt, e, i) \ for (i = 0; i < pt_entries(spt); i++) \ if (spt->vgpu->gvt->gtt.pte_ops->test_present( \ ppgtt_get_guest_entry(spt, e, i))) #define for_each_present_shadow_entry(spt, e, i) \ for (i = 0; i < pt_entries(spt); i++) \ if (spt->vgpu->gvt->gtt.pte_ops->test_present( \ ppgtt_get_shadow_entry(spt, e, i))) static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt) { int v = atomic_read(&spt->refcount); trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); atomic_inc(&spt->refcount); } static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt); static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *e) { struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *s; intel_gvt_gtt_type_t cur_pt_type; if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type)))) return -EINVAL; if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { cur_pt_type = get_next_pt_type(e->type) + 1; if (ops->get_pfn(e) == vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) return 0; } s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e)); if (!s) { gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", ops->get_pfn(e)); return -ENXIO; } return ppgtt_invalidate_shadow_page(s); } static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_entry e; unsigned long index; int ret; int v = atomic_read(&spt->refcount); trace_spt_change(spt->vgpu->id, "die", spt, spt->guest_page.gfn, spt->shadow_page.type); trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); if (atomic_dec_return(&spt->refcount) > 0) return 0; if (gtt_type_is_pte_pt(spt->shadow_page.type)) goto release; for_each_present_shadow_entry(spt, &e, index) { if (!gtt_type_is_pt(get_next_pt_type(e.type))) { gvt_vgpu_err("GVT doesn't support pse bit for now\n"); return -EINVAL; } ret = ppgtt_invalidate_shadow_page_by_shadow_entry( spt->vgpu, &e); if (ret) goto fail; } release: trace_spt_change(spt->vgpu->id, "release", spt, spt->guest_page.gfn, spt->shadow_page.type); ppgtt_free_shadow_page(spt); return 0; fail: gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", spt, e.val64, e.type); return ret; } static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt); static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry( struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) { struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *s = NULL; struct intel_vgpu_guest_page *g; int ret; if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) { ret = -EINVAL; goto fail; } g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we)); if (g) { s = guest_page_to_ppgtt_spt(g); ppgtt_get_shadow_page(s); } else { int type = get_next_pt_type(we->type); s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we)); if (IS_ERR(s)) { ret = PTR_ERR(s); goto fail; } ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page); if (ret) goto fail; ret = ppgtt_populate_shadow_page(s); if (ret) goto fail; trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn, s->shadow_page.type); } return s; fail: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", s, we->val64, we->type); return ERR_PTR(ret); } static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) { struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; se->type = ge->type; se->val64 = ge->val64; ops->set_pfn(se, s->shadow_page.mfn); } static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_vgpu_ppgtt_spt *s; struct intel_gvt_gtt_entry se, ge; unsigned long i; int ret; trace_spt_change(spt->vgpu->id, "born", spt, spt->guest_page.gfn, spt->shadow_page.type); if (gtt_type_is_pte_pt(spt->shadow_page.type)) { for_each_present_guest_entry(spt, &ge, i) { ret = gtt_entry_p2m(vgpu, &ge, &se); if (ret) goto fail; ppgtt_set_shadow_entry(spt, &se, i); } return 0; } for_each_present_guest_entry(spt, &ge, i) { if (!gtt_type_is_pt(get_next_pt_type(ge.type))) { gvt_vgpu_err("GVT doesn't support pse bit now\n"); ret = -EINVAL; goto fail; } s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge); if (IS_ERR(s)) { ret = PTR_ERR(s); goto fail; } ppgtt_get_shadow_entry(spt, &se, i); ppgtt_generate_shadow_entry(&se, s, &ge); ppgtt_set_shadow_entry(spt, &se, i); } return 0; fail: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", spt, ge.val64, ge.type); return ret; } static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt, unsigned long index) { struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); struct intel_vgpu_shadow_page *sp = &spt->shadow_page; struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_gvt_gtt_entry e; int ret; ppgtt_get_shadow_entry(spt, &e, index); trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64, index); if (!ops->test_present(&e)) return 0; if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn) return 0; if (gtt_type_is_pt(get_next_pt_type(e.type))) { struct intel_vgpu_ppgtt_spt *s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e)); if (!s) { gvt_vgpu_err("fail to find guest page\n"); ret = -ENXIO; goto fail; } ret = ppgtt_invalidate_shadow_page(s); if (ret) goto fail; } ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn); ppgtt_set_shadow_entry(spt, &e, index); return 0; fail: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", spt, e.val64, e.type); return ret; } static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt, struct intel_gvt_gtt_entry *we, unsigned long index) { struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); struct intel_vgpu_shadow_page *sp = &spt->shadow_page; struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_entry m; struct intel_vgpu_ppgtt_spt *s; int ret; trace_gpt_change(spt->vgpu->id, "add", spt, sp->type, we->val64, index); if (gtt_type_is_pt(get_next_pt_type(we->type))) { s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we); if (IS_ERR(s)) { ret = PTR_ERR(s); goto fail; } ppgtt_get_shadow_entry(spt, &m, index); ppgtt_generate_shadow_entry(&m, s, we); ppgtt_set_shadow_entry(spt, &m, index); } else { ret = gtt_entry_p2m(vgpu, we, &m); if (ret) goto fail; ppgtt_set_shadow_entry(spt, &m, index); } return 0; fail: gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", spt, we->val64, we->type); return ret; } static int sync_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_oos_page *oos_page) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(oos_page->guest_page); struct intel_gvt_gtt_entry old, new, m; int index; int ret; trace_oos_change(vgpu->id, "sync", oos_page->id, oos_page->guest_page, spt->guest_page_type); old.type = new.type = get_entry_type(spt->guest_page_type); old.val64 = new.val64 = 0; for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift); index++) { ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); ops->get_entry(NULL, &new, index, true, oos_page->guest_page->gfn << PAGE_SHIFT, vgpu); if (old.val64 == new.val64 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) continue; trace_oos_sync(vgpu->id, oos_page->id, oos_page->guest_page, spt->guest_page_type, new.val64, index); ret = gtt_entry_p2m(vgpu, &new, &m); if (ret) return ret; ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); ppgtt_set_shadow_entry(spt, &m, index); } oos_page->guest_page->write_cnt = 0; list_del_init(&spt->post_shadow_list); return 0; } static int detach_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_oos_page *oos_page) { struct intel_gvt *gvt = vgpu->gvt; struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(oos_page->guest_page); trace_oos_change(vgpu->id, "detach", oos_page->id, oos_page->guest_page, spt->guest_page_type); oos_page->guest_page->write_cnt = 0; oos_page->guest_page->oos_page = NULL; oos_page->guest_page = NULL; list_del_init(&oos_page->vm_list); list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); return 0; } static int attach_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_oos_page *oos_page, struct intel_vgpu_guest_page *gpt) { struct intel_gvt *gvt = vgpu->gvt; int ret; ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT, oos_page->mem, GTT_PAGE_SIZE); if (ret) return ret; oos_page->guest_page = gpt; gpt->oos_page = oos_page; list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); trace_oos_change(vgpu->id, "attach", gpt->oos_page->id, gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); return 0; } static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu, struct intel_vgpu_guest_page *gpt) { int ret; ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt); if (ret) return ret; trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id, gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); list_del_init(&gpt->oos_page->vm_list); return sync_oos_page(vgpu, gpt->oos_page); } static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_guest_page *gpt) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_vgpu_oos_page *oos_page = gpt->oos_page; int ret; WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); if (list_empty(>t->oos_page_free_list_head)) { oos_page = container_of(gtt->oos_page_use_list_head.next, struct intel_vgpu_oos_page, list); ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page); if (ret) return ret; ret = detach_oos_page(vgpu, oos_page); if (ret) return ret; } else oos_page = container_of(gtt->oos_page_free_list_head.next, struct intel_vgpu_oos_page, list); return attach_oos_page(vgpu, oos_page, gpt); } static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu, struct intel_vgpu_guest_page *gpt) { struct intel_vgpu_oos_page *oos_page = gpt->oos_page; if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) return -EINVAL; trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id, gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head); return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt); } /** * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU * @vgpu: a vGPU * * This function is called before submitting a guest workload to host, * to sync all the out-of-synced shadow for vGPU * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) { struct list_head *pos, *n; struct intel_vgpu_oos_page *oos_page; int ret; if (!enable_out_of_sync) return 0; list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { oos_page = container_of(pos, struct intel_vgpu_oos_page, vm_list); ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page); if (ret) return ret; } return 0; } /* * The heart of PPGTT shadow page table. */ static int ppgtt_handle_guest_write_page_table( struct intel_vgpu_guest_page *gpt, struct intel_gvt_gtt_entry *we, unsigned long index) { struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; int ret; int new_present; new_present = ops->test_present(we); ret = ppgtt_handle_guest_entry_removal(gpt, index); if (ret) goto fail; if (new_present) { ret = ppgtt_handle_guest_entry_add(gpt, we, index); if (ret) goto fail; } return 0; fail: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", spt, we->val64, we->type); return ret; } static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt) { return enable_out_of_sync && gtt_type_is_pte_pt( guest_page_to_ppgtt_spt(gpt)->guest_page_type) && gpt->write_cnt >= 2; } static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, unsigned long index) { set_bit(index, spt->post_shadow_bitmap); if (!list_empty(&spt->post_shadow_list)) return; list_add_tail(&spt->post_shadow_list, &spt->vgpu->gtt.post_shadow_list_head); } /** * intel_vgpu_flush_post_shadow - flush the post shadow transactions * @vgpu: a vGPU * * This function is called before submitting a guest workload to host, * to flush all the post shadows for a vGPU. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) { struct list_head *pos, *n; struct intel_vgpu_ppgtt_spt *spt; struct intel_gvt_gtt_entry ge; unsigned long index; int ret; list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { spt = container_of(pos, struct intel_vgpu_ppgtt_spt, post_shadow_list); for_each_set_bit(index, spt->post_shadow_bitmap, GTT_ENTRY_NUM_IN_ONE_PAGE) { ppgtt_get_guest_entry(spt, &ge, index); ret = ppgtt_handle_guest_write_page_table( &spt->guest_page, &ge, index); if (ret) return ret; clear_bit(index, spt->post_shadow_bitmap); } list_del_init(&spt->post_shadow_list); } return 0; } static int ppgtt_handle_guest_write_page_table_bytes(void *gp, u64 pa, void *p_data, int bytes) { struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp; struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; struct intel_gvt_gtt_entry we; unsigned long index; int ret; index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; ppgtt_get_guest_entry(spt, &we, index); ops->test_pse(&we); if (bytes == info->gtt_entry_size) { ret = ppgtt_handle_guest_write_page_table(gpt, &we, index); if (ret) return ret; } else { if (!test_bit(index, spt->post_shadow_bitmap)) { ret = ppgtt_handle_guest_entry_removal(gpt, index); if (ret) return ret; } ppgtt_set_post_shadow(spt, index); } if (!enable_out_of_sync) return 0; gpt->write_cnt++; if (gpt->oos_page) ops->set_entry(gpt->oos_page->mem, &we, index, false, 0, vgpu); if (can_do_out_of_sync(gpt)) { if (!gpt->oos_page) ppgtt_allocate_oos_page(vgpu, gpt); ret = ppgtt_set_guest_page_oos(vgpu, gpt); if (ret < 0) return ret; } return 0; } /* * mm page table allocation policy for bdw+ * - for ggtt, only virtual page table will be allocated. * - for ppgtt, dedicated virtual/shadow page table will be allocated. */ static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; const struct intel_gvt_device_info *info = &gvt->device_info; void *mem; if (mm->type == INTEL_GVT_MM_PPGTT) { mm->page_table_entry_cnt = 4; mm->page_table_entry_size = mm->page_table_entry_cnt * info->gtt_entry_size; mem = kzalloc(mm->has_shadow_page_table ? mm->page_table_entry_size * 2 : mm->page_table_entry_size, GFP_KERNEL); if (!mem) return -ENOMEM; mm->virtual_page_table = mem; if (!mm->has_shadow_page_table) return 0; mm->shadow_page_table = mem + mm->page_table_entry_size; } else if (mm->type == INTEL_GVT_MM_GGTT) { mm->page_table_entry_cnt = (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT); mm->page_table_entry_size = mm->page_table_entry_cnt * info->gtt_entry_size; mem = vzalloc(mm->page_table_entry_size); if (!mem) return -ENOMEM; mm->virtual_page_table = mem; } return 0; } static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm) { if (mm->type == INTEL_GVT_MM_PPGTT) { kfree(mm->virtual_page_table); } else if (mm->type == INTEL_GVT_MM_GGTT) { if (mm->virtual_page_table) vfree(mm->virtual_page_table); } mm->virtual_page_table = mm->shadow_page_table = NULL; } static void invalidate_mm(struct intel_vgpu_mm *mm) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; struct intel_gvt_gtt_entry se; int i; if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed)) return; for (i = 0; i < mm->page_table_entry_cnt; i++) { ppgtt_get_shadow_root_entry(mm, &se, i); if (!ops->test_present(&se)) continue; ppgtt_invalidate_shadow_page_by_shadow_entry( vgpu, &se); se.val64 = 0; ppgtt_set_shadow_root_entry(mm, &se, i); trace_gpt_change(vgpu->id, "destroy root pointer", NULL, se.type, se.val64, i); } mm->shadowed = false; } /** * intel_vgpu_destroy_mm - destroy a mm object * @mm: a kref object * * This function is used to destroy a mm object for vGPU * */ void intel_vgpu_destroy_mm(struct kref *mm_ref) { struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; if (!mm->initialized) goto out; list_del(&mm->list); list_del(&mm->lru_list); if (mm->has_shadow_page_table) invalidate_mm(mm); gtt->mm_free_page_table(mm); out: kfree(mm); } static int shadow_mm(struct intel_vgpu_mm *mm) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; struct intel_vgpu_ppgtt_spt *spt; struct intel_gvt_gtt_entry ge, se; int i; int ret; if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed)) return 0; mm->shadowed = true; for (i = 0; i < mm->page_table_entry_cnt; i++) { ppgtt_get_guest_root_entry(mm, &ge, i); if (!ops->test_present(&ge)) continue; trace_gpt_change(vgpu->id, __func__, NULL, ge.type, ge.val64, i); spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge); if (IS_ERR(spt)) { gvt_vgpu_err("fail to populate guest root pointer\n"); ret = PTR_ERR(spt); goto fail; } ppgtt_generate_shadow_entry(&se, spt, &ge); ppgtt_set_shadow_root_entry(mm, &se, i); trace_gpt_change(vgpu->id, "populate root pointer", NULL, se.type, se.val64, i); } return 0; fail: invalidate_mm(mm); return ret; } /** * intel_vgpu_create_mm - create a mm object for a vGPU * @vgpu: a vGPU * @mm_type: mm object type, should be PPGTT or GGTT * @virtual_page_table: page table root pointers. Could be NULL if user wants * to populate shadow later. * @page_table_level: describe the page table level of the mm object * @pde_base_index: pde root pointer base in GGTT MMIO. * * This function is used to create a mm object for a vGPU. * * Returns: * Zero on success, negative error code in pointer if failed. */ struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu, int mm_type, void *virtual_page_table, int page_table_level, u32 pde_base_index) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_vgpu_mm *mm; int ret; mm = kzalloc(sizeof(*mm), GFP_KERNEL); if (!mm) { ret = -ENOMEM; goto fail; } mm->type = mm_type; if (page_table_level == 1) mm->page_table_entry_type = GTT_TYPE_GGTT_PTE; else if (page_table_level == 3) mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; else if (page_table_level == 4) mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; else { WARN_ON(1); ret = -EINVAL; goto fail; } mm->page_table_level = page_table_level; mm->pde_base_index = pde_base_index; mm->vgpu = vgpu; mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT); kref_init(&mm->ref); atomic_set(&mm->pincount, 0); INIT_LIST_HEAD(&mm->list); INIT_LIST_HEAD(&mm->lru_list); list_add_tail(&mm->list, &vgpu->gtt.mm_list_head); ret = gtt->mm_alloc_page_table(mm); if (ret) { gvt_vgpu_err("fail to allocate page table for mm\n"); goto fail; } mm->initialized = true; if (virtual_page_table) memcpy(mm->virtual_page_table, virtual_page_table, mm->page_table_entry_size); if (mm->has_shadow_page_table) { ret = shadow_mm(mm); if (ret) goto fail; list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head); } return mm; fail: gvt_vgpu_err("fail to create mm\n"); if (mm) intel_gvt_mm_unreference(mm); return ERR_PTR(ret); } /** * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object * @mm: a vGPU mm object * * This function is called when user doesn't want to use a vGPU mm object */ void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) { if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT)) return; atomic_dec(&mm->pincount); } /** * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object * @vgpu: a vGPU * * This function is called when user wants to use a vGPU mm object. If this * mm object hasn't been shadowed yet, the shadow will be populated at this * time. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) { int ret; if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT)) return 0; atomic_inc(&mm->pincount); if (!mm->shadowed) { ret = shadow_mm(mm); if (ret) return ret; } list_del_init(&mm->lru_list); list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head); return 0; } static int reclaim_one_mm(struct intel_gvt *gvt) { struct intel_vgpu_mm *mm; struct list_head *pos, *n; list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) { mm = container_of(pos, struct intel_vgpu_mm, lru_list); if (mm->type != INTEL_GVT_MM_PPGTT) continue; if (atomic_read(&mm->pincount)) continue; list_del_init(&mm->lru_list); invalidate_mm(mm); return 1; } return 0; } /* * GMA translation APIs. */ static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *s; if (WARN_ON(!mm->has_shadow_page_table)) return -EINVAL; s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e)); if (!s) return -ENXIO; if (!guest) ppgtt_get_shadow_entry(s, e, index); else ppgtt_get_guest_entry(s, e, index); return 0; } /** * intel_vgpu_gma_to_gpa - translate a gma to GPA * @mm: mm object. could be a PPGTT or GGTT mm object * @gma: graphics memory address in this mm object * * This function is used to translate a graphics memory address in specific * graphics memory space to guest physical address. * * Returns: * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. */ unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; unsigned long gpa = INTEL_GVT_INVALID_ADDR; unsigned long gma_index[4]; struct intel_gvt_gtt_entry e; int i, index; int ret; if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT) return INTEL_GVT_INVALID_ADDR; if (mm->type == INTEL_GVT_MM_GGTT) { if (!vgpu_gmadr_is_valid(vgpu, gma)) goto err; ggtt_get_guest_entry(mm, &e, gma_ops->gma_to_ggtt_pte_index(gma)); gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT) + (gma & ~GTT_PAGE_MASK); trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); return gpa; } switch (mm->page_table_level) { case 4: ppgtt_get_shadow_root_entry(mm, &e, 0); gma_index[0] = gma_ops->gma_to_pml4_index(gma); gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); gma_index[2] = gma_ops->gma_to_pde_index(gma); gma_index[3] = gma_ops->gma_to_pte_index(gma); index = 4; break; case 3: ppgtt_get_shadow_root_entry(mm, &e, gma_ops->gma_to_l3_pdp_index(gma)); gma_index[0] = gma_ops->gma_to_pde_index(gma); gma_index[1] = gma_ops->gma_to_pte_index(gma); index = 2; break; case 2: ppgtt_get_shadow_root_entry(mm, &e, gma_ops->gma_to_pde_index(gma)); gma_index[0] = gma_ops->gma_to_pte_index(gma); index = 1; break; default: WARN_ON(1); goto err; } /* walk into the shadow page table and get gpa from guest entry */ for (i = 0; i < index; i++) { ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], (i == index - 1)); if (ret) goto err; } gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT) + (gma & ~GTT_PAGE_MASK); trace_gma_translate(vgpu->id, "ppgtt", 0, mm->page_table_level, gma, gpa); return gpa; err: gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); return INTEL_GVT_INVALID_ADDR; } static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; unsigned long index = off >> info->gtt_entry_size_shift; struct intel_gvt_gtt_entry e; if (bytes != 4 && bytes != 8) return -EINVAL; ggtt_get_guest_entry(ggtt_mm, &e, index); memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), bytes); return 0; } /** * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read * @vgpu: a vGPU * @off: register offset * @p_data: data will be returned to guest * @bytes: data length * * This function is used to emulate the GTT MMIO register read * * Returns: * Zero on success, error code if failed. */ int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; if (bytes != 4 && bytes != 8) return -EINVAL; off -= info->gtt_start_offset; ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes); return ret; } static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { struct intel_gvt *gvt = vgpu->gvt; const struct intel_gvt_device_info *info = &gvt->device_info; struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; unsigned long gma; struct intel_gvt_gtt_entry e, m; int ret; if (bytes != 4 && bytes != 8) return -EINVAL; gma = g_gtt_index << GTT_PAGE_SHIFT; /* the VM may configure the whole GM space when ballooning is used */ if (!vgpu_gmadr_is_valid(vgpu, gma)) return 0; ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index); memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, bytes); if (ops->test_present(&e)) { ret = gtt_entry_p2m(vgpu, &e, &m); if (ret) { gvt_vgpu_err("fail to translate guest gtt entry\n"); /* guest driver may read/write the entry when partial * update the entry in this situation p2m will fail * settting the shadow entry to point to a scratch page */ ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn); } } else { m = e; ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn); } ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index); ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); return 0; } /* * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write * @vgpu: a vGPU * @off: register offset * @p_data: data from guest write * @bytes: data length * * This function is used to emulate the GTT MMIO register write * * Returns: * Zero on success, error code if failed. */ int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; if (bytes != 4 && bytes != 8) return -EINVAL; off -= info->gtt_start_offset; ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes); return ret; } static int alloc_scratch_pages(struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type) { struct intel_vgpu_gtt *gtt = &vgpu->gtt; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; int page_entry_num = GTT_PAGE_SIZE >> vgpu->gvt->device_info.gtt_entry_size_shift; void *scratch_pt; int i; struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; dma_addr_t daddr; if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) return -EINVAL; scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); if (!scratch_pt) { gvt_vgpu_err("fail to allocate scratch page\n"); return -ENOMEM; } daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, daddr)) { gvt_vgpu_err("fail to dmamap scratch_pt\n"); __free_page(virt_to_page(scratch_pt)); return -ENOMEM; } gtt->scratch_pt[type].page_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT); gtt->scratch_pt[type].page = virt_to_page(scratch_pt); gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", vgpu->id, type, gtt->scratch_pt[type].page_mfn); /* Build the tree by full filled the scratch pt with the entries which * point to the next level scratch pt or scratch page. The * scratch_pt[type] indicate the scratch pt/scratch page used by the * 'type' pt. * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. */ if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) { struct intel_gvt_gtt_entry se; memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); se.type = get_entry_type(type - 1); ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); /* The entry parameters like present/writeable/cache type * set to the same as i915's scratch page tree. */ se.val64 |= _PAGE_PRESENT | _PAGE_RW; if (type == GTT_TYPE_PPGTT_PDE_PT) se.val64 |= PPAT_CACHED_INDEX; for (i = 0; i < page_entry_num; i++) ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); } return 0; } static int release_scratch_page_tree(struct intel_vgpu *vgpu) { int i; struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; dma_addr_t daddr; for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { if (vgpu->gtt.scratch_pt[i].page != NULL) { daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << GTT_PAGE_SHIFT); dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); __free_page(vgpu->gtt.scratch_pt[i].page); vgpu->gtt.scratch_pt[i].page = NULL; vgpu->gtt.scratch_pt[i].page_mfn = 0; } } return 0; } static int create_scratch_page_tree(struct intel_vgpu *vgpu) { int i, ret; for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { ret = alloc_scratch_pages(vgpu, i); if (ret) goto err; } return 0; err: release_scratch_page_tree(vgpu); return ret; } /** * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization * @vgpu: a vGPU * * This function is used to initialize per-vGPU graphics memory virtualization * components. * * Returns: * Zero on success, error code if failed. */ int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) { struct intel_vgpu_gtt *gtt = &vgpu->gtt; struct intel_vgpu_mm *ggtt_mm; hash_init(gtt->guest_page_hash_table); hash_init(gtt->shadow_page_hash_table); INIT_LIST_HEAD(>t->mm_list_head); INIT_LIST_HEAD(>t->oos_page_list_head); INIT_LIST_HEAD(>t->post_shadow_list_head); intel_vgpu_reset_ggtt(vgpu); ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT, NULL, 1, 0); if (IS_ERR(ggtt_mm)) { gvt_vgpu_err("fail to create mm for ggtt.\n"); return PTR_ERR(ggtt_mm); } gtt->ggtt_mm = ggtt_mm; return create_scratch_page_tree(vgpu); } static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type) { struct list_head *pos, *n; struct intel_vgpu_mm *mm; list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) { mm = container_of(pos, struct intel_vgpu_mm, list); if (mm->type == type) { vgpu->gvt->gtt.mm_free_page_table(mm); list_del(&mm->list); list_del(&mm->lru_list); kfree(mm); } } } /** * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization * @vgpu: a vGPU * * This function is used to clean up per-vGPU graphics memory virtualization * components. * * Returns: * Zero on success, error code if failed. */ void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) { ppgtt_free_all_shadow_page(vgpu); release_scratch_page_tree(vgpu); intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT); intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT); } static void clean_spt_oos(struct intel_gvt *gvt) { struct intel_gvt_gtt *gtt = &gvt->gtt; struct list_head *pos, *n; struct intel_vgpu_oos_page *oos_page; WARN(!list_empty(>t->oos_page_use_list_head), "someone is still using oos page\n"); list_for_each_safe(pos, n, >t->oos_page_free_list_head) { oos_page = container_of(pos, struct intel_vgpu_oos_page, list); list_del(&oos_page->list); kfree(oos_page); } } static int setup_spt_oos(struct intel_gvt *gvt) { struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_vgpu_oos_page *oos_page; int i; int ret; INIT_LIST_HEAD(>t->oos_page_free_list_head); INIT_LIST_HEAD(>t->oos_page_use_list_head); for (i = 0; i < preallocated_oos_pages; i++) { oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); if (!oos_page) { ret = -ENOMEM; goto fail; } INIT_LIST_HEAD(&oos_page->list); INIT_LIST_HEAD(&oos_page->vm_list); oos_page->id = i; list_add_tail(&oos_page->list, >t->oos_page_free_list_head); } gvt_dbg_mm("%d oos pages preallocated\n", i); return 0; fail: clean_spt_oos(gvt); return ret; } /** * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object * @vgpu: a vGPU * @page_table_level: PPGTT page table level * @root_entry: PPGTT page table root pointers * * This function is used to find a PPGTT mm object from mm object pool * * Returns: * pointer to mm object on success, NULL if failed. */ struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, int page_table_level, void *root_entry) { struct list_head *pos; struct intel_vgpu_mm *mm; u64 *src, *dst; list_for_each(pos, &vgpu->gtt.mm_list_head) { mm = container_of(pos, struct intel_vgpu_mm, list); if (mm->type != INTEL_GVT_MM_PPGTT) continue; if (mm->page_table_level != page_table_level) continue; src = root_entry; dst = mm->virtual_page_table; if (page_table_level == 3) { if (src[0] == dst[0] && src[1] == dst[1] && src[2] == dst[2] && src[3] == dst[3]) return mm; } else { if (src[0] == dst[0]) return mm; } } return NULL; } /** * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from * g2v notification * @vgpu: a vGPU * @page_table_level: PPGTT page table level * * This function is used to create a PPGTT mm object from a guest to GVT-g * notification. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu, int page_table_level) { u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0])); struct intel_vgpu_mm *mm; if (WARN_ON((page_table_level != 4) && (page_table_level != 3))) return -EINVAL; mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp); if (mm) { intel_gvt_mm_reference(mm); } else { mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT, pdp, page_table_level, 0); if (IS_ERR(mm)) { gvt_vgpu_err("fail to create mm\n"); return PTR_ERR(mm); } } return 0; } /** * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from * g2v notification * @vgpu: a vGPU * @page_table_level: PPGTT page table level * * This function is used to create a PPGTT mm object from a guest to GVT-g * notification. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu, int page_table_level) { u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0])); struct intel_vgpu_mm *mm; if (WARN_ON((page_table_level != 4) && (page_table_level != 3))) return -EINVAL; mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp); if (!mm) { gvt_vgpu_err("fail to find ppgtt instance.\n"); return -EINVAL; } intel_gvt_mm_unreference(mm); return 0; } /** * intel_gvt_init_gtt - initialize mm components of a GVT device * @gvt: GVT device * * This function is called at the initialization stage, to initialize * the mm components of a GVT device. * * Returns: * zero on success, negative error code if failed. */ int intel_gvt_init_gtt(struct intel_gvt *gvt) { int ret; void *page; struct device *dev = &gvt->dev_priv->drm.pdev->dev; dma_addr_t daddr; gvt_dbg_core("init gtt\n"); if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv) || IS_KABYLAKE(gvt->dev_priv)) { gvt->gtt.pte_ops = &gen8_gtt_pte_ops; gvt->gtt.gma_ops = &gen8_gtt_gma_ops; gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table; gvt->gtt.mm_free_page_table = gen8_mm_free_page_table; } else { return -ENODEV; } page = (void *)get_zeroed_page(GFP_KERNEL); if (!page) { gvt_err("fail to allocate scratch ggtt page\n"); return -ENOMEM; } daddr = dma_map_page(dev, virt_to_page(page), 0, 4096, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, daddr)) { gvt_err("fail to dmamap scratch ggtt page\n"); __free_page(virt_to_page(page)); return -ENOMEM; } gvt->gtt.scratch_ggtt_page = virt_to_page(page); gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT); if (enable_out_of_sync) { ret = setup_spt_oos(gvt); if (ret) { gvt_err("fail to initialize SPT oos\n"); return ret; } } INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head); return 0; } /** * intel_gvt_clean_gtt - clean up mm components of a GVT device * @gvt: GVT device * * This function is called at the driver unloading stage, to clean up the * the mm components of a GVT device. * */ void intel_gvt_clean_gtt(struct intel_gvt *gvt) { struct device *dev = &gvt->dev_priv->drm.pdev->dev; dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn << GTT_PAGE_SHIFT); dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); __free_page(gvt->gtt.scratch_ggtt_page); if (enable_out_of_sync) clean_spt_oos(gvt); } /** * intel_vgpu_reset_ggtt - reset the GGTT entry * @vgpu: a vGPU * * This function is called at the vGPU create stage * to reset all the GGTT entries. * */ void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; struct drm_i915_private *dev_priv = gvt->dev_priv; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; u32 index; u32 offset; u32 num_entries; struct intel_gvt_gtt_entry e; intel_runtime_pm_get(dev_priv); memset(&e, 0, sizeof(struct intel_gvt_gtt_entry)); e.type = GTT_TYPE_GGTT_PTE; ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn); e.val64 |= _PAGE_PRESENT; index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; for (offset = 0; offset < num_entries; offset++) ops->set_entry(NULL, &e, index + offset, false, 0, vgpu); index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; for (offset = 0; offset < num_entries; offset++) ops->set_entry(NULL, &e, index + offset, false, 0, vgpu); intel_runtime_pm_put(dev_priv); } /** * intel_vgpu_reset_gtt - reset the all GTT related status * @vgpu: a vGPU * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset * * This function is called from vfio core to reset reset all * GTT related status, including GGTT, PPGTT, scratch page. * */ void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr) { int i; ppgtt_free_all_shadow_page(vgpu); /* Shadow pages are only created when there is no page * table tracking data, so remove page tracking data after * removing the shadow pages. */ intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT); if (!dmlr) return; intel_vgpu_reset_ggtt(vgpu); /* clear scratch page for security */ for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { if (vgpu->gtt.scratch_pt[i].page != NULL) memset(page_address(vgpu->gtt.scratch_pt[i].page), 0, PAGE_SIZE); } }