/* * Applied Micro X-Gene SoC DMA engine Driver * * Copyright (c) 2015, Applied Micro Circuits Corporation * Authors: Rameshwar Prasad Sahu <rsahu@apm.com> * Loc Ho <lho@apm.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * NOTE: PM support is currently not available. */ #include <linux/acpi.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/dmapool.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_device.h> #include "dmaengine.h" /* X-Gene DMA ring csr registers and bit definations */ #define XGENE_DMA_RING_CONFIG 0x04 #define XGENE_DMA_RING_ENABLE BIT(31) #define XGENE_DMA_RING_ID 0x08 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31)) #define XGENE_DMA_RING_ID_BUF 0x0C #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21)) #define XGENE_DMA_RING_THRESLD0_SET1 0x30 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64 #define XGENE_DMA_RING_THRESLD1_SET1 0x34 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8 #define XGENE_DMA_RING_HYSTERESIS 0x68 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF #define XGENE_DMA_RING_STATE 0x6C #define XGENE_DMA_RING_STATE_WR_BASE 0x70 #define XGENE_DMA_RING_NE_INT_MODE 0x017C #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \ ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v))) #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \ ((m) &= (~BIT(31 - (v)))) #define XGENE_DMA_RING_CLKEN 0xC208 #define XGENE_DMA_RING_SRST 0xC200 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num)) #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v)) #define XGENE_DMA_RING_CMD_OFFSET 0x2C #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6) #define XGENE_DMA_RING_COHERENT_SET(m) \ (((u32 *)(m))[2] |= BIT(4)) #define XGENE_DMA_RING_ADDRL_SET(m, v) \ (((u32 *)(m))[2] |= (((v) >> 8) << 5)) #define XGENE_DMA_RING_ADDRH_SET(m, v) \ (((u32 *)(m))[3] |= ((v) >> 35)) #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \ (((u32 *)(m))[3] |= BIT(19)) #define XGENE_DMA_RING_SIZE_SET(m, v) \ (((u32 *)(m))[3] |= ((v) << 23)) #define XGENE_DMA_RING_RECOMBBUF_SET(m) \ (((u32 *)(m))[3] |= BIT(27)) #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \ (((u32 *)(m))[3] |= (0x7 << 28)) #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \ (((u32 *)(m))[4] |= 0x3) #define XGENE_DMA_RING_SELTHRSH_SET(m) \ (((u32 *)(m))[4] |= BIT(3)) #define XGENE_DMA_RING_TYPE_SET(m, v) \ (((u32 *)(m))[4] |= ((v) << 19)) /* X-Gene DMA device csr registers and bit definitions */ #define XGENE_DMA_IPBRR 0x0 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF) #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3) #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3) #define XGENE_DMA_GCR 0x10 #define XGENE_DMA_CH_SETUP(v) \ ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF) #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31)) #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31)) #define XGENE_DMA_RAID6_CONT 0x14 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24) #define XGENE_DMA_INT 0x70 #define XGENE_DMA_INT_MASK 0x74 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF #define XGENE_DMA_INT_ALL_UNMASK 0x0 #define XGENE_DMA_INT_MASK_SHIFT 0x14 #define XGENE_DMA_RING_INT0_MASK 0x90A0 #define XGENE_DMA_RING_INT1_MASK 0x90A8 #define XGENE_DMA_RING_INT2_MASK 0x90B0 #define XGENE_DMA_RING_INT3_MASK 0x90B8 #define XGENE_DMA_RING_INT4_MASK 0x90C0 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070 #define XGENE_DMA_BLK_MEM_RDY 0xD074 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000 /* X-Gene SoC EFUSE csr register and bit defination */ #define XGENE_SOC_JTAG1_SHADOW 0x18 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13) /* X-Gene DMA Descriptor format */ #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50) #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55) #define XGENE_DMA_DESC_C_BIT BIT_ULL(63) #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61) #define XGENE_DMA_DESC_ELERR_POS 46 #define XGENE_DMA_DESC_RTYPE_POS 56 #define XGENE_DMA_DESC_LERR_POS 60 #define XGENE_DMA_DESC_BUFLEN_POS 48 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48 #define XGENE_DMA_DESC_ELERR_RD(m) \ (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3) #define XGENE_DMA_DESC_LERR_RD(m) \ (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7) #define XGENE_DMA_DESC_STATUS(elerr, lerr) \ (((elerr) << 4) | (lerr)) /* X-Gene DMA descriptor empty s/w signature */ #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL /* X-Gene DMA configurable parameters defines */ #define XGENE_DMA_RING_NUM 512 #define XGENE_DMA_BUFNUM 0x0 #define XGENE_DMA_CPU_BUFNUM 0x18 #define XGENE_DMA_RING_OWNER_DMA 0x03 #define XGENE_DMA_RING_OWNER_CPU 0x0F #define XGENE_DMA_RING_TYPE_REGULAR 0x01 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */ #define XGENE_DMA_RING_NUM_CONFIG 5 #define XGENE_DMA_MAX_CHANNEL 4 #define XGENE_DMA_XOR_CHANNEL 0 #define XGENE_DMA_PQ_CHANNEL 1 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */ #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */ #define XGENE_DMA_MAX_XOR_SRC 5 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL /* X-Gene DMA descriptor error codes */ #define ERR_DESC_AXI 0x01 #define ERR_BAD_DESC 0x02 #define ERR_READ_DATA_AXI 0x03 #define ERR_WRITE_DATA_AXI 0x04 #define ERR_FBP_TIMEOUT 0x05 #define ERR_ECC 0x06 #define ERR_DIFF_SIZE 0x08 #define ERR_SCT_GAT_LEN 0x09 #define ERR_CRC_ERR 0x11 #define ERR_CHKSUM 0x12 #define ERR_DIF 0x13 /* X-Gene DMA error interrupt codes */ #define ERR_DIF_SIZE_INT 0x0 #define ERR_GS_ERR_INT 0x1 #define ERR_FPB_TIMEO_INT 0x2 #define ERR_WFIFO_OVF_INT 0x3 #define ERR_RFIFO_OVF_INT 0x4 #define ERR_WR_TIMEO_INT 0x5 #define ERR_RD_TIMEO_INT 0x6 #define ERR_WR_ERR_INT 0x7 #define ERR_RD_ERR_INT 0x8 #define ERR_BAD_DESC_INT 0x9 #define ERR_DESC_DST_INT 0xA #define ERR_DESC_SRC_INT 0xB /* X-Gene DMA flyby operation code */ #define FLYBY_2SRC_XOR 0x80 #define FLYBY_3SRC_XOR 0x90 #define FLYBY_4SRC_XOR 0xA0 #define FLYBY_5SRC_XOR 0xB0 /* X-Gene DMA SW descriptor flags */ #define XGENE_DMA_FLAG_64B_DESC BIT(0) /* Define to dump X-Gene DMA descriptor */ #define XGENE_DMA_DESC_DUMP(desc, m) \ print_hex_dump(KERN_ERR, (m), \ DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0) #define to_dma_desc_sw(tx) \ container_of(tx, struct xgene_dma_desc_sw, tx) #define to_dma_chan(dchan) \ container_of(dchan, struct xgene_dma_chan, dma_chan) #define chan_dbg(chan, fmt, arg...) \ dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) #define chan_err(chan, fmt, arg...) \ dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) struct xgene_dma_desc_hw { __le64 m0; __le64 m1; __le64 m2; __le64 m3; }; enum xgene_dma_ring_cfgsize { XGENE_DMA_RING_CFG_SIZE_512B, XGENE_DMA_RING_CFG_SIZE_2KB, XGENE_DMA_RING_CFG_SIZE_16KB, XGENE_DMA_RING_CFG_SIZE_64KB, XGENE_DMA_RING_CFG_SIZE_512KB, XGENE_DMA_RING_CFG_SIZE_INVALID }; struct xgene_dma_ring { struct xgene_dma *pdma; u8 buf_num; u16 id; u16 num; u16 head; u16 owner; u16 slots; u16 dst_ring_num; u32 size; void __iomem *cmd; void __iomem *cmd_base; dma_addr_t desc_paddr; u32 state[XGENE_DMA_RING_NUM_CONFIG]; enum xgene_dma_ring_cfgsize cfgsize; union { void *desc_vaddr; struct xgene_dma_desc_hw *desc_hw; }; }; struct xgene_dma_desc_sw { struct xgene_dma_desc_hw desc1; struct xgene_dma_desc_hw desc2; u32 flags; struct list_head node; struct list_head tx_list; struct dma_async_tx_descriptor tx; }; /** * struct xgene_dma_chan - internal representation of an X-Gene DMA channel * @dma_chan: dmaengine channel object member * @pdma: X-Gene DMA device structure reference * @dev: struct device reference for dma mapping api * @id: raw id of this channel * @rx_irq: channel IRQ * @name: name of X-Gene DMA channel * @lock: serializes enqueue/dequeue operations to the descriptor pool * @pending: number of transaction request pushed to DMA controller for * execution, but still waiting for completion, * @max_outstanding: max number of outstanding request we can push to channel * @ld_pending: descriptors which are queued to run, but have not yet been * submitted to the hardware for execution * @ld_running: descriptors which are currently being executing by the hardware * @ld_completed: descriptors which have finished execution by the hardware. * These descriptors have already had their cleanup actions run. They * are waiting for the ACK bit to be set by the async tx API. * @desc_pool: descriptor pool for DMA operations * @tasklet: bottom half where all completed descriptors cleans * @tx_ring: transmit ring descriptor that we use to prepare actual * descriptors for further executions * @rx_ring: receive ring descriptor that we use to get completed DMA * descriptors during cleanup time */ struct xgene_dma_chan { struct dma_chan dma_chan; struct xgene_dma *pdma; struct device *dev; int id; int rx_irq; char name[10]; spinlock_t lock; int pending; int max_outstanding; struct list_head ld_pending; struct list_head ld_running; struct list_head ld_completed; struct dma_pool *desc_pool; struct tasklet_struct tasklet; struct xgene_dma_ring tx_ring; struct xgene_dma_ring rx_ring; }; /** * struct xgene_dma - internal representation of an X-Gene DMA device * @err_irq: DMA error irq number * @ring_num: start id number for DMA ring * @csr_dma: base for DMA register access * @csr_ring: base for DMA ring register access * @csr_ring_cmd: base for DMA ring command register access * @csr_efuse: base for efuse register access * @dma_dev: embedded struct dma_device * @chan: reference to X-Gene DMA channels */ struct xgene_dma { struct device *dev; struct clk *clk; int err_irq; int ring_num; void __iomem *csr_dma; void __iomem *csr_ring; void __iomem *csr_ring_cmd; void __iomem *csr_efuse; struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL]; struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL]; }; static const char * const xgene_dma_desc_err[] = { [ERR_DESC_AXI] = "AXI error when reading src/dst link list", [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc", [ERR_READ_DATA_AXI] = "AXI error when reading data", [ERR_WRITE_DATA_AXI] = "AXI error when writing data", [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch", [ERR_ECC] = "ECC double bit error", [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result", [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same", [ERR_CRC_ERR] = "CRC error", [ERR_CHKSUM] = "Checksum error", [ERR_DIF] = "DIF error", }; static const char * const xgene_dma_err[] = { [ERR_DIF_SIZE_INT] = "DIF size error", [ERR_GS_ERR_INT] = "Gather scatter not same size error", [ERR_FPB_TIMEO_INT] = "Free pool time out error", [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error", [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error", [ERR_WR_TIMEO_INT] = "Write time out error", [ERR_RD_TIMEO_INT] = "Read time out error", [ERR_WR_ERR_INT] = "HBF bus write error", [ERR_RD_ERR_INT] = "HBF bus read error", [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error", [ERR_DESC_DST_INT] = "HFB reading dst link address error", [ERR_DESC_SRC_INT] = "HFB reading src link address error", }; static bool is_pq_enabled(struct xgene_dma *pdma) { u32 val; val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW); return !(val & XGENE_DMA_PQ_DISABLE_MASK); } static u64 xgene_dma_encode_len(size_t len) { return (len < XGENE_DMA_MAX_BYTE_CNT) ? ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) : XGENE_DMA_16K_BUFFER_LEN_CODE; } static u8 xgene_dma_encode_xor_flyby(u32 src_cnt) { static u8 flyby_type[] = { FLYBY_2SRC_XOR, /* Dummy */ FLYBY_2SRC_XOR, /* Dummy */ FLYBY_2SRC_XOR, FLYBY_3SRC_XOR, FLYBY_4SRC_XOR, FLYBY_5SRC_XOR }; return flyby_type[src_cnt]; } static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len, dma_addr_t *paddr) { size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ? *len : XGENE_DMA_MAX_BYTE_CNT; *ext8 |= cpu_to_le64(*paddr); *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes)); *len -= nbytes; *paddr += nbytes; } static void xgene_dma_invalidate_buffer(__le64 *ext8) { *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE); } static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx) { switch (idx) { case 0: return &desc->m1; case 1: return &desc->m0; case 2: return &desc->m3; case 3: return &desc->m2; default: pr_err("Invalid dma descriptor index\n"); } return NULL; } static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc, u16 dst_ring_num) { desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT); desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA << XGENE_DMA_DESC_RTYPE_POS); desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT); desc->m3 |= cpu_to_le64((u64)dst_ring_num << XGENE_DMA_DESC_HOENQ_NUM_POS); } static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan, struct xgene_dma_desc_sw *desc_sw, dma_addr_t dst, dma_addr_t src, size_t len) { struct xgene_dma_desc_hw *desc1, *desc2; int i; /* Get 1st descriptor */ desc1 = &desc_sw->desc1; xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num); /* Set destination address */ desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT); desc1->m3 |= cpu_to_le64(dst); /* Set 1st source address */ xgene_dma_set_src_buffer(&desc1->m1, &len, &src); if (!len) return; /* * We need to split this source buffer, * and need to use 2nd descriptor */ desc2 = &desc_sw->desc2; desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT); /* Set 2nd to 5th source address */ for (i = 0; i < 4 && len; i++) xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i), &len, &src); /* Invalidate unused source address field */ for (; i < 4; i++) xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i)); /* Updated flag that we have prepared 64B descriptor */ desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC; } static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan, struct xgene_dma_desc_sw *desc_sw, dma_addr_t *dst, dma_addr_t *src, u32 src_cnt, size_t *nbytes, const u8 *scf) { struct xgene_dma_desc_hw *desc1, *desc2; size_t len = *nbytes; int i; desc1 = &desc_sw->desc1; desc2 = &desc_sw->desc2; /* Initialize DMA descriptor */ xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num); /* Set destination address */ desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT); desc1->m3 |= cpu_to_le64(*dst); /* We have multiple source addresses, so need to set NV bit*/ desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT); /* Set flyby opcode */ desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt)); /* Set 1st to 5th source addresses */ for (i = 0; i < src_cnt; i++) { len = *nbytes; xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 : xgene_dma_lookup_ext8(desc2, i - 1), &len, &src[i]); desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8))); } /* Update meta data */ *nbytes = len; *dst += XGENE_DMA_MAX_BYTE_CNT; /* We need always 64B descriptor to perform xor or pq operations */ desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC; } static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx) { struct xgene_dma_desc_sw *desc; struct xgene_dma_chan *chan; dma_cookie_t cookie; if (unlikely(!tx)) return -EINVAL; chan = to_dma_chan(tx->chan); desc = to_dma_desc_sw(tx); spin_lock_bh(&chan->lock); cookie = dma_cookie_assign(tx); /* Add this transaction list onto the tail of the pending queue */ list_splice_tail_init(&desc->tx_list, &chan->ld_pending); spin_unlock_bh(&chan->lock); return cookie; } static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan, struct xgene_dma_desc_sw *desc) { list_del(&desc->node); chan_dbg(chan, "LD %p free\n", desc); dma_pool_free(chan->desc_pool, desc, desc->tx.phys); } static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor( struct xgene_dma_chan *chan) { struct xgene_dma_desc_sw *desc; dma_addr_t phys; desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys); if (!desc) { chan_err(chan, "Failed to allocate LDs\n"); return NULL; } INIT_LIST_HEAD(&desc->tx_list); desc->tx.phys = phys; desc->tx.tx_submit = xgene_dma_tx_submit; dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan); chan_dbg(chan, "LD %p allocated\n", desc); return desc; } /** * xgene_dma_clean_completed_descriptor - free all descriptors which * has been completed and acked * @chan: X-Gene DMA channel * * This function is used on all completed and acked descriptors. */ static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan) { struct xgene_dma_desc_sw *desc, *_desc; /* Run the callback for each descriptor, in order */ list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) { if (async_tx_test_ack(&desc->tx)) xgene_dma_clean_descriptor(chan, desc); } } /** * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor * @chan: X-Gene DMA channel * @desc: descriptor to cleanup and free * * This function is used on a descriptor which has been executed by the DMA * controller. It will run any callbacks, submit any dependencies. */ static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan, struct xgene_dma_desc_sw *desc) { struct dma_async_tx_descriptor *tx = &desc->tx; /* * If this is not the last transaction in the group, * then no need to complete cookie and run any callback as * this is not the tx_descriptor which had been sent to caller * of this DMA request */ if (tx->cookie == 0) return; dma_cookie_complete(tx); /* Run the link descriptor callback function */ if (tx->callback) tx->callback(tx->callback_param); dma_descriptor_unmap(tx); /* Run any dependencies */ dma_run_dependencies(tx); } /** * xgene_dma_clean_running_descriptor - move the completed descriptor from * ld_running to ld_completed * @chan: X-Gene DMA channel * @desc: the descriptor which is completed * * Free the descriptor directly if acked by async_tx api, * else move it to queue ld_completed. */ static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan, struct xgene_dma_desc_sw *desc) { /* Remove from the list of running transactions */ list_del(&desc->node); /* * the client is allowed to attach dependent operations * until 'ack' is set */ if (!async_tx_test_ack(&desc->tx)) { /* * Move this descriptor to the list of descriptors which is * completed, but still awaiting the 'ack' bit to be set. */ list_add_tail(&desc->node, &chan->ld_completed); return; } chan_dbg(chan, "LD %p free\n", desc); dma_pool_free(chan->desc_pool, desc, desc->tx.phys); } static void xgene_chan_xfer_request(struct xgene_dma_chan *chan, struct xgene_dma_desc_sw *desc_sw) { struct xgene_dma_ring *ring = &chan->tx_ring; struct xgene_dma_desc_hw *desc_hw; /* Get hw descriptor from DMA tx ring */ desc_hw = &ring->desc_hw[ring->head]; /* * Increment the head count to point next * descriptor for next time */ if (++ring->head == ring->slots) ring->head = 0; /* Copy prepared sw descriptor data to hw descriptor */ memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw)); /* * Check if we have prepared 64B descriptor, * in this case we need one more hw descriptor */ if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) { desc_hw = &ring->desc_hw[ring->head]; if (++ring->head == ring->slots) ring->head = 0; memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw)); } /* Increment the pending transaction count */ chan->pending += ((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ? 2 : 1); /* Notify the hw that we have descriptor ready for execution */ iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ? 2 : 1, ring->cmd); } /** * xgene_chan_xfer_ld_pending - push any pending transactions to hw * @chan : X-Gene DMA channel * * LOCKING: must hold chan->lock */ static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan) { struct xgene_dma_desc_sw *desc_sw, *_desc_sw; /* * If the list of pending descriptors is empty, then we * don't need to do any work at all */ if (list_empty(&chan->ld_pending)) { chan_dbg(chan, "No pending LDs\n"); return; } /* * Move elements from the queue of pending transactions onto the list * of running transactions and push it to hw for further executions */ list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) { /* * Check if have pushed max number of transactions to hw * as capable, so let's stop here and will push remaining * elements from pening ld queue after completing some * descriptors that we have already pushed */ if (chan->pending >= chan->max_outstanding) return; xgene_chan_xfer_request(chan, desc_sw); /* * Delete this element from ld pending queue and append it to * ld running queue */ list_move_tail(&desc_sw->node, &chan->ld_running); } } /** * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed * and move them to ld_completed to free until flag 'ack' is set * @chan: X-Gene DMA channel * * This function is used on descriptors which have been executed by the DMA * controller. It will run any callbacks, submit any dependencies, then * free these descriptors if flag 'ack' is set. */ static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan) { struct xgene_dma_ring *ring = &chan->rx_ring; struct xgene_dma_desc_sw *desc_sw, *_desc_sw; struct xgene_dma_desc_hw *desc_hw; struct list_head ld_completed; u8 status; INIT_LIST_HEAD(&ld_completed); spin_lock_bh(&chan->lock); /* Clean already completed and acked descriptors */ xgene_dma_clean_completed_descriptor(chan); /* Move all completed descriptors to ld completed queue, in order */ list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) { /* Get subsequent hw descriptor from DMA rx ring */ desc_hw = &ring->desc_hw[ring->head]; /* Check if this descriptor has been completed */ if (unlikely(le64_to_cpu(desc_hw->m0) == XGENE_DMA_DESC_EMPTY_SIGNATURE)) break; if (++ring->head == ring->slots) ring->head = 0; /* Check if we have any error with DMA transactions */ status = XGENE_DMA_DESC_STATUS( XGENE_DMA_DESC_ELERR_RD(le64_to_cpu( desc_hw->m0)), XGENE_DMA_DESC_LERR_RD(le64_to_cpu( desc_hw->m0))); if (status) { /* Print the DMA error type */ chan_err(chan, "%s\n", xgene_dma_desc_err[status]); /* * We have DMA transactions error here. Dump DMA Tx * and Rx descriptors for this request */ XGENE_DMA_DESC_DUMP(&desc_sw->desc1, "X-Gene DMA TX DESC1: "); if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) XGENE_DMA_DESC_DUMP(&desc_sw->desc2, "X-Gene DMA TX DESC2: "); XGENE_DMA_DESC_DUMP(desc_hw, "X-Gene DMA RX ERR DESC: "); } /* Notify the hw about this completed descriptor */ iowrite32(-1, ring->cmd); /* Mark this hw descriptor as processed */ desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE); /* * Decrement the pending transaction count * as we have processed one */ chan->pending -= ((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ? 2 : 1); /* * Delete this node from ld running queue and append it to * ld completed queue for further processing */ list_move_tail(&desc_sw->node, &ld_completed); } /* * Start any pending transactions automatically * In the ideal case, we keep the DMA controller busy while we go * ahead and free the descriptors below. */ xgene_chan_xfer_ld_pending(chan); spin_unlock_bh(&chan->lock); /* Run the callback for each descriptor, in order */ list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) { xgene_dma_run_tx_complete_actions(chan, desc_sw); xgene_dma_clean_running_descriptor(chan, desc_sw); } } static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan) { struct xgene_dma_chan *chan = to_dma_chan(dchan); /* Has this channel already been allocated? */ if (chan->desc_pool) return 1; chan->desc_pool = dma_pool_create(chan->name, chan->dev, sizeof(struct xgene_dma_desc_sw), 0, 0); if (!chan->desc_pool) { chan_err(chan, "Failed to allocate descriptor pool\n"); return -ENOMEM; } chan_dbg(chan, "Allocate descripto pool\n"); return 1; } /** * xgene_dma_free_desc_list - Free all descriptors in a queue * @chan: X-Gene DMA channel * @list: the list to free * * LOCKING: must hold chan->lock */ static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan, struct list_head *list) { struct xgene_dma_desc_sw *desc, *_desc; list_for_each_entry_safe(desc, _desc, list, node) xgene_dma_clean_descriptor(chan, desc); } static void xgene_dma_free_chan_resources(struct dma_chan *dchan) { struct xgene_dma_chan *chan = to_dma_chan(dchan); chan_dbg(chan, "Free all resources\n"); if (!chan->desc_pool) return; /* Process all running descriptor */ xgene_dma_cleanup_descriptors(chan); spin_lock_bh(&chan->lock); /* Clean all link descriptor queues */ xgene_dma_free_desc_list(chan, &chan->ld_pending); xgene_dma_free_desc_list(chan, &chan->ld_running); xgene_dma_free_desc_list(chan, &chan->ld_completed); spin_unlock_bh(&chan->lock); /* Delete this channel DMA pool */ dma_pool_destroy(chan->desc_pool); chan->desc_pool = NULL; } static struct dma_async_tx_descriptor *xgene_dma_prep_sg( struct dma_chan *dchan, struct scatterlist *dst_sg, u32 dst_nents, struct scatterlist *src_sg, u32 src_nents, unsigned long flags) { struct xgene_dma_desc_sw *first = NULL, *new = NULL; struct xgene_dma_chan *chan; size_t dst_avail, src_avail; dma_addr_t dst, src; size_t len; if (unlikely(!dchan)) return NULL; if (unlikely(!dst_nents || !src_nents)) return NULL; if (unlikely(!dst_sg || !src_sg)) return NULL; chan = to_dma_chan(dchan); /* Get prepared for the loop */ dst_avail = sg_dma_len(dst_sg); src_avail = sg_dma_len(src_sg); dst_nents--; src_nents--; /* Run until we are out of scatterlist entries */ while (true) { /* Create the largest transaction possible */ len = min_t(size_t, src_avail, dst_avail); len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT); if (len == 0) goto fetch; dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; /* Allocate the link descriptor from DMA pool */ new = xgene_dma_alloc_descriptor(chan); if (!new) goto fail; /* Prepare DMA descriptor */ xgene_dma_prep_cpy_desc(chan, new, dst, src, len); if (!first) first = new; new->tx.cookie = 0; async_tx_ack(&new->tx); /* update metadata */ dst_avail -= len; src_avail -= len; /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &first->tx_list); fetch: /* fetch the next dst scatterlist entry */ if (dst_avail == 0) { /* no more entries: we're done */ if (dst_nents == 0) break; /* fetch the next entry: if there are no more: done */ dst_sg = sg_next(dst_sg); if (!dst_sg) break; dst_nents--; dst_avail = sg_dma_len(dst_sg); } /* fetch the next src scatterlist entry */ if (src_avail == 0) { /* no more entries: we're done */ if (src_nents == 0) break; /* fetch the next entry: if there are no more: done */ src_sg = sg_next(src_sg); if (!src_sg) break; src_nents--; src_avail = sg_dma_len(src_sg); } } if (!new) return NULL; new->tx.flags = flags; /* client is in control of this ack */ new->tx.cookie = -EBUSY; list_splice(&first->tx_list, &new->tx_list); return &new->tx; fail: if (!first) return NULL; xgene_dma_free_desc_list(chan, &first->tx_list); return NULL; } static struct dma_async_tx_descriptor *xgene_dma_prep_xor( struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src, u32 src_cnt, size_t len, unsigned long flags) { struct xgene_dma_desc_sw *first = NULL, *new; struct xgene_dma_chan *chan; static u8 multi[XGENE_DMA_MAX_XOR_SRC] = { 0x01, 0x01, 0x01, 0x01, 0x01}; if (unlikely(!dchan || !len)) return NULL; chan = to_dma_chan(dchan); do { /* Allocate the link descriptor from DMA pool */ new = xgene_dma_alloc_descriptor(chan); if (!new) goto fail; /* Prepare xor DMA descriptor */ xgene_dma_prep_xor_desc(chan, new, &dst, src, src_cnt, &len, multi); if (!first) first = new; new->tx.cookie = 0; async_tx_ack(&new->tx); /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &first->tx_list); } while (len); new->tx.flags = flags; /* client is in control of this ack */ new->tx.cookie = -EBUSY; list_splice(&first->tx_list, &new->tx_list); return &new->tx; fail: if (!first) return NULL; xgene_dma_free_desc_list(chan, &first->tx_list); return NULL; } static struct dma_async_tx_descriptor *xgene_dma_prep_pq( struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src, u32 src_cnt, const u8 *scf, size_t len, unsigned long flags) { struct xgene_dma_desc_sw *first = NULL, *new; struct xgene_dma_chan *chan; size_t _len = len; dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC]; static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01}; if (unlikely(!dchan || !len)) return NULL; chan = to_dma_chan(dchan); /* * Save source addresses on local variable, may be we have to * prepare two descriptor to generate P and Q if both enabled * in the flags by client */ memcpy(_src, src, sizeof(*src) * src_cnt); if (flags & DMA_PREP_PQ_DISABLE_P) len = 0; if (flags & DMA_PREP_PQ_DISABLE_Q) _len = 0; do { /* Allocate the link descriptor from DMA pool */ new = xgene_dma_alloc_descriptor(chan); if (!new) goto fail; if (!first) first = new; new->tx.cookie = 0; async_tx_ack(&new->tx); /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &first->tx_list); /* * Prepare DMA descriptor to generate P, * if DMA_PREP_PQ_DISABLE_P flag is not set */ if (len) { xgene_dma_prep_xor_desc(chan, new, &dst[0], src, src_cnt, &len, multi); continue; } /* * Prepare DMA descriptor to generate Q, * if DMA_PREP_PQ_DISABLE_Q flag is not set */ if (_len) { xgene_dma_prep_xor_desc(chan, new, &dst[1], _src, src_cnt, &_len, scf); } } while (len || _len); new->tx.flags = flags; /* client is in control of this ack */ new->tx.cookie = -EBUSY; list_splice(&first->tx_list, &new->tx_list); return &new->tx; fail: if (!first) return NULL; xgene_dma_free_desc_list(chan, &first->tx_list); return NULL; } static void xgene_dma_issue_pending(struct dma_chan *dchan) { struct xgene_dma_chan *chan = to_dma_chan(dchan); spin_lock_bh(&chan->lock); xgene_chan_xfer_ld_pending(chan); spin_unlock_bh(&chan->lock); } static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan, dma_cookie_t cookie, struct dma_tx_state *txstate) { return dma_cookie_status(dchan, cookie, txstate); } static void xgene_dma_tasklet_cb(unsigned long data) { struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data; /* Run all cleanup for descriptors which have been completed */ xgene_dma_cleanup_descriptors(chan); /* Re-enable DMA channel IRQ */ enable_irq(chan->rx_irq); } static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id) { struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id; BUG_ON(!chan); /* * Disable DMA channel IRQ until we process completed * descriptors */ disable_irq_nosync(chan->rx_irq); /* * Schedule the tasklet to handle all cleanup of the current * transaction. It will start a new transaction if there is * one pending. */ tasklet_schedule(&chan->tasklet); return IRQ_HANDLED; } static irqreturn_t xgene_dma_err_isr(int irq, void *id) { struct xgene_dma *pdma = (struct xgene_dma *)id; unsigned long int_mask; u32 val, i; val = ioread32(pdma->csr_dma + XGENE_DMA_INT); /* Clear DMA interrupts */ iowrite32(val, pdma->csr_dma + XGENE_DMA_INT); /* Print DMA error info */ int_mask = val >> XGENE_DMA_INT_MASK_SHIFT; for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err)) dev_err(pdma->dev, "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]); return IRQ_HANDLED; } static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring) { int i; iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE); for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++) iowrite32(ring->state[i], ring->pdma->csr_ring + XGENE_DMA_RING_STATE_WR_BASE + (i * 4)); } static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring) { memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG); xgene_dma_wr_ring_state(ring); } static void xgene_dma_setup_ring(struct xgene_dma_ring *ring) { void *ring_cfg = ring->state; u64 addr = ring->desc_paddr; u32 i, val; ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE; /* Clear DMA ring state */ xgene_dma_clr_ring_state(ring); /* Set DMA ring type */ XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR); if (ring->owner == XGENE_DMA_RING_OWNER_DMA) { /* Set recombination buffer and timeout */ XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg); XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg); XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg); } /* Initialize DMA ring state */ XGENE_DMA_RING_SELTHRSH_SET(ring_cfg); XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg); XGENE_DMA_RING_COHERENT_SET(ring_cfg); XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr); XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr); XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize); /* Write DMA ring configurations */ xgene_dma_wr_ring_state(ring); /* Set DMA ring id */ iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id), ring->pdma->csr_ring + XGENE_DMA_RING_ID); /* Set DMA ring buffer */ iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num), ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); if (ring->owner != XGENE_DMA_RING_OWNER_CPU) return; /* Set empty signature to DMA Rx ring descriptors */ for (i = 0; i < ring->slots; i++) { struct xgene_dma_desc_hw *desc; desc = &ring->desc_hw[i]; desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE); } /* Enable DMA Rx ring interrupt */ val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num); iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); } static void xgene_dma_clear_ring(struct xgene_dma_ring *ring) { u32 ring_id, val; if (ring->owner == XGENE_DMA_RING_OWNER_CPU) { /* Disable DMA Rx ring interrupt */ val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num); iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); } /* Clear DMA ring state */ ring_id = XGENE_DMA_RING_ID_SETUP(ring->id); iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID); iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); xgene_dma_clr_ring_state(ring); } static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring) { ring->cmd_base = ring->pdma->csr_ring_cmd + XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num - XGENE_DMA_RING_NUM)); ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET; } static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan, enum xgene_dma_ring_cfgsize cfgsize) { int size; switch (cfgsize) { case XGENE_DMA_RING_CFG_SIZE_512B: size = 0x200; break; case XGENE_DMA_RING_CFG_SIZE_2KB: size = 0x800; break; case XGENE_DMA_RING_CFG_SIZE_16KB: size = 0x4000; break; case XGENE_DMA_RING_CFG_SIZE_64KB: size = 0x10000; break; case XGENE_DMA_RING_CFG_SIZE_512KB: size = 0x80000; break; default: chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize); return -EINVAL; } return size; } static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring) { /* Clear DMA ring configurations */ xgene_dma_clear_ring(ring); /* De-allocate DMA ring descriptor */ if (ring->desc_vaddr) { dma_free_coherent(ring->pdma->dev, ring->size, ring->desc_vaddr, ring->desc_paddr); ring->desc_vaddr = NULL; } } static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan) { xgene_dma_delete_ring_one(&chan->rx_ring); xgene_dma_delete_ring_one(&chan->tx_ring); } static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan, struct xgene_dma_ring *ring, enum xgene_dma_ring_cfgsize cfgsize) { int ret; /* Setup DMA ring descriptor variables */ ring->pdma = chan->pdma; ring->cfgsize = cfgsize; ring->num = chan->pdma->ring_num++; ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num); ret = xgene_dma_get_ring_size(chan, cfgsize); if (ret <= 0) return ret; ring->size = ret; /* Allocate memory for DMA ring descriptor */ ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size, &ring->desc_paddr, GFP_KERNEL); if (!ring->desc_vaddr) { chan_err(chan, "Failed to allocate ring desc\n"); return -ENOMEM; } /* Configure and enable DMA ring */ xgene_dma_set_ring_cmd(ring); xgene_dma_setup_ring(ring); return 0; } static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan) { struct xgene_dma_ring *rx_ring = &chan->rx_ring; struct xgene_dma_ring *tx_ring = &chan->tx_ring; int ret; /* Create DMA Rx ring descriptor */ rx_ring->owner = XGENE_DMA_RING_OWNER_CPU; rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id; ret = xgene_dma_create_ring_one(chan, rx_ring, XGENE_DMA_RING_CFG_SIZE_64KB); if (ret) return ret; chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n", rx_ring->id, rx_ring->num, rx_ring->desc_vaddr); /* Create DMA Tx ring descriptor */ tx_ring->owner = XGENE_DMA_RING_OWNER_DMA; tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id; ret = xgene_dma_create_ring_one(chan, tx_ring, XGENE_DMA_RING_CFG_SIZE_64KB); if (ret) { xgene_dma_delete_ring_one(rx_ring); return ret; } tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num); chan_dbg(chan, "Tx ring id 0x%X num %d desc 0x%p\n", tx_ring->id, tx_ring->num, tx_ring->desc_vaddr); /* Set the max outstanding request possible to this channel */ chan->max_outstanding = tx_ring->slots; return ret; } static int xgene_dma_init_rings(struct xgene_dma *pdma) { int ret, i, j; for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { ret = xgene_dma_create_chan_rings(&pdma->chan[i]); if (ret) { for (j = 0; j < i; j++) xgene_dma_delete_chan_rings(&pdma->chan[j]); return ret; } } return ret; } static void xgene_dma_enable(struct xgene_dma *pdma) { u32 val; /* Configure and enable DMA engine */ val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); XGENE_DMA_CH_SETUP(val); XGENE_DMA_ENABLE(val); iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); } static void xgene_dma_disable(struct xgene_dma *pdma) { u32 val; val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); XGENE_DMA_DISABLE(val); iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); } static void xgene_dma_mask_interrupts(struct xgene_dma *pdma) { /* * Mask DMA ring overflow, underflow and * AXI write/read error interrupts */ iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); /* Mask DMA error interrupts */ iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK); } static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma) { /* * Unmask DMA ring overflow, underflow and * AXI write/read error interrupts */ iowrite32(XGENE_DMA_INT_ALL_UNMASK, pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); iowrite32(XGENE_DMA_INT_ALL_UNMASK, pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); iowrite32(XGENE_DMA_INT_ALL_UNMASK, pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); iowrite32(XGENE_DMA_INT_ALL_UNMASK, pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); iowrite32(XGENE_DMA_INT_ALL_UNMASK, pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); /* Unmask DMA error interrupts */ iowrite32(XGENE_DMA_INT_ALL_UNMASK, pdma->csr_dma + XGENE_DMA_INT_MASK); } static void xgene_dma_init_hw(struct xgene_dma *pdma) { u32 val; /* Associate DMA ring to corresponding ring HW */ iowrite32(XGENE_DMA_ASSOC_RING_MNGR1, pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC); /* Configure RAID6 polynomial control setting */ if (is_pq_enabled(pdma)) iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D), pdma->csr_dma + XGENE_DMA_RAID6_CONT); else dev_info(pdma->dev, "PQ is disabled in HW\n"); xgene_dma_enable(pdma); xgene_dma_unmask_interrupts(pdma); /* Get DMA id and version info */ val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR); /* DMA device info */ dev_info(pdma->dev, "X-Gene DMA v%d.%02d.%02d driver registered %d channels", XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val), XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL); } static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma) { if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) && (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST))) return 0; iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN); iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST); /* Bring up memory */ iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); /* Force a barrier */ ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); /* reset may take up to 1ms */ usleep_range(1000, 1100); if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY) != XGENE_DMA_RING_BLK_MEM_RDY_VAL) { dev_err(pdma->dev, "Failed to release ring mngr memory from shutdown\n"); return -ENODEV; } /* program threshold set 1 and all hysteresis */ iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL, pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1); iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL, pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1); iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL, pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS); /* Enable QPcore and assign error queue */ iowrite32(XGENE_DMA_RING_ENABLE, pdma->csr_ring + XGENE_DMA_RING_CONFIG); return 0; } static int xgene_dma_init_mem(struct xgene_dma *pdma) { int ret; ret = xgene_dma_init_ring_mngr(pdma); if (ret) return ret; /* Bring up memory */ iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); /* Force a barrier */ ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); /* reset may take up to 1ms */ usleep_range(1000, 1100); if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY) != XGENE_DMA_BLK_MEM_RDY_VAL) { dev_err(pdma->dev, "Failed to release DMA memory from shutdown\n"); return -ENODEV; } return 0; } static int xgene_dma_request_irqs(struct xgene_dma *pdma) { struct xgene_dma_chan *chan; int ret, i, j; /* Register DMA error irq */ ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr, 0, "dma_error", pdma); if (ret) { dev_err(pdma->dev, "Failed to register error IRQ %d\n", pdma->err_irq); return ret; } /* Register DMA channel rx irq */ for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { chan = &pdma->chan[i]; ret = devm_request_irq(chan->dev, chan->rx_irq, xgene_dma_chan_ring_isr, 0, chan->name, chan); if (ret) { chan_err(chan, "Failed to register Rx IRQ %d\n", chan->rx_irq); devm_free_irq(pdma->dev, pdma->err_irq, pdma); for (j = 0; j < i; j++) { chan = &pdma->chan[i]; devm_free_irq(chan->dev, chan->rx_irq, chan); } return ret; } } return 0; } static void xgene_dma_free_irqs(struct xgene_dma *pdma) { struct xgene_dma_chan *chan; int i; /* Free DMA device error irq */ devm_free_irq(pdma->dev, pdma->err_irq, pdma); for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { chan = &pdma->chan[i]; devm_free_irq(chan->dev, chan->rx_irq, chan); } } static void xgene_dma_set_caps(struct xgene_dma_chan *chan, struct dma_device *dma_dev) { /* Initialize DMA device capability mask */ dma_cap_zero(dma_dev->cap_mask); /* Set DMA device capability */ dma_cap_set(DMA_SG, dma_dev->cap_mask); /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR * and channel 1 supports XOR, PQ both. First thing here is we have * mechanism in hw to enable/disable PQ/XOR supports on channel 1, * we can make sure this by reading SoC Efuse register. * Second thing, we have hw errata that if we run channel 0 and * channel 1 simultaneously with executing XOR and PQ request, * suddenly DMA engine hangs, So here we enable XOR on channel 0 only * if XOR and PQ supports on channel 1 is disabled. */ if ((chan->id == XGENE_DMA_PQ_CHANNEL) && is_pq_enabled(chan->pdma)) { dma_cap_set(DMA_PQ, dma_dev->cap_mask); dma_cap_set(DMA_XOR, dma_dev->cap_mask); } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) && !is_pq_enabled(chan->pdma)) { dma_cap_set(DMA_XOR, dma_dev->cap_mask); } /* Set base and prep routines */ dma_dev->dev = chan->dev; dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources; dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources; dma_dev->device_issue_pending = xgene_dma_issue_pending; dma_dev->device_tx_status = xgene_dma_tx_status; dma_dev->device_prep_dma_sg = xgene_dma_prep_sg; if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { dma_dev->device_prep_dma_xor = xgene_dma_prep_xor; dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC; dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES; } if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) { dma_dev->device_prep_dma_pq = xgene_dma_prep_pq; dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC; dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES; } } static int xgene_dma_async_register(struct xgene_dma *pdma, int id) { struct xgene_dma_chan *chan = &pdma->chan[id]; struct dma_device *dma_dev = &pdma->dma_dev[id]; int ret; chan->dma_chan.device = dma_dev; spin_lock_init(&chan->lock); INIT_LIST_HEAD(&chan->ld_pending); INIT_LIST_HEAD(&chan->ld_running); INIT_LIST_HEAD(&chan->ld_completed); tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb, (unsigned long)chan); chan->pending = 0; chan->desc_pool = NULL; dma_cookie_init(&chan->dma_chan); /* Setup dma device capabilities and prep routines */ xgene_dma_set_caps(chan, dma_dev); /* Initialize DMA device list head */ INIT_LIST_HEAD(&dma_dev->channels); list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels); /* Register with Linux async DMA framework*/ ret = dma_async_device_register(dma_dev); if (ret) { chan_err(chan, "Failed to register async device %d", ret); tasklet_kill(&chan->tasklet); return ret; } /* DMA capability info */ dev_info(pdma->dev, "%s: CAPABILITY ( %s%s%s)\n", dma_chan_name(&chan->dma_chan), dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "", dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "", dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : ""); return 0; } static int xgene_dma_init_async(struct xgene_dma *pdma) { int ret, i, j; for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) { ret = xgene_dma_async_register(pdma, i); if (ret) { for (j = 0; j < i; j++) { dma_async_device_unregister(&pdma->dma_dev[j]); tasklet_kill(&pdma->chan[j].tasklet); } return ret; } } return ret; } static void xgene_dma_async_unregister(struct xgene_dma *pdma) { int i; for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) dma_async_device_unregister(&pdma->dma_dev[i]); } static void xgene_dma_init_channels(struct xgene_dma *pdma) { struct xgene_dma_chan *chan; int i; pdma->ring_num = XGENE_DMA_RING_NUM; for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { chan = &pdma->chan[i]; chan->dev = pdma->dev; chan->pdma = pdma; chan->id = i; snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id); } } static int xgene_dma_get_resources(struct platform_device *pdev, struct xgene_dma *pdma) { struct resource *res; int irq, i; /* Get DMA csr region */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "Failed to get csr region\n"); return -ENXIO; } pdma->csr_dma = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!pdma->csr_dma) { dev_err(&pdev->dev, "Failed to ioremap csr region"); return -ENOMEM; } /* Get DMA ring csr region */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) { dev_err(&pdev->dev, "Failed to get ring csr region\n"); return -ENXIO; } pdma->csr_ring = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!pdma->csr_ring) { dev_err(&pdev->dev, "Failed to ioremap ring csr region"); return -ENOMEM; } /* Get DMA ring cmd csr region */ res = platform_get_resource(pdev, IORESOURCE_MEM, 2); if (!res) { dev_err(&pdev->dev, "Failed to get ring cmd csr region\n"); return -ENXIO; } pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!pdma->csr_ring_cmd) { dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region"); return -ENOMEM; } pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET; /* Get efuse csr region */ res = platform_get_resource(pdev, IORESOURCE_MEM, 3); if (!res) { dev_err(&pdev->dev, "Failed to get efuse csr region\n"); return -ENXIO; } pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!pdma->csr_efuse) { dev_err(&pdev->dev, "Failed to ioremap efuse csr region"); return -ENOMEM; } /* Get DMA error interrupt */ irq = platform_get_irq(pdev, 0); if (irq <= 0) { dev_err(&pdev->dev, "Failed to get Error IRQ\n"); return -ENXIO; } pdma->err_irq = irq; /* Get DMA Rx ring descriptor interrupts for all DMA channels */ for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) { irq = platform_get_irq(pdev, i); if (irq <= 0) { dev_err(&pdev->dev, "Failed to get Rx IRQ\n"); return -ENXIO; } pdma->chan[i - 1].rx_irq = irq; } return 0; } static int xgene_dma_probe(struct platform_device *pdev) { struct xgene_dma *pdma; int ret, i; pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL); if (!pdma) return -ENOMEM; pdma->dev = &pdev->dev; platform_set_drvdata(pdev, pdma); ret = xgene_dma_get_resources(pdev, pdma); if (ret) return ret; pdma->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) { dev_err(&pdev->dev, "Failed to get clk\n"); return PTR_ERR(pdma->clk); } /* Enable clk before accessing registers */ if (!IS_ERR(pdma->clk)) { ret = clk_prepare_enable(pdma->clk); if (ret) { dev_err(&pdev->dev, "Failed to enable clk %d\n", ret); return ret; } } /* Remove DMA RAM out of shutdown */ ret = xgene_dma_init_mem(pdma); if (ret) goto err_clk_enable; ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42)); if (ret) { dev_err(&pdev->dev, "No usable DMA configuration\n"); goto err_dma_mask; } /* Initialize DMA channels software state */ xgene_dma_init_channels(pdma); /* Configue DMA rings */ ret = xgene_dma_init_rings(pdma); if (ret) goto err_clk_enable; ret = xgene_dma_request_irqs(pdma); if (ret) goto err_request_irq; /* Configure and enable DMA engine */ xgene_dma_init_hw(pdma); /* Register DMA device with linux async framework */ ret = xgene_dma_init_async(pdma); if (ret) goto err_async_init; return 0; err_async_init: xgene_dma_free_irqs(pdma); err_request_irq: for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) xgene_dma_delete_chan_rings(&pdma->chan[i]); err_dma_mask: err_clk_enable: if (!IS_ERR(pdma->clk)) clk_disable_unprepare(pdma->clk); return ret; } static int xgene_dma_remove(struct platform_device *pdev) { struct xgene_dma *pdma = platform_get_drvdata(pdev); struct xgene_dma_chan *chan; int i; xgene_dma_async_unregister(pdma); /* Mask interrupts and disable DMA engine */ xgene_dma_mask_interrupts(pdma); xgene_dma_disable(pdma); xgene_dma_free_irqs(pdma); for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { chan = &pdma->chan[i]; tasklet_kill(&chan->tasklet); xgene_dma_delete_chan_rings(chan); } if (!IS_ERR(pdma->clk)) clk_disable_unprepare(pdma->clk); return 0; } #ifdef CONFIG_ACPI static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = { {"APMC0D43", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr); #endif static const struct of_device_id xgene_dma_of_match_ptr[] = { {.compatible = "apm,xgene-storm-dma",}, {}, }; MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr); static struct platform_driver xgene_dma_driver = { .probe = xgene_dma_probe, .remove = xgene_dma_remove, .driver = { .name = "X-Gene-DMA", .of_match_table = xgene_dma_of_match_ptr, .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr), }, }; module_platform_driver(xgene_dma_driver); MODULE_DESCRIPTION("APM X-Gene SoC DMA driver"); MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>"); MODULE_AUTHOR("Loc Ho <lho@apm.com>"); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0");