// SPDX-License-Identifier: MIT /* * Copyright © 2020-2021 Intel Corporation */ #include "gt/intel_migrate.h" #include "gt/intel_gpu_commands.h" #include "gem/i915_gem_ttm_move.h" #include "i915_deps.h" #include "selftests/igt_reset.h" #include "selftests/igt_spinner.h" static int igt_fill_check_buffer(struct drm_i915_gem_object *obj, bool fill) { struct drm_i915_private *i915 = to_i915(obj->base.dev); unsigned int i, count = obj->base.size / sizeof(u32); enum i915_map_type map_type = i915_coherent_map_type(i915, obj, false); u32 *cur; int err = 0; assert_object_held(obj); cur = i915_gem_object_pin_map(obj, map_type); if (IS_ERR(cur)) return PTR_ERR(cur); if (fill) for (i = 0; i < count; ++i) *cur++ = i; else for (i = 0; i < count; ++i) if (*cur++ != i) { pr_err("Object content mismatch at location %d of %d\n", i, count); err = -EINVAL; break; } i915_gem_object_unpin_map(obj); return err; } static int igt_create_migrate(struct intel_gt *gt, enum intel_region_id src, enum intel_region_id dst) { struct drm_i915_private *i915 = gt->i915; struct intel_memory_region *src_mr = i915->mm.regions[src]; struct intel_memory_region *dst_mr = i915->mm.regions[dst]; struct drm_i915_gem_object *obj; struct i915_gem_ww_ctx ww; int err = 0; GEM_BUG_ON(!src_mr); GEM_BUG_ON(!dst_mr); /* Switch object backing-store on create */ obj = i915_gem_object_create_region(src_mr, dst_mr->min_page_size, 0, 0); if (IS_ERR(obj)) return PTR_ERR(obj); for_i915_gem_ww(&ww, err, true) { err = i915_gem_object_lock(obj, &ww); if (err) continue; err = igt_fill_check_buffer(obj, true); if (err) continue; err = i915_gem_object_migrate(obj, &ww, dst); if (err) continue; err = i915_gem_object_pin_pages(obj); if (err) continue; if (i915_gem_object_can_migrate(obj, src)) err = -EINVAL; i915_gem_object_unpin_pages(obj); err = i915_gem_object_wait_migration(obj, true); if (err) continue; err = igt_fill_check_buffer(obj, false); } i915_gem_object_put(obj); return err; } static int igt_smem_create_migrate(void *arg) { return igt_create_migrate(arg, INTEL_REGION_LMEM_0, INTEL_REGION_SMEM); } static int igt_lmem_create_migrate(void *arg) { return igt_create_migrate(arg, INTEL_REGION_SMEM, INTEL_REGION_LMEM_0); } static int igt_same_create_migrate(void *arg) { return igt_create_migrate(arg, INTEL_REGION_LMEM_0, INTEL_REGION_LMEM_0); } static int lmem_pages_migrate_one(struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *obj, struct i915_vma *vma, bool silent_migrate) { int err; err = i915_gem_object_lock(obj, ww); if (err) return err; if (vma) { err = i915_vma_pin_ww(vma, ww, obj->base.size, 0, 0UL | PIN_OFFSET_FIXED | PIN_USER); if (err) { if (err != -EINTR && err != ERESTARTSYS && err != -EDEADLK) pr_err("Failed to pin vma.\n"); return err; } i915_vma_unpin(vma); } /* * Migration will implicitly unbind (asynchronously) any bound * vmas. */ if (i915_gem_object_is_lmem(obj)) { err = i915_gem_object_migrate(obj, ww, INTEL_REGION_SMEM); if (err) { if (!silent_migrate) pr_err("Object failed migration to smem\n"); if (err) return err; } if (i915_gem_object_is_lmem(obj)) { pr_err("object still backed by lmem\n"); err = -EINVAL; } if (!i915_gem_object_has_struct_page(obj)) { pr_err("object not backed by struct page\n"); err = -EINVAL; } } else { err = i915_gem_object_migrate(obj, ww, INTEL_REGION_LMEM_0); if (err) { if (!silent_migrate) pr_err("Object failed migration to lmem\n"); if (err) return err; } if (i915_gem_object_has_struct_page(obj)) { pr_err("object still backed by struct page\n"); err = -EINVAL; } if (!i915_gem_object_is_lmem(obj)) { pr_err("object not backed by lmem\n"); err = -EINVAL; } } return err; } static int __igt_lmem_pages_migrate(struct intel_gt *gt, struct i915_address_space *vm, struct i915_deps *deps, struct igt_spinner *spin, struct dma_fence *spin_fence, bool borked_migrate) { struct drm_i915_private *i915 = gt->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma = NULL; struct i915_gem_ww_ctx ww; struct i915_request *rq; int err; int i; /* From LMEM to shmem and back again */ obj = i915_gem_object_create_lmem(i915, SZ_2M, 0); if (IS_ERR(obj)) return PTR_ERR(obj); if (vm) { vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } } /* Initial GPU fill, sync, CPU initialization. */ for_i915_gem_ww(&ww, err, true) { err = i915_gem_object_lock(obj, &ww); if (err) continue; err = ____i915_gem_object_get_pages(obj); if (err) continue; err = intel_migrate_clear(>->migrate, &ww, deps, obj->mm.pages->sgl, obj->cache_level, i915_gem_object_is_lmem(obj), 0xdeadbeaf, &rq); if (rq) { err = dma_resv_reserve_fences(obj->base.resv, 1); if (!err) dma_resv_add_fence(obj->base.resv, &rq->fence, DMA_RESV_USAGE_KERNEL); i915_request_put(rq); } if (err) continue; if (!vma) { err = igt_fill_check_buffer(obj, true); if (err) continue; } } if (err) goto out_put; /* * Migrate to and from smem without explicitly syncing. * Finalize with data in smem for fast readout. */ for (i = 1; i <= 5; ++i) { for_i915_gem_ww(&ww, err, true) err = lmem_pages_migrate_one(&ww, obj, vma, borked_migrate); if (err) goto out_put; } err = i915_gem_object_lock_interruptible(obj, NULL); if (err) goto out_put; if (spin) { if (dma_fence_is_signaled(spin_fence)) { pr_err("Spinner was terminated by hangcheck.\n"); err = -EBUSY; goto out_unlock; } igt_spinner_end(spin); } /* Finally sync migration and check content. */ err = i915_gem_object_wait_migration(obj, true); if (err) goto out_unlock; if (vma) { err = i915_vma_wait_for_bind(vma); if (err) goto out_unlock; } else { err = igt_fill_check_buffer(obj, false); } out_unlock: i915_gem_object_unlock(obj); out_put: i915_gem_object_put(obj); return err; } static int igt_lmem_pages_failsafe_migrate(void *arg) { int fail_gpu, fail_alloc, ban_memcpy, ret; struct intel_gt *gt = arg; for (fail_gpu = 0; fail_gpu < 2; ++fail_gpu) { for (fail_alloc = 0; fail_alloc < 2; ++fail_alloc) { for (ban_memcpy = 0; ban_memcpy < 2; ++ban_memcpy) { pr_info("Simulated failure modes: gpu: %d, alloc:%d, ban_memcpy: %d\n", fail_gpu, fail_alloc, ban_memcpy); i915_ttm_migrate_set_ban_memcpy(ban_memcpy); i915_ttm_migrate_set_failure_modes(fail_gpu, fail_alloc); ret = __igt_lmem_pages_migrate(gt, NULL, NULL, NULL, NULL, ban_memcpy && fail_gpu); if (ban_memcpy && fail_gpu) { struct intel_gt *__gt; unsigned int id; if (ret != -EIO) { pr_err("expected -EIO, got (%d)\n", ret); ret = -EINVAL; } else { ret = 0; } for_each_gt(__gt, gt->i915, id) { intel_wakeref_t wakeref; bool wedged; mutex_lock(&__gt->reset.mutex); wedged = test_bit(I915_WEDGED, &__gt->reset.flags); mutex_unlock(&__gt->reset.mutex); if (fail_gpu && !fail_alloc) { if (!wedged) { pr_err("gt(%u) not wedged\n", id); ret = -EINVAL; continue; } } else if (wedged) { pr_err("gt(%u) incorrectly wedged\n", id); ret = -EINVAL; } else { continue; } wakeref = intel_runtime_pm_get(__gt->uncore->rpm); igt_global_reset_lock(__gt); intel_gt_reset(__gt, ALL_ENGINES, NULL); igt_global_reset_unlock(__gt); intel_runtime_pm_put(__gt->uncore->rpm, wakeref); } if (ret) goto out_err; } } } } out_err: i915_ttm_migrate_set_failure_modes(false, false); i915_ttm_migrate_set_ban_memcpy(false); return ret; } /* * This subtest tests that unbinding at migration is indeed performed * async. We launch a spinner and a number of migrations depending on * that spinner to have terminated. Before each migration we bind a * vma, which should then be async unbound by the migration operation. * If we are able to schedule migrations without blocking while the * spinner is still running, those unbinds are indeed async and non- * blocking. * * Note that each async bind operation is awaiting the previous migration * due to the moving fence resulting from the migration. */ static int igt_async_migrate(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; struct i915_ppgtt *ppgtt; struct igt_spinner spin; int err; ppgtt = i915_ppgtt_create(gt, 0); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); if (igt_spinner_init(&spin, gt)) { err = -ENOMEM; goto out_spin; } for_each_engine(engine, gt, id) { struct ttm_operation_ctx ctx = { .interruptible = true }; struct dma_fence *spin_fence; struct intel_context *ce; struct i915_request *rq; struct i915_deps deps; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out_ce; } /* * Use MI_NOOP, making the spinner non-preemptible. If there * is a code path where we fail async operation due to the * running spinner, we will block and fail to end the * spinner resulting in a deadlock. But with a non- * preemptible spinner, hangcheck will terminate the spinner * for us, and we will later detect that and fail the test. */ rq = igt_spinner_create_request(&spin, ce, MI_NOOP); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ce; } i915_deps_init(&deps, GFP_KERNEL); err = i915_deps_add_dependency(&deps, &rq->fence, &ctx); spin_fence = dma_fence_get(&rq->fence); i915_request_add(rq); if (err) goto out_ce; err = __igt_lmem_pages_migrate(gt, &ppgtt->vm, &deps, &spin, spin_fence, false); i915_deps_fini(&deps); dma_fence_put(spin_fence); if (err) goto out_ce; } out_ce: igt_spinner_fini(&spin); out_spin: i915_vm_put(&ppgtt->vm); return err; } /* * Setting ASYNC_FAIL_ALLOC to 2 will simulate memory allocation failure while * arming the migration error check and block async migration. This * will cause us to deadlock and hangcheck will terminate the spinner * causing the test to fail. */ #define ASYNC_FAIL_ALLOC 1 static int igt_lmem_async_migrate(void *arg) { int fail_gpu, fail_alloc, ban_memcpy, ret; struct intel_gt *gt = arg; for (fail_gpu = 0; fail_gpu < 2; ++fail_gpu) { for (fail_alloc = 0; fail_alloc < ASYNC_FAIL_ALLOC; ++fail_alloc) { for (ban_memcpy = 0; ban_memcpy < 2; ++ban_memcpy) { pr_info("Simulated failure modes: gpu: %d, alloc: %d, ban_memcpy: %d\n", fail_gpu, fail_alloc, ban_memcpy); i915_ttm_migrate_set_ban_memcpy(ban_memcpy); i915_ttm_migrate_set_failure_modes(fail_gpu, fail_alloc); ret = igt_async_migrate(gt); if (fail_gpu && ban_memcpy) { struct intel_gt *__gt; unsigned int id; if (ret != -EIO) { pr_err("expected -EIO, got (%d)\n", ret); ret = -EINVAL; } else { ret = 0; } for_each_gt(__gt, gt->i915, id) { intel_wakeref_t wakeref; bool wedged; mutex_lock(&__gt->reset.mutex); wedged = test_bit(I915_WEDGED, &__gt->reset.flags); mutex_unlock(&__gt->reset.mutex); if (fail_gpu && !fail_alloc) { if (!wedged) { pr_err("gt(%u) not wedged\n", id); ret = -EINVAL; continue; } } else if (wedged) { pr_err("gt(%u) incorrectly wedged\n", id); ret = -EINVAL; } else { continue; } wakeref = intel_runtime_pm_get(__gt->uncore->rpm); igt_global_reset_lock(__gt); intel_gt_reset(__gt, ALL_ENGINES, NULL); igt_global_reset_unlock(__gt); intel_runtime_pm_put(__gt->uncore->rpm, wakeref); } } if (ret) goto out_err; } } } out_err: i915_ttm_migrate_set_failure_modes(false, false); i915_ttm_migrate_set_ban_memcpy(false); return ret; } int i915_gem_migrate_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_smem_create_migrate), SUBTEST(igt_lmem_create_migrate), SUBTEST(igt_same_create_migrate), SUBTEST(igt_lmem_pages_failsafe_migrate), SUBTEST(igt_lmem_async_migrate), }; if (!HAS_LMEM(i915)) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); }