/* * Intel 5400 class Memory Controllers kernel module (Seaburg) * * This file may be distributed under the terms of the * GNU General Public License. * * Copyright (c) 2008 by: * Ben Woodard * Mauro Carvalho Chehab * * Red Hat Inc. http://www.redhat.com * * Forked and adapted from the i5000_edac driver which was * written by Douglas Thompson Linux Networx * * This module is based on the following document: * * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet * http://developer.intel.com/design/chipsets/datashts/313070.htm * */ #include #include #include #include #include #include #include #include "edac_core.h" /* * Alter this version for the I5400 module when modifications are made */ #define I5400_REVISION " Ver: 1.0.0" #define EDAC_MOD_STR "i5400_edac" #define i5400_printk(level, fmt, arg...) \ edac_printk(level, "i5400", fmt, ##arg) #define i5400_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg) /* Limits for i5400 */ #define NUM_MTRS_PER_BRANCH 4 #define CHANNELS_PER_BRANCH 2 #define MAX_DIMMS_PER_CHANNEL NUM_MTRS_PER_BRANCH #define MAX_CHANNELS 4 /* max possible csrows per channel */ #define MAX_CSROWS (MAX_DIMMS_PER_CHANNEL) /* Device 16, * Function 0: System Address * Function 1: Memory Branch Map, Control, Errors Register * Function 2: FSB Error Registers * * All 3 functions of Device 16 (0,1,2) share the SAME DID and * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2), * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1 * for device 21 (0,1). */ /* OFFSETS for Function 0 */ #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */ #define MAXCH 0x56 /* Max Channel Number */ #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */ /* OFFSETS for Function 1 */ #define TOLM 0x6C #define REDMEMB 0x7C #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */ #define MIR0 0x80 #define MIR1 0x84 #define AMIR0 0x8c #define AMIR1 0x90 /* Fatal error registers */ #define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */ #define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */ #define NERR_FAT_FBD 0x9c #define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */ /* Non-fatal error register */ #define NERR_NF_FBD 0xa4 /* Enable error mask */ #define EMASK_FBD 0xa8 #define ERR0_FBD 0xac #define ERR1_FBD 0xb0 #define ERR2_FBD 0xb4 #define MCERR_FBD 0xb8 /* No OFFSETS for Device 16 Function 2 */ /* * Device 21, * Function 0: Memory Map Branch 0 * * Device 22, * Function 0: Memory Map Branch 1 */ /* OFFSETS for Function 0 */ #define AMBPRESENT_0 0x64 #define AMBPRESENT_1 0x66 #define MTR0 0x80 #define MTR1 0x82 #define MTR2 0x84 #define MTR3 0x86 /* OFFSETS for Function 1 */ #define NRECFGLOG 0x74 #define RECFGLOG 0x78 #define NRECMEMA 0xbe #define NRECMEMB 0xc0 #define NRECFB_DIMMA 0xc4 #define NRECFB_DIMMB 0xc8 #define NRECFB_DIMMC 0xcc #define NRECFB_DIMMD 0xd0 #define NRECFB_DIMME 0xd4 #define NRECFB_DIMMF 0xd8 #define REDMEMA 0xdC #define RECMEMA 0xf0 #define RECMEMB 0xf4 #define RECFB_DIMMA 0xf8 #define RECFB_DIMMB 0xec #define RECFB_DIMMC 0xf0 #define RECFB_DIMMD 0xf4 #define RECFB_DIMME 0xf8 #define RECFB_DIMMF 0xfC /* * Error indicator bits and masks * Error masks are according with Table 5-17 of i5400 datasheet */ enum error_mask { EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */ EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */ EMASK_M3 = 1<<2, /* Reserved */ EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */ EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */ EMASK_M6 = 1<<5, /* Unsupported on i5400 */ EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */ EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */ EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */ EMASK_M10 = 1<<9, /* Unsupported on i5400 */ EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */ EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */ EMASK_M13 = 1<<12, /* Memory Write error on first attempt */ EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */ EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */ EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */ EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */ EMASK_M18 = 1<<17, /* Unsupported on i5400 */ EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */ EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */ EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */ EMASK_M22 = 1<<21, /* SPD protocol Error */ EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */ EMASK_M24 = 1<<23, /* Refresh error */ EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */ EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */ EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */ EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */ EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */ }; /* * Names to translate bit error into something useful */ static const char *error_name[] = { [0] = "Memory Write error on non-redundant retry", [1] = "Memory or FB-DIMM configuration CRC read error", /* Reserved */ [3] = "Uncorrectable Data ECC on Replay", [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", /* M6 Unsupported on i5400 */ [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", [7] = "Aliased Uncorrectable Patrol Data ECC", [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", /* M10 Unsupported on i5400 */ [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", [11] = "Non-Aliased Uncorrectable Patrol Data ECC", [12] = "Memory Write error on first attempt", [13] = "FB-DIMM Configuration Write error on first attempt", [14] = "Memory or FB-DIMM configuration CRC read error", [15] = "Channel Failed-Over Occurred", [16] = "Correctable Non-Mirrored Demand Data ECC", /* M18 Unsupported on i5400 */ [18] = "Correctable Resilver- or Spare-Copy Data ECC", [19] = "Correctable Patrol Data ECC", [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status", [21] = "SPD protocol Error", [22] = "Non-Redundant Fast Reset Timeout", [23] = "Refresh error", [24] = "Memory Write error on redundant retry", [25] = "Redundant Fast Reset Timeout", [26] = "Correctable Counter Threshold Exceeded", [27] = "DIMM-Spare Copy Completed", [28] = "DIMM-Isolation Completed", }; /* Fatal errors */ #define ERROR_FAT_MASK (EMASK_M1 | \ EMASK_M2 | \ EMASK_M23) /* Correctable errors */ #define ERROR_NF_CORRECTABLE (EMASK_M27 | \ EMASK_M20 | \ EMASK_M19 | \ EMASK_M18 | \ EMASK_M17 | \ EMASK_M16) #define ERROR_NF_DIMM_SPARE (EMASK_M29 | \ EMASK_M28) #define ERROR_NF_SPD_PROTOCOL (EMASK_M22) #define ERROR_NF_NORTH_CRC (EMASK_M21) /* Recoverable errors */ #define ERROR_NF_RECOVERABLE (EMASK_M26 | \ EMASK_M25 | \ EMASK_M24 | \ EMASK_M15 | \ EMASK_M14 | \ EMASK_M13 | \ EMASK_M12 | \ EMASK_M11 | \ EMASK_M9 | \ EMASK_M8 | \ EMASK_M7 | \ EMASK_M5) /* uncorrectable errors */ #define ERROR_NF_UNCORRECTABLE (EMASK_M4) /* mask to all non-fatal errors */ #define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \ ERROR_NF_UNCORRECTABLE | \ ERROR_NF_RECOVERABLE | \ ERROR_NF_DIMM_SPARE | \ ERROR_NF_SPD_PROTOCOL | \ ERROR_NF_NORTH_CRC) /* * Define error masks for the several registers */ /* Enable all fatal and non fatal errors */ #define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK) /* mask for fatal error registers */ #define FERR_FAT_MASK ERROR_FAT_MASK /* masks for non-fatal error register */ static inline int to_nf_mask(unsigned int mask) { return (mask & EMASK_M29) | (mask >> 3); }; static inline int from_nf_ferr(unsigned int mask) { return (mask & EMASK_M29) | /* Bit 28 */ (mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */ }; #define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK) #define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE) #define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE) #define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL) #define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC) #define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE) #define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE) /* Defines to extract the vaious fields from the * MTRx - Memory Technology Registers */ #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10)) #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9)) #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4) #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4) #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) #define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1) #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1) #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */ static inline int extract_fbdchan_indx(u32 x) { return (x>>28) & 0x3; } #ifdef CONFIG_EDAC_DEBUG /* MTR NUMROW */ static const char *numrow_toString[] = { "8,192 - 13 rows", "16,384 - 14 rows", "32,768 - 15 rows", "65,536 - 16 rows" }; /* MTR NUMCOL */ static const char *numcol_toString[] = { "1,024 - 10 columns", "2,048 - 11 columns", "4,096 - 12 columns", "reserved" }; #endif /* Device name and register DID (Device ID) */ struct i5400_dev_info { const char *ctl_name; /* name for this device */ u16 fsb_mapping_errors; /* DID for the branchmap,control */ }; /* Table of devices attributes supported by this driver */ static const struct i5400_dev_info i5400_devs[] = { { .ctl_name = "I5400", .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR, }, }; struct i5400_dimm_info { int megabytes; /* size, 0 means not present */ }; /* driver private data structure */ struct i5400_pvt { struct pci_dev *system_address; /* 16.0 */ struct pci_dev *branchmap_werrors; /* 16.1 */ struct pci_dev *fsb_error_regs; /* 16.2 */ struct pci_dev *branch_0; /* 21.0 */ struct pci_dev *branch_1; /* 22.0 */ u16 tolm; /* top of low memory */ u64 ambase; /* AMB BAR */ u16 mir0, mir1; u16 b0_mtr[NUM_MTRS_PER_BRANCH]; /* Memory Technlogy Reg */ u16 b0_ambpresent0; /* Branch 0, Channel 0 */ u16 b0_ambpresent1; /* Brnach 0, Channel 1 */ u16 b1_mtr[NUM_MTRS_PER_BRANCH]; /* Memory Technlogy Reg */ u16 b1_ambpresent0; /* Branch 1, Channel 8 */ u16 b1_ambpresent1; /* Branch 1, Channel 1 */ /* DIMM information matrix, allocating architecture maximums */ struct i5400_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS]; /* Actual values for this controller */ int maxch; /* Max channels */ int maxdimmperch; /* Max DIMMs per channel */ }; /* I5400 MCH error information retrieved from Hardware */ struct i5400_error_info { /* These registers are always read from the MC */ u32 ferr_fat_fbd; /* First Errors Fatal */ u32 nerr_fat_fbd; /* Next Errors Fatal */ u32 ferr_nf_fbd; /* First Errors Non-Fatal */ u32 nerr_nf_fbd; /* Next Errors Non-Fatal */ /* These registers are input ONLY if there was a Recoverable Error */ u32 redmemb; /* Recoverable Mem Data Error log B */ u16 recmema; /* Recoverable Mem Error log A */ u32 recmemb; /* Recoverable Mem Error log B */ /* These registers are input ONLY if there was a Non-Rec Error */ u16 nrecmema; /* Non-Recoverable Mem log A */ u16 nrecmemb; /* Non-Recoverable Mem log B */ }; /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and 5400 better to use an inline function than a macro in this case */ static inline int nrec_bank(struct i5400_error_info *info) { return ((info->nrecmema) >> 12) & 0x7; } static inline int nrec_rank(struct i5400_error_info *info) { return ((info->nrecmema) >> 8) & 0xf; } static inline int nrec_buf_id(struct i5400_error_info *info) { return ((info->nrecmema)) & 0xff; } static inline int nrec_rdwr(struct i5400_error_info *info) { return (info->nrecmemb) >> 31; } /* This applies to both NREC and REC string so it can be used with nrec_rdwr and rec_rdwr */ static inline const char *rdwr_str(int rdwr) { return rdwr ? "Write" : "Read"; } static inline int nrec_cas(struct i5400_error_info *info) { return ((info->nrecmemb) >> 16) & 0x1fff; } static inline int nrec_ras(struct i5400_error_info *info) { return (info->nrecmemb) & 0xffff; } static inline int rec_bank(struct i5400_error_info *info) { return ((info->recmema) >> 12) & 0x7; } static inline int rec_rank(struct i5400_error_info *info) { return ((info->recmema) >> 8) & 0xf; } static inline int rec_rdwr(struct i5400_error_info *info) { return (info->recmemb) >> 31; } static inline int rec_cas(struct i5400_error_info *info) { return ((info->recmemb) >> 16) & 0x1fff; } static inline int rec_ras(struct i5400_error_info *info) { return (info->recmemb) & 0xffff; } static struct edac_pci_ctl_info *i5400_pci; /* * i5400_get_error_info Retrieve the hardware error information from * the hardware and cache it in the 'info' * structure */ static void i5400_get_error_info(struct mem_ctl_info *mci, struct i5400_error_info *info) { struct i5400_pvt *pvt; u32 value; pvt = mci->pvt_info; /* read in the 1st FATAL error register */ pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); /* Mask only the bits that the doc says are valid */ value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); /* If there is an error, then read in the NEXT FATAL error register and the Memory Error Log Register A */ if (value & FERR_FAT_MASK) { info->ferr_fat_fbd = value; /* harvest the various error data we need */ pci_read_config_dword(pvt->branchmap_werrors, NERR_FAT_FBD, &info->nerr_fat_fbd); pci_read_config_word(pvt->branchmap_werrors, NRECMEMA, &info->nrecmema); pci_read_config_word(pvt->branchmap_werrors, NRECMEMB, &info->nrecmemb); /* Clear the error bits, by writing them back */ pci_write_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, value); } else { info->ferr_fat_fbd = 0; info->nerr_fat_fbd = 0; info->nrecmema = 0; info->nrecmemb = 0; } /* read in the 1st NON-FATAL error register */ pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); /* If there is an error, then read in the 1st NON-FATAL error * register as well */ if (value & FERR_NF_MASK) { info->ferr_nf_fbd = value; /* harvest the various error data we need */ pci_read_config_dword(pvt->branchmap_werrors, NERR_NF_FBD, &info->nerr_nf_fbd); pci_read_config_word(pvt->branchmap_werrors, RECMEMA, &info->recmema); pci_read_config_dword(pvt->branchmap_werrors, RECMEMB, &info->recmemb); pci_read_config_dword(pvt->branchmap_werrors, REDMEMB, &info->redmemb); /* Clear the error bits, by writing them back */ pci_write_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, value); } else { info->ferr_nf_fbd = 0; info->nerr_nf_fbd = 0; info->recmema = 0; info->recmemb = 0; info->redmemb = 0; } } /* * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, * struct i5400_error_info *info, * int handle_errors); * * handle the Intel FATAL and unrecoverable errors, if any */ static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, struct i5400_error_info *info, unsigned long allErrors) { char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; int branch; int channel; int bank; int buf_id; int rank; int rdwr; int ras, cas; int errnum; char *type = NULL; if (!allErrors) return; /* if no error, return now */ if (allErrors & ERROR_FAT_MASK) type = "FATAL"; else if (allErrors & FERR_NF_UNCORRECTABLE) type = "NON-FATAL uncorrected"; else type = "NON-FATAL recoverable"; /* ONLY ONE of the possible error bits will be set, as per the docs */ branch = extract_fbdchan_indx(info->ferr_fat_fbd); channel = branch; /* Use the NON-Recoverable macros to extract data */ bank = nrec_bank(info); rank = nrec_rank(info); buf_id = nrec_buf_id(info); rdwr = nrec_rdwr(info); ras = nrec_ras(info); cas = nrec_cas(info); debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d " "DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n", rank, channel, channel + 1, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas); /* Only 1 bit will be on */ errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); /* Form out message */ snprintf(msg, sizeof(msg), "%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s " "RAS=%d CAS=%d %s Err=0x%lx (%s))", type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas, type, allErrors, error_name[errnum]); /* Call the helper to output message */ edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg); } /* * i5400_process_fatal_error_info(struct mem_ctl_info *mci, * struct i5400_error_info *info, * int handle_errors); * * handle the Intel NON-FATAL errors, if any */ static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci, struct i5400_error_info *info) { char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; unsigned long allErrors; int branch; int channel; int bank; int rank; int rdwr; int ras, cas; int errnum; /* mask off the Error bits that are possible */ allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK); if (!allErrors) return; /* if no error, return now */ /* ONLY ONE of the possible error bits will be set, as per the docs */ if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) { i5400_proccess_non_recoverable_info(mci, info, allErrors); return; } /* Correctable errors */ if (allErrors & ERROR_NF_CORRECTABLE) { debugf0("\tCorrected bits= 0x%lx\n", allErrors); branch = extract_fbdchan_indx(info->ferr_nf_fbd); channel = 0; if (REC_ECC_LOCATOR_ODD(info->redmemb)) channel = 1; /* Convert channel to be based from zero, instead of * from branch base of 0 */ channel += branch; bank = rec_bank(info); rank = rec_rank(info); rdwr = rec_rdwr(info); ras = rec_ras(info); cas = rec_cas(info); /* Only 1 bit will be on */ errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); debugf0("\t\tCSROW= %d Channel= %d (Branch %d " "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", rank, channel, branch >> 1, bank, rdwr_str(rdwr), ras, cas); /* Form out message */ snprintf(msg, sizeof(msg), "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s " "RAS=%d CAS=%d, CE Err=0x%lx (%s))", branch >> 1, bank, rdwr_str(rdwr), ras, cas, allErrors, error_name[errnum]); /* Call the helper to output message */ edac_mc_handle_fbd_ce(mci, rank, channel, msg); return; } /* Miscellaneous errors */ errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); branch = extract_fbdchan_indx(info->ferr_nf_fbd); i5400_mc_printk(mci, KERN_EMERG, "Non-Fatal misc error (Branch=%d Err=%#lx (%s))", branch >> 1, allErrors, error_name[errnum]); } /* * i5400_process_error_info Process the error info that is * in the 'info' structure, previously retrieved from hardware */ static void i5400_process_error_info(struct mem_ctl_info *mci, struct i5400_error_info *info) { u32 allErrors; /* First handle any fatal errors that occurred */ allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); i5400_proccess_non_recoverable_info(mci, info, allErrors); /* now handle any non-fatal errors that occurred */ i5400_process_nonfatal_error_info(mci, info); } /* * i5400_clear_error Retrieve any error from the hardware * but do NOT process that error. * Used for 'clearing' out of previous errors * Called by the Core module. */ static void i5400_clear_error(struct mem_ctl_info *mci) { struct i5400_error_info info; i5400_get_error_info(mci, &info); } /* * i5400_check_error Retrieve and process errors reported by the * hardware. Called by the Core module. */ static void i5400_check_error(struct mem_ctl_info *mci) { struct i5400_error_info info; debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__); i5400_get_error_info(mci, &info); i5400_process_error_info(mci, &info); } /* * i5400_put_devices 'put' all the devices that we have * reserved via 'get' */ static void i5400_put_devices(struct mem_ctl_info *mci) { struct i5400_pvt *pvt; pvt = mci->pvt_info; /* Decrement usage count for devices */ pci_dev_put(pvt->branch_1); pci_dev_put(pvt->branch_0); pci_dev_put(pvt->fsb_error_regs); pci_dev_put(pvt->branchmap_werrors); } /* * i5400_get_devices Find and perform 'get' operation on the MCH's * device/functions we want to reference for this driver * * Need to 'get' device 16 func 1 and func 2 */ static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx) { struct i5400_pvt *pvt; struct pci_dev *pdev; pvt = mci->pvt_info; pvt->branchmap_werrors = NULL; pvt->fsb_error_regs = NULL; pvt->branch_0 = NULL; pvt->branch_1 = NULL; /* Attempt to 'get' the MCH register we want */ pdev = NULL; while (1) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR, pdev); if (!pdev) { /* End of list, leave */ i5400_printk(KERN_ERR, "'system address,Process Bus' " "device not found:" "vendor 0x%x device 0x%x ERR func 1 " "(broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR); return -ENODEV; } /* Store device 16 func 1 */ if (PCI_FUNC(pdev->devfn) == 1) break; } pvt->branchmap_werrors = pdev; pdev = NULL; while (1) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR, pdev); if (!pdev) { /* End of list, leave */ i5400_printk(KERN_ERR, "'system address,Process Bus' " "device not found:" "vendor 0x%x device 0x%x ERR func 2 " "(broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR); pci_dev_put(pvt->branchmap_werrors); return -ENODEV; } /* Store device 16 func 2 */ if (PCI_FUNC(pdev->devfn) == 2) break; } pvt->fsb_error_regs = pdev; debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n", pci_name(pvt->system_address), pvt->system_address->vendor, pvt->system_address->device); debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", pci_name(pvt->branchmap_werrors), pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device); debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n", pci_name(pvt->fsb_error_regs), pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0, NULL); if (!pvt->branch_0) { i5400_printk(KERN_ERR, "MC: 'BRANCH 0' device not found:" "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0); pci_dev_put(pvt->fsb_error_regs); pci_dev_put(pvt->branchmap_werrors); return -ENODEV; } /* If this device claims to have more than 2 channels then * fetch Branch 1's information */ if (pvt->maxch < CHANNELS_PER_BRANCH) return 0; pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD1, NULL); if (!pvt->branch_1) { i5400_printk(KERN_ERR, "MC: 'BRANCH 1' device not found:" "vendor 0x%x device 0x%x Func 0 " "(broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD1); pci_dev_put(pvt->branch_0); pci_dev_put(pvt->fsb_error_regs); pci_dev_put(pvt->branchmap_werrors); return -ENODEV; } return 0; } /* * determine_amb_present * * the information is contained in NUM_MTRS_PER_BRANCH different * registers determining which of the NUM_MTRS_PER_BRANCH requires * knowing which channel is in question * * 2 branches, each with 2 channels * b0_ambpresent0 for channel '0' * b0_ambpresent1 for channel '1' * b1_ambpresent0 for channel '2' * b1_ambpresent1 for channel '3' */ static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel) { int amb_present; if (channel < CHANNELS_PER_BRANCH) { if (channel & 0x1) amb_present = pvt->b0_ambpresent1; else amb_present = pvt->b0_ambpresent0; } else { if (channel & 0x1) amb_present = pvt->b1_ambpresent1; else amb_present = pvt->b1_ambpresent0; } return amb_present; } /* * determine_mtr(pvt, csrow, channel) * * return the proper MTR register as determine by the csrow and desired channel */ static int determine_mtr(struct i5400_pvt *pvt, int csrow, int channel) { int mtr; int n; /* There is one MTR for each slot pair of FB-DIMMs, Each slot pair may be at branch 0 or branch 1. */ n = csrow; if (n >= NUM_MTRS_PER_BRANCH) { debugf0("ERROR: trying to access an invalid csrow: %d\n", csrow); return 0; } if (channel < CHANNELS_PER_BRANCH) mtr = pvt->b0_mtr[n]; else mtr = pvt->b1_mtr[n]; return mtr; } /* */ static void decode_mtr(int slot_row, u16 mtr) { int ans; ans = MTR_DIMMS_PRESENT(mtr); debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr, ans ? "Present" : "NOT Present"); if (!ans) return; debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); debugf2("\t\tELECTRICAL THROTTLING is %s\n", MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single"); debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]); debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]); } static void handle_channel(struct i5400_pvt *pvt, int csrow, int channel, struct i5400_dimm_info *dinfo) { int mtr; int amb_present_reg; int addrBits; mtr = determine_mtr(pvt, csrow, channel); if (MTR_DIMMS_PRESENT(mtr)) { amb_present_reg = determine_amb_present_reg(pvt, channel); /* Determine if there is a DIMM present in this DIMM slot */ if (amb_present_reg & (1 << csrow)) { /* Start with the number of bits for a Bank * on the DRAM */ addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); /* Add thenumber of ROW bits */ addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); /* add the number of COLUMN bits */ addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); /* add the number of RANK bits */ addrBits += MTR_DIMM_RANK(mtr); addrBits += 6; /* add 64 bits per DIMM */ addrBits -= 20; /* divide by 2^^20 */ addrBits -= 3; /* 8 bits per bytes */ dinfo->megabytes = 1 << addrBits; } } } /* * calculate_dimm_size * * also will output a DIMM matrix map, if debug is enabled, for viewing * how the DIMMs are populated */ static void calculate_dimm_size(struct i5400_pvt *pvt) { struct i5400_dimm_info *dinfo; int csrow, max_csrows; char *p, *mem_buffer; int space, n; int channel; /* ================= Generate some debug output ================= */ space = PAGE_SIZE; mem_buffer = p = kmalloc(space, GFP_KERNEL); if (p == NULL) { i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", __FILE__, __func__); return; } /* Scan all the actual CSROWS * and calculate the information for each DIMM * Start with the highest csrow first, to display it first * and work toward the 0th csrow */ max_csrows = pvt->maxdimmperch; for (csrow = max_csrows - 1; csrow >= 0; csrow--) { /* on an odd csrow, first output a 'boundary' marker, * then reset the message buffer */ if (csrow & 0x1) { n = snprintf(p, space, "---------------------------" "--------------------------------"); p += n; space -= n; debugf2("%s\n", mem_buffer); p = mem_buffer; space = PAGE_SIZE; } n = snprintf(p, space, "csrow %2d ", csrow); p += n; space -= n; for (channel = 0; channel < pvt->maxch; channel++) { dinfo = &pvt->dimm_info[csrow][channel]; handle_channel(pvt, csrow, channel, dinfo); n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); p += n; space -= n; } debugf2("%s\n", mem_buffer); p = mem_buffer; space = PAGE_SIZE; } /* Output the last bottom 'boundary' marker */ n = snprintf(p, space, "---------------------------" "--------------------------------"); p += n; space -= n; debugf2("%s\n", mem_buffer); p = mem_buffer; space = PAGE_SIZE; /* now output the 'channel' labels */ n = snprintf(p, space, " "); p += n; space -= n; for (channel = 0; channel < pvt->maxch; channel++) { n = snprintf(p, space, "channel %d | ", channel); p += n; space -= n; } /* output the last message and free buffer */ debugf2("%s\n", mem_buffer); kfree(mem_buffer); } /* * i5400_get_mc_regs read in the necessary registers and * cache locally * * Fills in the private data members */ static void i5400_get_mc_regs(struct mem_ctl_info *mci) { struct i5400_pvt *pvt; u32 actual_tolm; u16 limit; int slot_row; int maxch; int maxdimmperch; int way0, way1; pvt = mci->pvt_info; pci_read_config_dword(pvt->system_address, AMBASE, (u32 *) &pvt->ambase); pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), ((u32 *) &pvt->ambase) + sizeof(u32)); maxdimmperch = pvt->maxdimmperch; maxch = pvt->maxch; debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); /* Get the Branch Map regs */ pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); pvt->tolm >>= 12; debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm, pvt->tolm); actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n", actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); /* Get the MIR[0-1] regs */ limit = (pvt->mir0 >> 4) & 0x0fff; way0 = pvt->mir0 & 0x1; way1 = pvt->mir0 & 0x2; debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); limit = (pvt->mir1 >> 4) & 0xfff; way0 = pvt->mir1 & 0x1; way1 = pvt->mir1 & 0x2; debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); /* Get the set of MTR[0-3] regs by each branch */ for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) { int where = MTR0 + (slot_row * sizeof(u16)); /* Branch 0 set of MTR registers */ pci_read_config_word(pvt->branch_0, where, &pvt->b0_mtr[slot_row]); debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where, pvt->b0_mtr[slot_row]); if (pvt->maxch < CHANNELS_PER_BRANCH) { pvt->b1_mtr[slot_row] = 0; continue; } /* Branch 1 set of MTR registers */ pci_read_config_word(pvt->branch_1, where, &pvt->b1_mtr[slot_row]); debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where, pvt->b1_mtr[slot_row]); } /* Read and dump branch 0's MTRs */ debugf2("\nMemory Technology Registers:\n"); debugf2(" Branch 0:\n"); for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) decode_mtr(slot_row, pvt->b0_mtr[slot_row]); pci_read_config_word(pvt->branch_0, AMBPRESENT_0, &pvt->b0_ambpresent0); debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); pci_read_config_word(pvt->branch_0, AMBPRESENT_1, &pvt->b0_ambpresent1); debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); /* Only if we have 2 branchs (4 channels) */ if (pvt->maxch < CHANNELS_PER_BRANCH) { pvt->b1_ambpresent0 = 0; pvt->b1_ambpresent1 = 0; } else { /* Read and dump branch 1's MTRs */ debugf2(" Branch 1:\n"); for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) decode_mtr(slot_row, pvt->b1_mtr[slot_row]); pci_read_config_word(pvt->branch_1, AMBPRESENT_0, &pvt->b1_ambpresent0); debugf2("\t\tAMB-Branch 1-present0 0x%x:\n", pvt->b1_ambpresent0); pci_read_config_word(pvt->branch_1, AMBPRESENT_1, &pvt->b1_ambpresent1); debugf2("\t\tAMB-Branch 1-present1 0x%x:\n", pvt->b1_ambpresent1); } /* Go and determine the size of each DIMM and place in an * orderly matrix */ calculate_dimm_size(pvt); } /* * i5400_init_csrows Initialize the 'csrows' table within * the mci control structure with the * addressing of memory. * * return: * 0 success * 1 no actual memory found on this MC */ static int i5400_init_csrows(struct mem_ctl_info *mci) { struct i5400_pvt *pvt; struct csrow_info *p_csrow; int empty, channel_count; int max_csrows; int mtr; int csrow_megs; int channel; int csrow; struct dimm_info *dimm; pvt = mci->pvt_info; channel_count = pvt->maxch; max_csrows = pvt->maxdimmperch; empty = 1; /* Assume NO memory */ for (csrow = 0; csrow < max_csrows; csrow++) { p_csrow = &mci->csrows[csrow]; p_csrow->csrow_idx = csrow; /* use branch 0 for the basis */ mtr = determine_mtr(pvt, csrow, 0); /* if no DIMMS on this row, continue */ if (!MTR_DIMMS_PRESENT(mtr)) continue; /* FAKE OUT VALUES, FIXME */ p_csrow->first_page = 0 + csrow * 20; p_csrow->last_page = 9 + csrow * 20; p_csrow->page_mask = 0xFFF; csrow_megs = 0; for (channel = 0; channel < pvt->maxch; channel++) { csrow_megs += pvt->dimm_info[csrow][channel].megabytes; p_csrow->nr_pages = csrow_megs << 8; dimm = p_csrow->channels[channel].dimm; dimm->grain = 8; dimm->dtype = MTR_DRAM_WIDTH(mtr) ? DEV_X8 : DEV_X4; dimm->mtype = MEM_RDDR2; dimm->edac_mode = EDAC_SECDED; } empty = 0; } return empty; } /* * i5400_enable_error_reporting * Turn on the memory reporting features of the hardware */ static void i5400_enable_error_reporting(struct mem_ctl_info *mci) { struct i5400_pvt *pvt; u32 fbd_error_mask; pvt = mci->pvt_info; /* Read the FBD Error Mask Register */ pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, &fbd_error_mask); /* Enable with a '0' */ fbd_error_mask &= ~(ENABLE_EMASK_ALL); pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, fbd_error_mask); } /* * i5400_probe1 Probe for ONE instance of device to see if it is * present. * return: * 0 for FOUND a device * < 0 for error code */ static int i5400_probe1(struct pci_dev *pdev, int dev_idx) { struct mem_ctl_info *mci; struct i5400_pvt *pvt; int num_channels; int num_dimms_per_channel; int num_csrows; if (dev_idx >= ARRAY_SIZE(i5400_devs)) return -EINVAL; debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n", __FILE__, __func__, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); /* We only are looking for func 0 of the set */ if (PCI_FUNC(pdev->devfn) != 0) return -ENODEV; /* As we don't have a motherboard identification routine to determine * actual number of slots/dimms per channel, we thus utilize the * resource as specified by the chipset. Thus, we might have * have more DIMMs per channel than actually on the mobo, but this * allows the driver to support up to the chipset max, without * some fancy mobo determination. */ num_dimms_per_channel = MAX_DIMMS_PER_CHANNEL; num_channels = MAX_CHANNELS; num_csrows = num_dimms_per_channel; debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n", __func__, num_channels, num_dimms_per_channel, num_csrows); /* allocate a new MC control structure */ mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0); if (mci == NULL) return -ENOMEM; debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci); mci->dev = &pdev->dev; /* record ptr to the generic device */ pvt = mci->pvt_info; pvt->system_address = pdev; /* Record this device in our private */ pvt->maxch = num_channels; pvt->maxdimmperch = num_dimms_per_channel; /* 'get' the pci devices we want to reserve for our use */ if (i5400_get_devices(mci, dev_idx)) goto fail0; /* Time to get serious */ i5400_get_mc_regs(mci); /* retrieve the hardware registers */ mci->mc_idx = 0; mci->mtype_cap = MEM_FLAG_FB_DDR2; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = "i5400_edac.c"; mci->mod_ver = I5400_REVISION; mci->ctl_name = i5400_devs[dev_idx].ctl_name; mci->dev_name = pci_name(pdev); mci->ctl_page_to_phys = NULL; /* Set the function pointer to an actual operation function */ mci->edac_check = i5400_check_error; /* initialize the MC control structure 'csrows' table * with the mapping and control information */ if (i5400_init_csrows(mci)) { debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n" " because i5400_init_csrows() returned nonzero " "value\n"); mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ } else { debugf1("MC: Enable error reporting now\n"); i5400_enable_error_reporting(mci); } /* add this new MC control structure to EDAC's list of MCs */ if (edac_mc_add_mc(mci)) { debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n", __FILE__, __func__); /* FIXME: perhaps some code should go here that disables error * reporting if we just enabled it */ goto fail1; } i5400_clear_error(mci); /* allocating generic PCI control info */ i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); if (!i5400_pci) { printk(KERN_WARNING "%s(): Unable to create PCI control\n", __func__); printk(KERN_WARNING "%s(): PCI error report via EDAC not setup\n", __func__); } return 0; /* Error exit unwinding stack */ fail1: i5400_put_devices(mci); fail0: edac_mc_free(mci); return -ENODEV; } /* * i5400_init_one constructor for one instance of device * * returns: * negative on error * count (>= 0) */ static int __devinit i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id) { int rc; debugf0("MC: %s: %s()\n", __FILE__, __func__); /* wake up device */ rc = pci_enable_device(pdev); if (rc) return rc; /* now probe and enable the device */ return i5400_probe1(pdev, id->driver_data); } /* * i5400_remove_one destructor for one instance of device * */ static void __devexit i5400_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; debugf0("%s: %s()\n", __FILE__, __func__); if (i5400_pci) edac_pci_release_generic_ctl(i5400_pci); mci = edac_mc_del_mc(&pdev->dev); if (!mci) return; /* retrieve references to resources, and free those resources */ i5400_put_devices(mci); edac_mc_free(mci); } /* * pci_device_id table for which devices we are looking for * * The "E500P" device is the first device supported. */ static DEFINE_PCI_DEVICE_TABLE(i5400_pci_tbl) = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)}, {0,} /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, i5400_pci_tbl); /* * i5400_driver pci_driver structure for this module * */ static struct pci_driver i5400_driver = { .name = "i5400_edac", .probe = i5400_init_one, .remove = __devexit_p(i5400_remove_one), .id_table = i5400_pci_tbl, }; /* * i5400_init Module entry function * Try to initialize this module for its devices */ static int __init i5400_init(void) { int pci_rc; debugf2("MC: %s: %s()\n", __FILE__, __func__); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&i5400_driver); return (pci_rc < 0) ? pci_rc : 0; } /* * i5400_exit() Module exit function * Unregister the driver */ static void __exit i5400_exit(void) { debugf2("MC: %s: %s()\n", __FILE__, __func__); pci_unregister_driver(&i5400_driver); } module_init(i5400_init); module_exit(i5400_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Woodard "); MODULE_AUTHOR("Mauro Carvalho Chehab "); MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - " I5400_REVISION); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");