/* * Copyright © 2009 Keith Packard * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "drm_crtc_helper_internal.h" /** * DOC: dp helpers * * These functions contain some common logic and helpers at various abstraction * levels to deal with Display Port sink devices and related things like DP aux * channel transfers, EDID reading over DP aux channels, decoding certain DPCD * blocks, ... */ /* Helpers for DP link training */ static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r) { return link_status[r - DP_LANE0_1_STATUS]; } static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; u8 l = dp_link_status(link_status, i); return (l >> s) & 0xf; } bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE], int lane_count) { u8 lane_align; u8 lane_status; int lane; lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return false; for (lane = 0; lane < lane_count; lane++) { lane_status = dp_get_lane_status(link_status, lane); if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) return false; } return true; } EXPORT_SYMBOL(drm_dp_channel_eq_ok); bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE], int lane_count) { int lane; u8 lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = dp_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return false; } return true; } EXPORT_SYMBOL(drm_dp_clock_recovery_ok); u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); u8 l = dp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage); u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); u8 l = dp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis); u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE], unsigned int lane) { unsigned int offset = DP_ADJUST_REQUEST_POST_CURSOR2; u8 value = dp_link_status(link_status, offset); return (value >> (lane << 1)) & 0x3; } EXPORT_SYMBOL(drm_dp_get_adjust_request_post_cursor); void drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) { unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] & DP_TRAINING_AUX_RD_MASK; if (rd_interval > 4) DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n", rd_interval); if (rd_interval == 0 || dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) rd_interval = 100; else rd_interval *= 4 * USEC_PER_MSEC; usleep_range(rd_interval, rd_interval * 2); } EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay); static void __drm_dp_link_train_channel_eq_delay(unsigned long rd_interval) { if (rd_interval > 4) DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n", rd_interval); if (rd_interval == 0) rd_interval = 400; else rd_interval *= 4 * USEC_PER_MSEC; usleep_range(rd_interval, rd_interval * 2); } void drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) { __drm_dp_link_train_channel_eq_delay(dpcd[DP_TRAINING_AUX_RD_INTERVAL] & DP_TRAINING_AUX_RD_MASK); } EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay); void drm_dp_lttpr_link_train_clock_recovery_delay(void) { usleep_range(100, 200); } EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay); static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r) { return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1]; } void drm_dp_lttpr_link_train_channel_eq_delay(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE]) { u8 interval = dp_lttpr_phy_cap(phy_cap, DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) & DP_TRAINING_AUX_RD_MASK; __drm_dp_link_train_channel_eq_delay(interval); } EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay); u8 drm_dp_link_rate_to_bw_code(int link_rate) { /* Spec says link_bw = link_rate / 0.27Gbps */ return link_rate / 27000; } EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code); int drm_dp_bw_code_to_link_rate(u8 link_bw) { /* Spec says link_rate = link_bw * 0.27Gbps */ return link_bw * 27000; } EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate); #define AUX_RETRY_INTERVAL 500 /* us */ static inline void drm_dp_dump_access(const struct drm_dp_aux *aux, u8 request, uint offset, void *buffer, int ret) { const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-"; if (ret > 0) DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d) %*ph\n", aux->name, offset, arrow, ret, min(ret, 20), buffer); else DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d)\n", aux->name, offset, arrow, ret); } /** * DOC: dp helpers * * The DisplayPort AUX channel is an abstraction to allow generic, driver- * independent access to AUX functionality. Drivers can take advantage of * this by filling in the fields of the drm_dp_aux structure. * * Transactions are described using a hardware-independent drm_dp_aux_msg * structure, which is passed into a driver's .transfer() implementation. * Both native and I2C-over-AUX transactions are supported. */ static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request, unsigned int offset, void *buffer, size_t size) { struct drm_dp_aux_msg msg; unsigned int retry, native_reply; int err = 0, ret = 0; memset(&msg, 0, sizeof(msg)); msg.address = offset; msg.request = request; msg.buffer = buffer; msg.size = size; mutex_lock(&aux->hw_mutex); /* * The specification doesn't give any recommendation on how often to * retry native transactions. We used to retry 7 times like for * aux i2c transactions but real world devices this wasn't * sufficient, bump to 32 which makes Dell 4k monitors happier. */ for (retry = 0; retry < 32; retry++) { if (ret != 0 && ret != -ETIMEDOUT) { usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); } ret = aux->transfer(aux, &msg); if (ret >= 0) { native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK; if (native_reply == DP_AUX_NATIVE_REPLY_ACK) { if (ret == size) goto unlock; ret = -EPROTO; } else ret = -EIO; } /* * We want the error we return to be the error we received on * the first transaction, since we may get a different error the * next time we retry */ if (!err) err = ret; } DRM_DEBUG_KMS("%s: Too many retries, giving up. First error: %d\n", aux->name, err); ret = err; unlock: mutex_unlock(&aux->hw_mutex); return ret; } /** * drm_dp_dpcd_read() - read a series of bytes from the DPCD * @aux: DisplayPort AUX channel (SST or MST) * @offset: address of the (first) register to read * @buffer: buffer to store the register values * @size: number of bytes in @buffer * * Returns the number of bytes transferred on success, or a negative error * code on failure. -EIO is returned if the request was NAKed by the sink or * if the retry count was exceeded. If not all bytes were transferred, this * function returns -EPROTO. Errors from the underlying AUX channel transfer * function, with the exception of -EBUSY (which causes the transaction to * be retried), are propagated to the caller. */ ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset, void *buffer, size_t size) { int ret; /* * HP ZR24w corrupts the first DPCD access after entering power save * mode. Eg. on a read, the entire buffer will be filled with the same * byte. Do a throw away read to avoid corrupting anything we care * about. Afterwards things will work correctly until the monitor * gets woken up and subsequently re-enters power save mode. * * The user pressing any button on the monitor is enough to wake it * up, so there is no particularly good place to do the workaround. * We just have to do it before any DPCD access and hope that the * monitor doesn't power down exactly after the throw away read. */ if (!aux->is_remote) { ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, DP_DPCD_REV, buffer, 1); if (ret != 1) goto out; } if (aux->is_remote) ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size); else ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, buffer, size); out: drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret); return ret; } EXPORT_SYMBOL(drm_dp_dpcd_read); /** * drm_dp_dpcd_write() - write a series of bytes to the DPCD * @aux: DisplayPort AUX channel (SST or MST) * @offset: address of the (first) register to write * @buffer: buffer containing the values to write * @size: number of bytes in @buffer * * Returns the number of bytes transferred on success, or a negative error * code on failure. -EIO is returned if the request was NAKed by the sink or * if the retry count was exceeded. If not all bytes were transferred, this * function returns -EPROTO. Errors from the underlying AUX channel transfer * function, with the exception of -EBUSY (which causes the transaction to * be retried), are propagated to the caller. */ ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset, void *buffer, size_t size) { int ret; if (aux->is_remote) ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size); else ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, size); drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret); return ret; } EXPORT_SYMBOL(drm_dp_dpcd_write); /** * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207) * @aux: DisplayPort AUX channel * @status: buffer to store the link status in (must be at least 6 bytes) * * Returns the number of bytes transferred on success or a negative error * code on failure. */ int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux, u8 status[DP_LINK_STATUS_SIZE]) { return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status, DP_LINK_STATUS_SIZE); } EXPORT_SYMBOL(drm_dp_dpcd_read_link_status); /** * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY * @aux: DisplayPort AUX channel * @dp_phy: the DP PHY to get the link status for * @link_status: buffer to return the status in * * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The * layout of the returned @link_status matches the DPCD register layout of the * DPRX PHY link status. * * Returns 0 if the information was read successfully or a negative error code * on failure. */ int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy, u8 link_status[DP_LINK_STATUS_SIZE]) { int ret; if (dp_phy == DP_PHY_DPRX) { ret = drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE); if (ret < 0) return ret; WARN_ON(ret != DP_LINK_STATUS_SIZE); return 0; } ret = drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy), link_status, DP_LINK_STATUS_SIZE - 1); if (ret < 0) return ret; WARN_ON(ret != DP_LINK_STATUS_SIZE - 1); /* Convert the LTTPR to the sink PHY link status layout */ memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1], &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS], DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1); link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0; return 0; } EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status); static bool is_edid_digital_input_dp(const struct edid *edid) { return edid && edid->revision >= 4 && edid->input & DRM_EDID_INPUT_DIGITAL && (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP; } /** * drm_dp_downstream_is_type() - is the downstream facing port of certain type? * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * @type: port type to be checked. Can be: * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI, * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID, * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS. * * Caveat: Only works with DPCD 1.1+ port caps. * * Returns: whether the downstream facing port matches the type. */ bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4], u8 type) { return drm_dp_is_branch(dpcd) && dpcd[DP_DPCD_REV] >= 0x11 && (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type; } EXPORT_SYMBOL(drm_dp_downstream_is_type); /** * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS? * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * @edid: EDID * * Returns: whether the downstream facing port is TMDS (HDMI/DVI). */ bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4], const struct edid *edid) { if (dpcd[DP_DPCD_REV] < 0x11) { switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { case DP_DWN_STRM_PORT_TYPE_TMDS: return true; default: return false; } } switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_DP_DUALMODE: if (is_edid_digital_input_dp(edid)) return false; fallthrough; case DP_DS_PORT_TYPE_DVI: case DP_DS_PORT_TYPE_HDMI: return true; default: return false; } } EXPORT_SYMBOL(drm_dp_downstream_is_tmds); /** * drm_dp_send_real_edid_checksum() - send back real edid checksum value * @aux: DisplayPort AUX channel * @real_edid_checksum: real edid checksum for the last block * * Returns: * True on success */ bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux, u8 real_edid_checksum) { u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0; if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, &auto_test_req, 1) < 1) { DRM_ERROR("%s: DPCD failed read at register 0x%x\n", aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); return false; } auto_test_req &= DP_AUTOMATED_TEST_REQUEST; if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) { DRM_ERROR("%s: DPCD failed read at register 0x%x\n", aux->name, DP_TEST_REQUEST); return false; } link_edid_read &= DP_TEST_LINK_EDID_READ; if (!auto_test_req || !link_edid_read) { DRM_DEBUG_KMS("%s: Source DUT does not support TEST_EDID_READ\n", aux->name); return false; } if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, &auto_test_req, 1) < 1) { DRM_ERROR("%s: DPCD failed write at register 0x%x\n", aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); return false; } /* send back checksum for the last edid extension block data */ if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM, &real_edid_checksum, 1) < 1) { DRM_ERROR("%s: DPCD failed write at register 0x%x\n", aux->name, DP_TEST_EDID_CHECKSUM); return false; } test_resp |= DP_TEST_EDID_CHECKSUM_WRITE; if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) { DRM_ERROR("%s: DPCD failed write at register 0x%x\n", aux->name, DP_TEST_RESPONSE); return false; } return true; } EXPORT_SYMBOL(drm_dp_send_real_edid_checksum); static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) { u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK; if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4) port_count = 4; return port_count; } static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux, u8 dpcd[DP_RECEIVER_CAP_SIZE]) { u8 dpcd_ext[6]; int ret; /* * Prior to DP1.3 the bit represented by * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. * If it is set DP_DPCD_REV at 0000h could be at a value less than * the true capability of the panel. The only way to check is to * then compare 0000h and 2200h. */ if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] & DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) return 0; ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext, sizeof(dpcd_ext)); if (ret < 0) return ret; if (ret != sizeof(dpcd_ext)) return -EIO; if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { DRM_DEBUG_KMS("%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n", aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]); return 0; } if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext))) return 0; DRM_DEBUG_KMS("%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext)); return 0; } /** * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if * available * @aux: DisplayPort AUX channel * @dpcd: Buffer to store the resulting DPCD in * * Attempts to read the base DPCD caps for @aux. Additionally, this function * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if * present. * * Returns: %0 if the DPCD was read successfully, negative error code * otherwise. */ int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux, u8 dpcd[DP_RECEIVER_CAP_SIZE]) { int ret; ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE); if (ret < 0) return ret; if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0) return -EIO; ret = drm_dp_read_extended_dpcd_caps(aux, dpcd); if (ret < 0) return ret; DRM_DEBUG_KMS("%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); return ret; } EXPORT_SYMBOL(drm_dp_read_dpcd_caps); /** * drm_dp_read_downstream_info() - read DPCD downstream port info if available * @aux: DisplayPort AUX channel * @dpcd: A cached copy of the port's DPCD * @downstream_ports: buffer to store the downstream port info in * * See also: * drm_dp_downstream_max_clock() * drm_dp_downstream_max_bpc() * * Returns: 0 if either the downstream port info was read successfully or * there was no downstream info to read, or a negative error code otherwise. */ int drm_dp_read_downstream_info(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS]) { int ret; u8 len; memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS); /* No downstream info to read */ if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] < DP_DPCD_REV_10 || !(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) return 0; len = drm_dp_downstream_port_count(dpcd); if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) len *= 4; ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len); if (ret < 0) return ret; if (ret != len) return -EIO; DRM_DEBUG_KMS("%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports); return 0; } EXPORT_SYMBOL(drm_dp_read_downstream_info); /** * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * * Returns: Downstream facing port max dot clock in kHz on success, * or 0 if max clock not defined */ int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4]) { if (!drm_dp_is_branch(dpcd)) return 0; if (dpcd[DP_DPCD_REV] < 0x11) return 0; switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_VGA: if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) return 0; return port_cap[1] * 8000; default: return 0; } } EXPORT_SYMBOL(drm_dp_downstream_max_dotclock); /** * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * @edid: EDID * * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success, * or 0 if max TMDS clock not defined */ int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4], const struct edid *edid) { if (!drm_dp_is_branch(dpcd)) return 0; if (dpcd[DP_DPCD_REV] < 0x11) { switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { case DP_DWN_STRM_PORT_TYPE_TMDS: return 165000; default: return 0; } } switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_DP_DUALMODE: if (is_edid_digital_input_dp(edid)) return 0; /* * It's left up to the driver to check the * DP dual mode adapter's max TMDS clock. * * Unfortunatley it looks like branch devices * may not fordward that the DP dual mode i2c * access so we just usually get i2c nak :( */ fallthrough; case DP_DS_PORT_TYPE_HDMI: /* * We should perhaps assume 165 MHz when detailed cap * info is not available. But looks like many typical * branch devices fall into that category and so we'd * probably end up with users complaining that they can't * get high resolution modes with their favorite dongle. * * So let's limit to 300 MHz instead since DPCD 1.4 * HDMI 2.0 DFPs are required to have the detailed cap * info. So it's more likely we're dealing with a HDMI 1.4 * compatible* device here. */ if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) return 300000; return port_cap[1] * 2500; case DP_DS_PORT_TYPE_DVI: if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) return 165000; /* FIXME what to do about DVI dual link? */ return port_cap[1] * 2500; default: return 0; } } EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock); /** * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * @edid: EDID * * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success, * or 0 if max TMDS clock not defined */ int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4], const struct edid *edid) { if (!drm_dp_is_branch(dpcd)) return 0; if (dpcd[DP_DPCD_REV] < 0x11) { switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { case DP_DWN_STRM_PORT_TYPE_TMDS: return 25000; default: return 0; } } switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_DP_DUALMODE: if (is_edid_digital_input_dp(edid)) return 0; fallthrough; case DP_DS_PORT_TYPE_DVI: case DP_DS_PORT_TYPE_HDMI: /* * Unclear whether the protocol converter could * utilize pixel replication. Assume it won't. */ return 25000; default: return 0; } } EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock); /** * drm_dp_downstream_max_bpc() - extract downstream facing port max * bits per component * @dpcd: DisplayPort configuration data * @port_cap: downstream facing port capabilities * @edid: EDID * * Returns: Max bpc on success or 0 if max bpc not defined */ int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4], const struct edid *edid) { if (!drm_dp_is_branch(dpcd)) return 0; if (dpcd[DP_DPCD_REV] < 0x11) { switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { case DP_DWN_STRM_PORT_TYPE_DP: return 0; default: return 8; } } switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_DP: return 0; case DP_DS_PORT_TYPE_DP_DUALMODE: if (is_edid_digital_input_dp(edid)) return 0; fallthrough; case DP_DS_PORT_TYPE_HDMI: case DP_DS_PORT_TYPE_DVI: case DP_DS_PORT_TYPE_VGA: if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) return 8; switch (port_cap[2] & DP_DS_MAX_BPC_MASK) { case DP_DS_8BPC: return 8; case DP_DS_10BPC: return 10; case DP_DS_12BPC: return 12; case DP_DS_16BPC: return 16; default: return 8; } break; default: return 8; } } EXPORT_SYMBOL(drm_dp_downstream_max_bpc); /** * drm_dp_downstream_420_passthrough() - determine downstream facing port * YCbCr 4:2:0 pass-through capability * @dpcd: DisplayPort configuration data * @port_cap: downstream facing port capabilities * * Returns: whether the downstream facing port can pass through YCbCr 4:2:0 */ bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4]) { if (!drm_dp_is_branch(dpcd)) return false; if (dpcd[DP_DPCD_REV] < 0x13) return false; switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_DP: return true; case DP_DS_PORT_TYPE_HDMI: if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) return false; return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH; default: return false; } } EXPORT_SYMBOL(drm_dp_downstream_420_passthrough); /** * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port * YCbCr 4:4:4->4:2:0 conversion capability * @dpcd: DisplayPort configuration data * @port_cap: downstream facing port capabilities * * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0 */ bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4]) { if (!drm_dp_is_branch(dpcd)) return false; if (dpcd[DP_DPCD_REV] < 0x13) return false; switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_HDMI: if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) return false; return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV; default: return false; } } EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion); /** * drm_dp_downstream_mode() - return a mode for downstream facing port * @dev: DRM device * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * * Provides a suitable mode for downstream facing ports without EDID. * * Returns: A new drm_display_mode on success or NULL on failure */ struct drm_display_mode * drm_dp_downstream_mode(struct drm_device *dev, const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4]) { u8 vic; if (!drm_dp_is_branch(dpcd)) return NULL; if (dpcd[DP_DPCD_REV] < 0x11) return NULL; switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { case DP_DS_PORT_TYPE_NON_EDID: switch (port_cap[0] & DP_DS_NON_EDID_MASK) { case DP_DS_NON_EDID_720x480i_60: vic = 6; break; case DP_DS_NON_EDID_720x480i_50: vic = 21; break; case DP_DS_NON_EDID_1920x1080i_60: vic = 5; break; case DP_DS_NON_EDID_1920x1080i_50: vic = 20; break; case DP_DS_NON_EDID_1280x720_60: vic = 4; break; case DP_DS_NON_EDID_1280x720_50: vic = 19; break; default: return NULL; } return drm_display_mode_from_cea_vic(dev, vic); default: return NULL; } } EXPORT_SYMBOL(drm_dp_downstream_mode); /** * drm_dp_downstream_id() - identify branch device * @aux: DisplayPort AUX channel * @id: DisplayPort branch device id * * Returns branch device id on success or NULL on failure */ int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6]) { return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6); } EXPORT_SYMBOL(drm_dp_downstream_id); /** * drm_dp_downstream_debug() - debug DP branch devices * @m: pointer for debugfs file * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * @edid: EDID * @aux: DisplayPort AUX channel * */ void drm_dp_downstream_debug(struct seq_file *m, const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4], const struct edid *edid, struct drm_dp_aux *aux) { bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE; int clk; int bpc; char id[7]; int len; uint8_t rev[2]; int type = port_cap[0] & DP_DS_PORT_TYPE_MASK; bool branch_device = drm_dp_is_branch(dpcd); seq_printf(m, "\tDP branch device present: %s\n", branch_device ? "yes" : "no"); if (!branch_device) return; switch (type) { case DP_DS_PORT_TYPE_DP: seq_puts(m, "\t\tType: DisplayPort\n"); break; case DP_DS_PORT_TYPE_VGA: seq_puts(m, "\t\tType: VGA\n"); break; case DP_DS_PORT_TYPE_DVI: seq_puts(m, "\t\tType: DVI\n"); break; case DP_DS_PORT_TYPE_HDMI: seq_puts(m, "\t\tType: HDMI\n"); break; case DP_DS_PORT_TYPE_NON_EDID: seq_puts(m, "\t\tType: others without EDID support\n"); break; case DP_DS_PORT_TYPE_DP_DUALMODE: seq_puts(m, "\t\tType: DP++\n"); break; case DP_DS_PORT_TYPE_WIRELESS: seq_puts(m, "\t\tType: Wireless\n"); break; default: seq_puts(m, "\t\tType: N/A\n"); } memset(id, 0, sizeof(id)); drm_dp_downstream_id(aux, id); seq_printf(m, "\t\tID: %s\n", id); len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1); if (len > 0) seq_printf(m, "\t\tHW: %d.%d\n", (rev[0] & 0xf0) >> 4, rev[0] & 0xf); len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2); if (len > 0) seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]); if (detailed_cap_info) { clk = drm_dp_downstream_max_dotclock(dpcd, port_cap); if (clk > 0) seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk); clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid); if (clk > 0) seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk); clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid); if (clk > 0) seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk); bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid); if (bpc > 0) seq_printf(m, "\t\tMax bpc: %d\n", bpc); } } EXPORT_SYMBOL(drm_dp_downstream_debug); /** * drm_dp_subconnector_type() - get DP branch device type * @dpcd: DisplayPort configuration data * @port_cap: port capabilities */ enum drm_mode_subconnector drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], const u8 port_cap[4]) { int type; if (!drm_dp_is_branch(dpcd)) return DRM_MODE_SUBCONNECTOR_Native; /* DP 1.0 approach */ if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) { type = dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK; switch (type) { case DP_DWN_STRM_PORT_TYPE_TMDS: /* Can be HDMI or DVI-D, DVI-D is a safer option */ return DRM_MODE_SUBCONNECTOR_DVID; case DP_DWN_STRM_PORT_TYPE_ANALOG: /* Can be VGA or DVI-A, VGA is more popular */ return DRM_MODE_SUBCONNECTOR_VGA; case DP_DWN_STRM_PORT_TYPE_DP: return DRM_MODE_SUBCONNECTOR_DisplayPort; case DP_DWN_STRM_PORT_TYPE_OTHER: default: return DRM_MODE_SUBCONNECTOR_Unknown; } } type = port_cap[0] & DP_DS_PORT_TYPE_MASK; switch (type) { case DP_DS_PORT_TYPE_DP: case DP_DS_PORT_TYPE_DP_DUALMODE: return DRM_MODE_SUBCONNECTOR_DisplayPort; case DP_DS_PORT_TYPE_VGA: return DRM_MODE_SUBCONNECTOR_VGA; case DP_DS_PORT_TYPE_DVI: return DRM_MODE_SUBCONNECTOR_DVID; case DP_DS_PORT_TYPE_HDMI: return DRM_MODE_SUBCONNECTOR_HDMIA; case DP_DS_PORT_TYPE_WIRELESS: return DRM_MODE_SUBCONNECTOR_Wireless; case DP_DS_PORT_TYPE_NON_EDID: default: return DRM_MODE_SUBCONNECTOR_Unknown; } } EXPORT_SYMBOL(drm_dp_subconnector_type); /** * drm_mode_set_dp_subconnector_property - set subconnector for DP connector * @connector: connector to set property on * @status: connector status * @dpcd: DisplayPort configuration data * @port_cap: port capabilities * * Called by a driver on every detect event. */ void drm_dp_set_subconnector_property(struct drm_connector *connector, enum drm_connector_status status, const u8 *dpcd, const u8 port_cap[4]) { enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown; if (status == connector_status_connected) subconnector = drm_dp_subconnector_type(dpcd, port_cap); drm_object_property_set_value(&connector->base, connector->dev->mode_config.dp_subconnector_property, subconnector); } EXPORT_SYMBOL(drm_dp_set_subconnector_property); /** * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink * count * @connector: The DRM connector to check * @dpcd: A cached copy of the connector's DPCD RX capabilities * @desc: A cached copy of the connector's DP descriptor * * See also: drm_dp_read_sink_count() * * Returns: %True if the (e)DP connector has a valid sink count that should * be probed, %false otherwise. */ bool drm_dp_read_sink_count_cap(struct drm_connector *connector, const u8 dpcd[DP_RECEIVER_CAP_SIZE], const struct drm_dp_desc *desc) { /* Some eDP panels don't set a valid value for the sink count */ return connector->connector_type != DRM_MODE_CONNECTOR_eDP && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 && dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && !drm_dp_has_quirk(desc, 0, DP_DPCD_QUIRK_NO_SINK_COUNT); } EXPORT_SYMBOL(drm_dp_read_sink_count_cap); /** * drm_dp_read_sink_count() - Retrieve the sink count for a given sink * @aux: The DP AUX channel to use * * See also: drm_dp_read_sink_count_cap() * * Returns: The current sink count reported by @aux, or a negative error code * otherwise. */ int drm_dp_read_sink_count(struct drm_dp_aux *aux) { u8 count; int ret; ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count); if (ret < 0) return ret; if (ret != 1) return -EIO; return DP_GET_SINK_COUNT(count); } EXPORT_SYMBOL(drm_dp_read_sink_count); /* * I2C-over-AUX implementation */ static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL | I2C_FUNC_10BIT_ADDR; } static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg) { /* * In case of i2c defer or short i2c ack reply to a write, * we need to switch to WRITE_STATUS_UPDATE to drain the * rest of the message */ if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) { msg->request &= DP_AUX_I2C_MOT; msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE; } } #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */ #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */ #define AUX_STOP_LEN 4 #define AUX_CMD_LEN 4 #define AUX_ADDRESS_LEN 20 #define AUX_REPLY_PAD_LEN 4 #define AUX_LENGTH_LEN 8 /* * Calculate the duration of the AUX request/reply in usec. Gives the * "best" case estimate, ie. successful while as short as possible. */ static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg) { int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN; if ((msg->request & DP_AUX_I2C_READ) == 0) len += msg->size * 8; return len; } static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg) { int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + AUX_CMD_LEN + AUX_REPLY_PAD_LEN; /* * For read we expect what was asked. For writes there will * be 0 or 1 data bytes. Assume 0 for the "best" case. */ if (msg->request & DP_AUX_I2C_READ) len += msg->size * 8; return len; } #define I2C_START_LEN 1 #define I2C_STOP_LEN 1 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */ #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */ /* * Calculate the length of the i2c transfer in usec, assuming * the i2c bus speed is as specified. Gives the the "worst" * case estimate, ie. successful while as long as possible. * Doesn't account the the "MOT" bit, and instead assumes each * message includes a START, ADDRESS and STOP. Neither does it * account for additional random variables such as clock stretching. */ static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg, int i2c_speed_khz) { /* AUX bitrate is 1MHz, i2c bitrate as specified */ return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN + msg->size * I2C_DATA_LEN + I2C_STOP_LEN) * 1000, i2c_speed_khz); } /* * Deterine how many retries should be attempted to successfully transfer * the specified message, based on the estimated durations of the * i2c and AUX transfers. */ static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg, int i2c_speed_khz) { int aux_time_us = drm_dp_aux_req_duration(msg) + drm_dp_aux_reply_duration(msg); int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz); return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL); } /* * FIXME currently assumes 10 kHz as some real world devices seem * to require it. We should query/set the speed via DPCD if supported. */ static int dp_aux_i2c_speed_khz __read_mostly = 10; module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644); MODULE_PARM_DESC(dp_aux_i2c_speed_khz, "Assumed speed of the i2c bus in kHz, (1-400, default 10)"); /* * Transfer a single I2C-over-AUX message and handle various error conditions, * retrying the transaction as appropriate. It is assumed that the * &drm_dp_aux.transfer function does not modify anything in the msg other than the * reply field. * * Returns bytes transferred on success, or a negative error code on failure. */ static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { unsigned int retry, defer_i2c; int ret; /* * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device * is required to retry at least seven times upon receiving AUX_DEFER * before giving up the AUX transaction. * * We also try to account for the i2c bus speed. */ int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz)); for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) { ret = aux->transfer(aux, msg); if (ret < 0) { if (ret == -EBUSY) continue; /* * While timeouts can be errors, they're usually normal * behavior (for instance, when a driver tries to * communicate with a non-existant DisplayPort device). * Avoid spamming the kernel log with timeout errors. */ if (ret == -ETIMEDOUT) DRM_DEBUG_KMS_RATELIMITED("%s: transaction timed out\n", aux->name); else DRM_DEBUG_KMS("%s: transaction failed: %d\n", aux->name, ret); return ret; } switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) { case DP_AUX_NATIVE_REPLY_ACK: /* * For I2C-over-AUX transactions this isn't enough, we * need to check for the I2C ACK reply. */ break; case DP_AUX_NATIVE_REPLY_NACK: DRM_DEBUG_KMS("%s: native nack (result=%d, size=%zu)\n", aux->name, ret, msg->size); return -EREMOTEIO; case DP_AUX_NATIVE_REPLY_DEFER: DRM_DEBUG_KMS("%s: native defer\n", aux->name); /* * We could check for I2C bit rate capabilities and if * available adjust this interval. We could also be * more careful with DP-to-legacy adapters where a * long legacy cable may force very low I2C bit rates. * * For now just defer for long enough to hopefully be * safe for all use-cases. */ usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); continue; default: DRM_ERROR("%s: invalid native reply %#04x\n", aux->name, msg->reply); return -EREMOTEIO; } switch (msg->reply & DP_AUX_I2C_REPLY_MASK) { case DP_AUX_I2C_REPLY_ACK: /* * Both native ACK and I2C ACK replies received. We * can assume the transfer was successful. */ if (ret != msg->size) drm_dp_i2c_msg_write_status_update(msg); return ret; case DP_AUX_I2C_REPLY_NACK: DRM_DEBUG_KMS("%s: I2C nack (result=%d, size=%zu)\n", aux->name, ret, msg->size); aux->i2c_nack_count++; return -EREMOTEIO; case DP_AUX_I2C_REPLY_DEFER: DRM_DEBUG_KMS("%s: I2C defer\n", aux->name); /* DP Compliance Test 4.2.2.5 Requirement: * Must have at least 7 retries for I2C defers on the * transaction to pass this test */ aux->i2c_defer_count++; if (defer_i2c < 7) defer_i2c++; usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); drm_dp_i2c_msg_write_status_update(msg); continue; default: DRM_ERROR("%s: invalid I2C reply %#04x\n", aux->name, msg->reply); return -EREMOTEIO; } } DRM_DEBUG_KMS("%s: Too many retries, giving up\n", aux->name); return -EREMOTEIO; } static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg, const struct i2c_msg *i2c_msg) { msg->request = (i2c_msg->flags & I2C_M_RD) ? DP_AUX_I2C_READ : DP_AUX_I2C_WRITE; if (!(i2c_msg->flags & I2C_M_STOP)) msg->request |= DP_AUX_I2C_MOT; } /* * Keep retrying drm_dp_i2c_do_msg until all data has been transferred. * * Returns an error code on failure, or a recommended transfer size on success. */ static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg) { int err, ret = orig_msg->size; struct drm_dp_aux_msg msg = *orig_msg; while (msg.size > 0) { err = drm_dp_i2c_do_msg(aux, &msg); if (err <= 0) return err == 0 ? -EPROTO : err; if (err < msg.size && err < ret) { DRM_DEBUG_KMS("%s: Partial I2C reply: requested %zu bytes got %d bytes\n", aux->name, msg.size, err); ret = err; } msg.size -= err; msg.buffer += err; } return ret; } /* * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX * packets to be as large as possible. If not, the I2C transactions never * succeed. Hence the default is maximum. */ static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES; module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644); MODULE_PARM_DESC(dp_aux_i2c_transfer_size, "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)"); static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) { struct drm_dp_aux *aux = adapter->algo_data; unsigned int i, j; unsigned transfer_size; struct drm_dp_aux_msg msg; int err = 0; dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES); memset(&msg, 0, sizeof(msg)); for (i = 0; i < num; i++) { msg.address = msgs[i].addr; drm_dp_i2c_msg_set_request(&msg, &msgs[i]); /* Send a bare address packet to start the transaction. * Zero sized messages specify an address only (bare * address) transaction. */ msg.buffer = NULL; msg.size = 0; err = drm_dp_i2c_do_msg(aux, &msg); /* * Reset msg.request in case in case it got * changed into a WRITE_STATUS_UPDATE. */ drm_dp_i2c_msg_set_request(&msg, &msgs[i]); if (err < 0) break; /* We want each transaction to be as large as possible, but * we'll go to smaller sizes if the hardware gives us a * short reply. */ transfer_size = dp_aux_i2c_transfer_size; for (j = 0; j < msgs[i].len; j += msg.size) { msg.buffer = msgs[i].buf + j; msg.size = min(transfer_size, msgs[i].len - j); err = drm_dp_i2c_drain_msg(aux, &msg); /* * Reset msg.request in case in case it got * changed into a WRITE_STATUS_UPDATE. */ drm_dp_i2c_msg_set_request(&msg, &msgs[i]); if (err < 0) break; transfer_size = err; } if (err < 0) break; } if (err >= 0) err = num; /* Send a bare address packet to close out the transaction. * Zero sized messages specify an address only (bare * address) transaction. */ msg.request &= ~DP_AUX_I2C_MOT; msg.buffer = NULL; msg.size = 0; (void)drm_dp_i2c_do_msg(aux, &msg); return err; } static const struct i2c_algorithm drm_dp_i2c_algo = { .functionality = drm_dp_i2c_functionality, .master_xfer = drm_dp_i2c_xfer, }; static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c) { return container_of(i2c, struct drm_dp_aux, ddc); } static void lock_bus(struct i2c_adapter *i2c, unsigned int flags) { mutex_lock(&i2c_to_aux(i2c)->hw_mutex); } static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags) { return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex); } static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags) { mutex_unlock(&i2c_to_aux(i2c)->hw_mutex); } static const struct i2c_lock_operations drm_dp_i2c_lock_ops = { .lock_bus = lock_bus, .trylock_bus = trylock_bus, .unlock_bus = unlock_bus, }; static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc) { u8 buf, count; int ret; ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); if (ret < 0) return ret; WARN_ON(!(buf & DP_TEST_SINK_START)); ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf); if (ret < 0) return ret; count = buf & DP_TEST_COUNT_MASK; if (count == aux->crc_count) return -EAGAIN; /* No CRC yet */ aux->crc_count = count; /* * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes * per component (RGB or CrYCb). */ ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6); if (ret < 0) return ret; return 0; } static void drm_dp_aux_crc_work(struct work_struct *work) { struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux, crc_work); struct drm_crtc *crtc; u8 crc_bytes[6]; uint32_t crcs[3]; int ret; if (WARN_ON(!aux->crtc)) return; crtc = aux->crtc; while (crtc->crc.opened) { drm_crtc_wait_one_vblank(crtc); if (!crtc->crc.opened) break; ret = drm_dp_aux_get_crc(aux, crc_bytes); if (ret == -EAGAIN) { usleep_range(1000, 2000); ret = drm_dp_aux_get_crc(aux, crc_bytes); } if (ret == -EAGAIN) { DRM_DEBUG_KMS("%s: Get CRC failed after retrying: %d\n", aux->name, ret); continue; } else if (ret) { DRM_DEBUG_KMS("%s: Failed to get a CRC: %d\n", aux->name, ret); continue; } crcs[0] = crc_bytes[0] | crc_bytes[1] << 8; crcs[1] = crc_bytes[2] | crc_bytes[3] << 8; crcs[2] = crc_bytes[4] | crc_bytes[5] << 8; drm_crtc_add_crc_entry(crtc, false, 0, crcs); } } /** * drm_dp_remote_aux_init() - minimally initialise a remote aux channel * @aux: DisplayPort AUX channel * * Used for remote aux channel in general. Merely initialize the crc work * struct. */ void drm_dp_remote_aux_init(struct drm_dp_aux *aux) { INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); } EXPORT_SYMBOL(drm_dp_remote_aux_init); /** * drm_dp_aux_init() - minimally initialise an aux channel * @aux: DisplayPort AUX channel * * If you need to use the drm_dp_aux's i2c adapter prior to registering it * with the outside world, call drm_dp_aux_init() first. You must still * call drm_dp_aux_register() once the connector has been registered to * allow userspace access to the auxiliary DP channel. */ void drm_dp_aux_init(struct drm_dp_aux *aux) { mutex_init(&aux->hw_mutex); mutex_init(&aux->cec.lock); INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); aux->ddc.algo = &drm_dp_i2c_algo; aux->ddc.algo_data = aux; aux->ddc.retries = 3; aux->ddc.lock_ops = &drm_dp_i2c_lock_ops; } EXPORT_SYMBOL(drm_dp_aux_init); /** * drm_dp_aux_register() - initialise and register aux channel * @aux: DisplayPort AUX channel * * Automatically calls drm_dp_aux_init() if this hasn't been done yet. * This should only be called when the underlying &struct drm_connector is * initialiazed already. Therefore the best place to call this is from * &drm_connector_funcs.late_register. Not that drivers which don't follow this * will Oops when CONFIG_DRM_DP_AUX_CHARDEV is enabled. * * Drivers which need to use the aux channel before that point (e.g. at driver * load time, before drm_dev_register() has been called) need to call * drm_dp_aux_init(). * * Returns 0 on success or a negative error code on failure. */ int drm_dp_aux_register(struct drm_dp_aux *aux) { int ret; if (!aux->ddc.algo) drm_dp_aux_init(aux); aux->ddc.class = I2C_CLASS_DDC; aux->ddc.owner = THIS_MODULE; aux->ddc.dev.parent = aux->dev; strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev), sizeof(aux->ddc.name)); ret = drm_dp_aux_register_devnode(aux); if (ret) return ret; ret = i2c_add_adapter(&aux->ddc); if (ret) { drm_dp_aux_unregister_devnode(aux); return ret; } return 0; } EXPORT_SYMBOL(drm_dp_aux_register); /** * drm_dp_aux_unregister() - unregister an AUX adapter * @aux: DisplayPort AUX channel */ void drm_dp_aux_unregister(struct drm_dp_aux *aux) { drm_dp_aux_unregister_devnode(aux); i2c_del_adapter(&aux->ddc); } EXPORT_SYMBOL(drm_dp_aux_unregister); #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x) /** * drm_dp_psr_setup_time() - PSR setup in time usec * @psr_cap: PSR capabilities from DPCD * * Returns: * PSR setup time for the panel in microseconds, negative * error code on failure. */ int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE]) { static const u16 psr_setup_time_us[] = { PSR_SETUP_TIME(330), PSR_SETUP_TIME(275), PSR_SETUP_TIME(220), PSR_SETUP_TIME(165), PSR_SETUP_TIME(110), PSR_SETUP_TIME(55), PSR_SETUP_TIME(0), }; int i; i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT; if (i >= ARRAY_SIZE(psr_setup_time_us)) return -EINVAL; return psr_setup_time_us[i]; } EXPORT_SYMBOL(drm_dp_psr_setup_time); #undef PSR_SETUP_TIME /** * drm_dp_start_crc() - start capture of frame CRCs * @aux: DisplayPort AUX channel * @crtc: CRTC displaying the frames whose CRCs are to be captured * * Returns 0 on success or a negative error code on failure. */ int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc) { u8 buf; int ret; ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); if (ret < 0) return ret; ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START); if (ret < 0) return ret; aux->crc_count = 0; aux->crtc = crtc; schedule_work(&aux->crc_work); return 0; } EXPORT_SYMBOL(drm_dp_start_crc); /** * drm_dp_stop_crc() - stop capture of frame CRCs * @aux: DisplayPort AUX channel * * Returns 0 on success or a negative error code on failure. */ int drm_dp_stop_crc(struct drm_dp_aux *aux) { u8 buf; int ret; ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); if (ret < 0) return ret; ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START); if (ret < 0) return ret; flush_work(&aux->crc_work); aux->crtc = NULL; return 0; } EXPORT_SYMBOL(drm_dp_stop_crc); struct dpcd_quirk { u8 oui[3]; u8 device_id[6]; bool is_branch; u32 quirks; }; #define OUI(first, second, third) { (first), (second), (third) } #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \ { (first), (second), (third), (fourth), (fifth), (sixth) } #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0) static const struct dpcd_quirk dpcd_quirk_list[] = { /* Analogix 7737 needs reduced M and N at HBR2 link rates */ { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, /* LG LP140WF6-SPM1 eDP panel */ { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, /* Apple panels need some additional handling to support PSR */ { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) }, /* CH7511 seems to leave SINK_COUNT zeroed */ { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) }, /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */ { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) }, /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */ { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) }, }; #undef OUI /* * Get a bit mask of DPCD quirks for the sink/branch device identified by * ident. The quirk data is shared but it's up to the drivers to act on the * data. * * For now, only the OUI (first three bytes) is used, but this may be extended * to device identification string and hardware/firmware revisions later. */ static u32 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch) { const struct dpcd_quirk *quirk; u32 quirks = 0; int i; u8 any_device[] = DEVICE_ID_ANY; for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) { quirk = &dpcd_quirk_list[i]; if (quirk->is_branch != is_branch) continue; if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0) continue; if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 && memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0) continue; quirks |= quirk->quirks; } return quirks; } #undef DEVICE_ID_ANY #undef DEVICE_ID struct edid_quirk { u8 mfg_id[2]; u8 prod_id[2]; u32 quirks; }; #define MFG(first, second) { (first), (second) } #define PROD_ID(first, second) { (first), (second) } /* * Some devices have unreliable OUIDs where they don't set the device ID * correctly, and as a result we need to use the EDID for finding additional * DP quirks in such cases. */ static const struct edid_quirk edid_quirk_list[] = { /* Optional 4K AMOLED panel in the ThinkPad X1 Extreme 2nd Generation * only supports DPCD backlight controls */ { MFG(0x4c, 0x83), PROD_ID(0x41, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) }, /* * Some Dell CML 2020 systems have panels support both AUX and PWM * backlight control, and some only support AUX backlight control. All * said panels start up in AUX mode by default, and we don't have any * support for disabling HDR mode on these panels which would be * required to switch to PWM backlight control mode (plus, I'm not * even sure we want PWM backlight controls over DPCD backlight * controls anyway...). Until we have a better way of detecting these, * force DPCD backlight mode on all of them. */ { MFG(0x06, 0xaf), PROD_ID(0x9b, 0x32), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) }, { MFG(0x06, 0xaf), PROD_ID(0xeb, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) }, { MFG(0x4d, 0x10), PROD_ID(0xc7, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) }, { MFG(0x4d, 0x10), PROD_ID(0xe6, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) }, { MFG(0x4c, 0x83), PROD_ID(0x47, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) }, { MFG(0x09, 0xe5), PROD_ID(0xde, 0x08), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) }, }; #undef MFG #undef PROD_ID /** * drm_dp_get_edid_quirks() - Check the EDID of a DP device to find additional * DP-specific quirks * @edid: The EDID to check * * While OUIDs are meant to be used to recognize a DisplayPort device, a lot * of manufacturers don't seem to like following standards and neglect to fill * the dev-ID in, making it impossible to only use OUIDs for determining * quirks in some cases. This function can be used to check the EDID and look * up any additional DP quirks. The bits returned by this function correspond * to the quirk bits in &drm_dp_quirk. * * Returns: a bitmask of quirks, if any. The driver can check this using * drm_dp_has_quirk(). */ u32 drm_dp_get_edid_quirks(const struct edid *edid) { const struct edid_quirk *quirk; u32 quirks = 0; int i; if (!edid) return 0; for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { quirk = &edid_quirk_list[i]; if (memcmp(quirk->mfg_id, edid->mfg_id, sizeof(edid->mfg_id)) == 0 && memcmp(quirk->prod_id, edid->prod_code, sizeof(edid->prod_code)) == 0) quirks |= quirk->quirks; } DRM_DEBUG_KMS("DP sink: EDID mfg %*phD prod-ID %*phD quirks: 0x%04x\n", (int)sizeof(edid->mfg_id), edid->mfg_id, (int)sizeof(edid->prod_code), edid->prod_code, quirks); return quirks; } EXPORT_SYMBOL(drm_dp_get_edid_quirks); /** * drm_dp_read_desc - read sink/branch descriptor from DPCD * @aux: DisplayPort AUX channel * @desc: Device descriptor to fill from DPCD * @is_branch: true for branch devices, false for sink devices * * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the * identification. * * Returns 0 on success or a negative error code on failure. */ int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc, bool is_branch) { struct drm_dp_dpcd_ident *ident = &desc->ident; unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI; int ret, dev_id_len; ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident)); if (ret < 0) return ret; desc->quirks = drm_dp_get_quirks(ident, is_branch); dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id)); DRM_DEBUG_KMS("%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n", aux->name, is_branch ? "branch" : "sink", (int)sizeof(ident->oui), ident->oui, dev_id_len, ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf, ident->sw_major_rev, ident->sw_minor_rev, desc->quirks); return 0; } EXPORT_SYMBOL(drm_dp_read_desc); /** * drm_dp_dsc_sink_max_slice_count() - Get the max slice count * supported by the DSC sink. * @dsc_dpcd: DSC capabilities from DPCD * @is_edp: true if its eDP, false for DP * * Read the slice capabilities DPCD register from DSC sink to get * the maximum slice count supported. This is used to populate * the DSC parameters in the &struct drm_dsc_config by the driver. * Driver creates an infoframe using these parameters to populate * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC * infoframe using the helper function drm_dsc_pps_infoframe_pack() * * Returns: * Maximum slice count supported by DSC sink or 0 its invalid */ u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], bool is_edp) { u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT]; if (is_edp) { /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */ if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) return 4; if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) return 2; if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) return 1; } else { /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */ u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT]; if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK) return 24; if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK) return 20; if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK) return 16; if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK) return 12; if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK) return 10; if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK) return 8; if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK) return 6; if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) return 4; if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) return 2; if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) return 1; } return 0; } EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count); /** * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits * @dsc_dpcd: DSC capabilities from DPCD * * Read the DSC DPCD register to parse the line buffer depth in bits which is * number of bits of precision within the decoder line buffer supported by * the DSC sink. This is used to populate the DSC parameters in the * &struct drm_dsc_config by the driver. * Driver creates an infoframe using these parameters to populate * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC * infoframe using the helper function drm_dsc_pps_infoframe_pack() * * Returns: * Line buffer depth supported by DSC panel or 0 its invalid */ u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) { u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT]; switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) { case DP_DSC_LINE_BUF_BIT_DEPTH_9: return 9; case DP_DSC_LINE_BUF_BIT_DEPTH_10: return 10; case DP_DSC_LINE_BUF_BIT_DEPTH_11: return 11; case DP_DSC_LINE_BUF_BIT_DEPTH_12: return 12; case DP_DSC_LINE_BUF_BIT_DEPTH_13: return 13; case DP_DSC_LINE_BUF_BIT_DEPTH_14: return 14; case DP_DSC_LINE_BUF_BIT_DEPTH_15: return 15; case DP_DSC_LINE_BUF_BIT_DEPTH_16: return 16; case DP_DSC_LINE_BUF_BIT_DEPTH_8: return 8; } return 0; } EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth); /** * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component * values supported by the DSC sink. * @dsc_dpcd: DSC capabilities from DPCD * @dsc_bpc: An array to be filled by this helper with supported * input bpcs. * * Read the DSC DPCD from the sink device to parse the supported bits per * component values. This is used to populate the DSC parameters * in the &struct drm_dsc_config by the driver. * Driver creates an infoframe using these parameters to populate * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC * infoframe using the helper function drm_dsc_pps_infoframe_pack() * * Returns: * Number of input BPC values parsed from the DPCD */ int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], u8 dsc_bpc[3]) { int num_bpc = 0; u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT]; if (color_depth & DP_DSC_12_BPC) dsc_bpc[num_bpc++] = 12; if (color_depth & DP_DSC_10_BPC) dsc_bpc[num_bpc++] = 10; if (color_depth & DP_DSC_8_BPC) dsc_bpc[num_bpc++] = 8; return num_bpc; } EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs); /** * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities * @aux: DisplayPort AUX channel * @caps: buffer to return the capability info in * * Read capabilities common to all LTTPRs. * * Returns 0 on success or a negative error code on failure. */ int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux, u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) { int ret; ret = drm_dp_dpcd_read(aux, DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV, caps, DP_LTTPR_COMMON_CAP_SIZE); if (ret < 0) return ret; WARN_ON(ret != DP_LTTPR_COMMON_CAP_SIZE); return 0; } EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps); /** * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY * @aux: DisplayPort AUX channel * @dp_phy: LTTPR PHY to read the capabilities for * @caps: buffer to return the capability info in * * Read the capabilities for the given LTTPR PHY. * * Returns 0 on success or a negative error code on failure. */ int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy, u8 caps[DP_LTTPR_PHY_CAP_SIZE]) { int ret; ret = drm_dp_dpcd_read(aux, DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy), caps, DP_LTTPR_PHY_CAP_SIZE); if (ret < 0) return ret; WARN_ON(ret != DP_LTTPR_PHY_CAP_SIZE); return 0; } EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps); static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r) { return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; } /** * drm_dp_lttpr_count - get the number of detected LTTPRs * @caps: LTTPR common capabilities * * Get the number of detected LTTPRs from the LTTPR common capabilities info. * * Returns: * -ERANGE if more than supported number (8) of LTTPRs are detected * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value * otherwise the number of detected LTTPRs */ int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) { u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT); switch (hweight8(count)) { case 0: return 0; case 1: return 8 - ilog2(count); case 8: return -ERANGE; default: return -EINVAL; } } EXPORT_SYMBOL(drm_dp_lttpr_count); /** * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs * @caps: LTTPR common capabilities * * Returns the maximum link rate supported by all detected LTTPRs. */ int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) { u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER); return drm_dp_bw_code_to_link_rate(rate); } EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate); /** * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs * @caps: LTTPR common capabilities * * Returns the maximum lane count supported by all detected LTTPRs. */ int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) { u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER); return max_lanes & DP_MAX_LANE_COUNT_MASK; } EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count); /** * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support * @caps: LTTPR PHY capabilities * * Returns true if the @caps for an LTTPR TX PHY indicate support for * voltage swing level 3. */ bool drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) { u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED; } EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported); /** * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support * @caps: LTTPR PHY capabilities * * Returns true if the @caps for an LTTPR TX PHY indicate support for * pre-emphasis level 3. */ bool drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) { u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED; } EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported); /** * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink. * @aux: DisplayPort AUX channel * @data: DP phy compliance test parameters. * * Returns 0 on success or a negative error code on failure. */ int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux, struct drm_dp_phy_test_params *data) { int err; u8 rate, lanes; err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate); if (err < 0) return err; data->link_rate = drm_dp_bw_code_to_link_rate(rate); err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes); if (err < 0) return err; data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK; if (lanes & DP_ENHANCED_FRAME_CAP) data->enhanced_frame_cap = true; err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern); if (err < 0) return err; switch (data->phy_pattern) { case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0, &data->custom80, sizeof(data->custom80)); if (err < 0) return err; break; case DP_PHY_TEST_PATTERN_CP2520: err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET, &data->hbr2_reset, sizeof(data->hbr2_reset)); if (err < 0) return err; } return 0; } EXPORT_SYMBOL(drm_dp_get_phy_test_pattern); /** * drm_dp_set_phy_test_pattern() - set the pattern to the sink. * @aux: DisplayPort AUX channel * @data: DP phy compliance test parameters. * @dp_rev: DP revision to use for compliance testing * * Returns 0 on success or a negative error code on failure. */ int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux, struct drm_dp_phy_test_params *data, u8 dp_rev) { int err, i; u8 link_config[2]; u8 test_pattern; link_config[0] = drm_dp_link_rate_to_bw_code(data->link_rate); link_config[1] = data->num_lanes; if (data->enhanced_frame_cap) link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, link_config, 2); if (err < 0) return err; test_pattern = data->phy_pattern; if (dp_rev < 0x12) { test_pattern = (test_pattern << 2) & DP_LINK_QUAL_PATTERN_11_MASK; err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, test_pattern); if (err < 0) return err; } else { for (i = 0; i < data->num_lanes; i++) { err = drm_dp_dpcd_writeb(aux, DP_LINK_QUAL_LANE0_SET + i, test_pattern); if (err < 0) return err; } } return 0; } EXPORT_SYMBOL(drm_dp_set_phy_test_pattern); static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat) { if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) return "Invalid"; switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "RGB"; case DP_PIXELFORMAT_YUV444: return "YUV444"; case DP_PIXELFORMAT_YUV422: return "YUV422"; case DP_PIXELFORMAT_YUV420: return "YUV420"; case DP_PIXELFORMAT_Y_ONLY: return "Y_ONLY"; case DP_PIXELFORMAT_RAW: return "RAW"; default: return "Reserved"; } } static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat, enum dp_colorimetry colorimetry) { if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) return "Invalid"; switch (colorimetry) { case DP_COLORIMETRY_DEFAULT: switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "sRGB"; case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "BT.601"; case DP_PIXELFORMAT_Y_ONLY: return "DICOM PS3.14"; case DP_PIXELFORMAT_RAW: return "Custom Color Profile"; default: return "Reserved"; } case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */ switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "Wide Fixed"; case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "BT.709"; default: return "Reserved"; } case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */ switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "Wide Float"; case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "xvYCC 601"; default: return "Reserved"; } case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */ switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "OpRGB"; case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "xvYCC 709"; default: return "Reserved"; } case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */ switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "DCI-P3"; case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "sYCC 601"; default: return "Reserved"; } case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */ switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "Custom Profile"; case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "OpYCC 601"; default: return "Reserved"; } case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */ switch (pixelformat) { case DP_PIXELFORMAT_RGB: return "BT.2020 RGB"; case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "BT.2020 CYCC"; default: return "Reserved"; } case DP_COLORIMETRY_BT2020_YCC: switch (pixelformat) { case DP_PIXELFORMAT_YUV444: case DP_PIXELFORMAT_YUV422: case DP_PIXELFORMAT_YUV420: return "BT.2020 YCC"; default: return "Reserved"; } default: return "Invalid"; } } static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range) { switch (dynamic_range) { case DP_DYNAMIC_RANGE_VESA: return "VESA range"; case DP_DYNAMIC_RANGE_CTA: return "CTA range"; default: return "Invalid"; } } static const char *dp_content_type_get_name(enum dp_content_type content_type) { switch (content_type) { case DP_CONTENT_TYPE_NOT_DEFINED: return "Not defined"; case DP_CONTENT_TYPE_GRAPHICS: return "Graphics"; case DP_CONTENT_TYPE_PHOTO: return "Photo"; case DP_CONTENT_TYPE_VIDEO: return "Video"; case DP_CONTENT_TYPE_GAME: return "Game"; default: return "Reserved"; } } void drm_dp_vsc_sdp_log(const char *level, struct device *dev, const struct drm_dp_vsc_sdp *vsc) { #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__) DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC", vsc->revision, vsc->length); DP_SDP_LOG(" pixelformat: %s\n", dp_pixelformat_get_name(vsc->pixelformat)); DP_SDP_LOG(" colorimetry: %s\n", dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry)); DP_SDP_LOG(" bpc: %u\n", vsc->bpc); DP_SDP_LOG(" dynamic range: %s\n", dp_dynamic_range_get_name(vsc->dynamic_range)); DP_SDP_LOG(" content type: %s\n", dp_content_type_get_name(vsc->content_type)); #undef DP_SDP_LOG } EXPORT_SYMBOL(drm_dp_vsc_sdp_log);