/* * drivers/crypto/tegra-aes.c * * Driver for NVIDIA Tegra AES hardware engine residing inside the * Bit Stream Engine for Video (BSEV) hardware block. * * The programming sequence for this engine is with the help * of commands which travel via a command queue residing between the * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM) * where the final input plaintext, keys and the IV have to be copied * before starting the encrypt/decrypt operation. * * Copyright (c) 2010, NVIDIA Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/clk.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/mutex.h> #include <linux/interrupt.h> #include <linux/completion.h> #include <linux/workqueue.h> #include <crypto/scatterwalk.h> #include <crypto/aes.h> #include <crypto/internal/rng.h> #include "tegra-aes.h" #define FLAGS_MODE_MASK 0x00FF #define FLAGS_ENCRYPT BIT(0) #define FLAGS_CBC BIT(1) #define FLAGS_GIV BIT(2) #define FLAGS_RNG BIT(3) #define FLAGS_OFB BIT(4) #define FLAGS_NEW_KEY BIT(5) #define FLAGS_NEW_IV BIT(6) #define FLAGS_INIT BIT(7) #define FLAGS_FAST BIT(8) #define FLAGS_BUSY 9 /* * Defines AES engine Max process bytes size in one go, which takes 1 msec. * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte * The duration CPU can use the BSE to 1 msec, then the number of available * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB. */ #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000 /* * The key table length is 64 bytes * (This includes first upto 32 bytes key + 16 bytes original initial vector * and 16 bytes updated initial vector) */ #define AES_HW_KEY_TABLE_LENGTH_BYTES 64 /* * The memory being used is divides as follows: * 1. Key - 32 bytes * 2. Original IV - 16 bytes * 3. Updated IV - 16 bytes * 4. Key schedule - 256 bytes * * 1+2+3 constitute the hw key table. */ #define AES_HW_IV_SIZE 16 #define AES_HW_KEYSCHEDULE_LEN 256 #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN) /* Define commands required for AES operation */ enum { CMD_BLKSTARTENGINE = 0x0E, CMD_DMASETUP = 0x10, CMD_DMACOMPLETE = 0x11, CMD_SETTABLE = 0x15, CMD_MEMDMAVD = 0x22, }; /* Define sub-commands */ enum { SUBCMD_VRAM_SEL = 0x1, SUBCMD_CRYPTO_TABLE_SEL = 0x3, SUBCMD_KEY_TABLE_SEL = 0x8, }; /* memdma_vd command */ #define MEMDMA_DIR_DTOVRAM 0 /* sdram -> vram */ #define MEMDMA_DIR_VTODRAM 1 /* vram -> sdram */ #define MEMDMA_DIR_SHIFT 25 #define MEMDMA_NUM_WORDS_SHIFT 12 /* command queue bit shifts */ enum { CMDQ_KEYTABLEADDR_SHIFT = 0, CMDQ_KEYTABLEID_SHIFT = 17, CMDQ_VRAMSEL_SHIFT = 23, CMDQ_TABLESEL_SHIFT = 24, CMDQ_OPCODE_SHIFT = 26, }; /* * The secure key slot contains a unique secure key generated * and loaded by the bootloader. This slot is marked as non-accessible * to the kernel. */ #define SSK_SLOT_NUM 4 #define AES_NR_KEYSLOTS 8 #define TEGRA_AES_QUEUE_LENGTH 50 #define DEFAULT_RNG_BLK_SZ 16 /* The command queue depth */ #define AES_HW_MAX_ICQ_LENGTH 5 struct tegra_aes_slot { struct list_head node; int slot_num; }; static struct tegra_aes_slot ssk = { .slot_num = SSK_SLOT_NUM, }; struct tegra_aes_reqctx { unsigned long mode; }; struct tegra_aes_dev { struct device *dev; void __iomem *io_base; dma_addr_t ivkey_phys_base; void __iomem *ivkey_base; struct clk *aes_clk; struct tegra_aes_ctx *ctx; int irq; unsigned long flags; struct completion op_complete; u32 *buf_in; dma_addr_t dma_buf_in; u32 *buf_out; dma_addr_t dma_buf_out; u8 *iv; u8 dt[DEFAULT_RNG_BLK_SZ]; int ivlen; u64 ctr; spinlock_t lock; struct crypto_queue queue; struct tegra_aes_slot *slots; struct ablkcipher_request *req; size_t total; struct scatterlist *in_sg; size_t in_offset; struct scatterlist *out_sg; size_t out_offset; }; static struct tegra_aes_dev *aes_dev; struct tegra_aes_ctx { struct tegra_aes_dev *dd; unsigned long flags; struct tegra_aes_slot *slot; u8 key[AES_MAX_KEY_SIZE]; size_t keylen; }; static struct tegra_aes_ctx rng_ctx = { .flags = FLAGS_NEW_KEY, .keylen = AES_KEYSIZE_128, }; /* keep registered devices data here */ static struct list_head dev_list; static DEFINE_SPINLOCK(list_lock); static DEFINE_MUTEX(aes_lock); static void aes_workqueue_handler(struct work_struct *work); static DECLARE_WORK(aes_work, aes_workqueue_handler); static struct workqueue_struct *aes_wq; static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset) { return readl(dd->io_base + offset); } static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset) { writel(val, dd->io_base + offset); } static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr, int nblocks, int mode, bool upd_iv) { u32 cmdq[AES_HW_MAX_ICQ_LENGTH]; int i, eng_busy, icq_empty, ret; u32 value; /* reset all the interrupt bits */ aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS); /* enable error, dma xfer complete interrupts */ aes_writel(dd, 0x33, TEGRA_AES_INT_ENB); cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT; cmdq[1] = in_addr; cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1); cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT; value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL); /* access SDRAM through AHB */ value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD; value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD; value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD | TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD | TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD; aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL); dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value); value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) | ((dd->ctx->keylen * 8) << TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) | ((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT); if (mode & FLAGS_CBC) { value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3) << TEGRA_AES_SECURE_XOR_POS_SHIFT) | (((mode & FLAGS_ENCRYPT) ? 2 : 3) << TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) | ((mode & FLAGS_ENCRYPT) ? 1 : 0) << TEGRA_AES_SECURE_CORE_SEL_SHIFT); } else if (mode & FLAGS_OFB) { value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) | (2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) | (TEGRA_AES_SECURE_CORE_SEL_FIELD)); } else if (mode & FLAGS_RNG) { value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) << TEGRA_AES_SECURE_CORE_SEL_SHIFT | TEGRA_AES_SECURE_RNG_ENB_FIELD); } else { value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) << TEGRA_AES_SECURE_CORE_SEL_SHIFT); } dev_dbg(dd->dev, "secure_in_sel=0x%x", value); aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT); aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR); reinit_completion(&dd->op_complete); for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) { do { value = aes_readl(dd, TEGRA_AES_INTR_STATUS); eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; } while (eng_busy && !icq_empty); aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR); } ret = wait_for_completion_timeout(&dd->op_complete, msecs_to_jiffies(150)); if (ret == 0) { dev_err(dd->dev, "timed out (0x%x)\n", aes_readl(dd, TEGRA_AES_INTR_STATUS)); return -ETIMEDOUT; } aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR); return 0; } static void aes_release_key_slot(struct tegra_aes_slot *slot) { if (slot->slot_num == SSK_SLOT_NUM) return; spin_lock(&list_lock); list_add_tail(&slot->node, &dev_list); slot = NULL; spin_unlock(&list_lock); } static struct tegra_aes_slot *aes_find_key_slot(void) { struct tegra_aes_slot *slot = NULL; struct list_head *new_head; int empty; spin_lock(&list_lock); empty = list_empty(&dev_list); if (!empty) { slot = list_entry(&dev_list, struct tegra_aes_slot, node); new_head = dev_list.next; list_del(&dev_list); dev_list.next = new_head->next; dev_list.prev = NULL; } spin_unlock(&list_lock); return slot; } static int aes_set_key(struct tegra_aes_dev *dd) { u32 value, cmdq[2]; struct tegra_aes_ctx *ctx = dd->ctx; int eng_busy, icq_empty, dma_busy; bool use_ssk = false; /* use ssk? */ if (!dd->ctx->slot) { dev_dbg(dd->dev, "using ssk"); dd->ctx->slot = &ssk; use_ssk = true; } /* enable key schedule generation in hardware */ value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT); value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD; aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT); /* select the key slot */ value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG); value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD; value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT); aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG); if (use_ssk) return 0; /* copy the key table from sdram to vram */ cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT | MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT | AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) << MEMDMA_NUM_WORDS_SHIFT; cmdq[1] = (u32)dd->ivkey_phys_base; aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR); aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR); do { value = aes_readl(dd, TEGRA_AES_INTR_STATUS); eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD; } while (eng_busy && !icq_empty && dma_busy); /* settable command to get key into internal registers */ value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT | SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT | SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT | (SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) << CMDQ_KEYTABLEID_SHIFT; aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR); do { value = aes_readl(dd, TEGRA_AES_INTR_STATUS); eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; } while (eng_busy && !icq_empty); return 0; } static int tegra_aes_handle_req(struct tegra_aes_dev *dd) { struct crypto_async_request *async_req, *backlog; struct crypto_ablkcipher *tfm; struct tegra_aes_ctx *ctx; struct tegra_aes_reqctx *rctx; struct ablkcipher_request *req; unsigned long flags; int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES; int ret = 0, nblocks, total; int count = 0; dma_addr_t addr_in, addr_out; struct scatterlist *in_sg, *out_sg; if (!dd) return -EINVAL; spin_lock_irqsave(&dd->lock, flags); backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (!async_req) clear_bit(FLAGS_BUSY, &dd->flags); spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return -ENODATA; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ablkcipher_request_cast(async_req); dev_dbg(dd->dev, "%s: get new req\n", __func__); if (!req->src || !req->dst) return -EINVAL; /* take mutex to access the aes hw */ mutex_lock(&aes_lock); /* assign new request to device */ dd->req = req; dd->total = req->nbytes; dd->in_offset = 0; dd->in_sg = req->src; dd->out_offset = 0; dd->out_sg = req->dst; in_sg = dd->in_sg; out_sg = dd->out_sg; total = dd->total; tfm = crypto_ablkcipher_reqtfm(req); rctx = ablkcipher_request_ctx(req); ctx = crypto_ablkcipher_ctx(tfm); rctx->mode &= FLAGS_MODE_MASK; dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; dd->iv = (u8 *)req->info; dd->ivlen = crypto_ablkcipher_ivsize(tfm); /* assign new context to device */ ctx->dd = dd; dd->ctx = ctx; if (ctx->flags & FLAGS_NEW_KEY) { /* copy the key */ memcpy(dd->ivkey_base, ctx->key, ctx->keylen); memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen); aes_set_key(dd); ctx->flags &= ~FLAGS_NEW_KEY; } if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) { /* set iv to the aes hw slot * Hw generates updated iv only after iv is set in slot. * So key and iv is passed asynchronously. */ memcpy(dd->buf_in, dd->iv, dd->ivlen); ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, dd->dma_buf_out, 1, FLAGS_CBC, false); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); goto out; } } while (total) { dev_dbg(dd->dev, "remain: %d\n", total); ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); if (!ret) { dev_err(dd->dev, "dma_map_sg() error\n"); goto out; } ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); if (!ret) { dev_err(dd->dev, "dma_map_sg() error\n"); dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); goto out; } addr_in = sg_dma_address(in_sg); addr_out = sg_dma_address(out_sg); dd->flags |= FLAGS_FAST; count = min_t(int, sg_dma_len(in_sg), dma_max); WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg)); nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE); ret = aes_start_crypt(dd, addr_in, addr_out, nblocks, dd->flags, true); dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); goto out; } dd->flags &= ~FLAGS_FAST; dev_dbg(dd->dev, "out: copied %d\n", count); total -= count; in_sg = sg_next(in_sg); out_sg = sg_next(out_sg); WARN_ON(((total != 0) && (!in_sg || !out_sg))); } out: mutex_unlock(&aes_lock); dd->total = total; if (dd->req->base.complete) dd->req->base.complete(&dd->req->base, ret); dev_dbg(dd->dev, "%s: exit\n", __func__); return ret; } static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_slot *key_slot; if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) && (keylen != AES_KEYSIZE_256)) { dev_err(dd->dev, "unsupported key size\n"); crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } dev_dbg(dd->dev, "keylen: %d\n", keylen); ctx->dd = dd; if (key) { if (!ctx->slot) { key_slot = aes_find_key_slot(); if (!key_slot) { dev_err(dd->dev, "no empty slot\n"); return -ENOMEM; } ctx->slot = key_slot; } memcpy(ctx->key, key, keylen); ctx->keylen = keylen; } ctx->flags |= FLAGS_NEW_KEY; dev_dbg(dd->dev, "done\n"); return 0; } static void aes_workqueue_handler(struct work_struct *work) { struct tegra_aes_dev *dd = aes_dev; int ret; ret = clk_prepare_enable(dd->aes_clk); if (ret) BUG_ON("clock enable failed"); /* empty the crypto queue and then return */ do { ret = tegra_aes_handle_req(dd); } while (!ret); clk_disable_unprepare(dd->aes_clk); } static irqreturn_t aes_irq(int irq, void *dev_id) { struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id; u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS); int busy = test_bit(FLAGS_BUSY, &dd->flags); if (!busy) { dev_dbg(dd->dev, "spurious interrupt\n"); return IRQ_NONE; } dev_dbg(dd->dev, "irq_stat: 0x%x\n", value); if (value & TEGRA_AES_INT_ERROR_MASK) aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS); if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD)) complete(&dd->op_complete); else return IRQ_NONE; return IRQ_HANDLED; } static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode) { struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req); struct tegra_aes_dev *dd = aes_dev; unsigned long flags; int err = 0; int busy; dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n", req->nbytes, !!(mode & FLAGS_ENCRYPT), !!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB)); rctx->mode = mode; spin_lock_irqsave(&dd->lock, flags); err = ablkcipher_enqueue_request(&dd->queue, req); busy = test_and_set_bit(FLAGS_BUSY, &dd->flags); spin_unlock_irqrestore(&dd->lock, flags); if (!busy) queue_work(aes_wq, &aes_work); return err; } static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_ENCRYPT); } static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, 0); } static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); } static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_CBC); } static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB); } static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_OFB); } static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_ctx *ctx = &rng_ctx; int ret, i; u8 *dest = rdata, *dt = dd->dt; /* take mutex to access the aes hw */ mutex_lock(&aes_lock); ret = clk_prepare_enable(dd->aes_clk); if (ret) { mutex_unlock(&aes_lock); return ret; } ctx->dd = dd; dd->ctx = ctx; dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ); ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, (u32)dd->dma_buf_out, 1, dd->flags, true); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); dlen = ret; goto out; } memcpy(dest, dd->buf_out, dlen); /* update the DT */ for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) { dt[i] += 1; if (dt[i] != 0) break; } out: clk_disable_unprepare(dd->aes_clk); mutex_unlock(&aes_lock); dev_dbg(dd->dev, "%s: done\n", __func__); return dlen; } static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) { struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_ctx *ctx = &rng_ctx; struct tegra_aes_slot *key_slot; int ret = 0; u8 tmp[16]; /* 16 bytes = 128 bits of entropy */ u8 *dt; if (!ctx || !dd) { pr_err("ctx=0x%x, dd=0x%x\n", (unsigned int)ctx, (unsigned int)dd); return -EINVAL; } if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { dev_err(dd->dev, "seed size invalid"); return -ENOMEM; } /* take mutex to access the aes hw */ mutex_lock(&aes_lock); if (!ctx->slot) { key_slot = aes_find_key_slot(); if (!key_slot) { dev_err(dd->dev, "no empty slot\n"); mutex_unlock(&aes_lock); return -ENOMEM; } ctx->slot = key_slot; } ctx->dd = dd; dd->ctx = ctx; dd->ctr = 0; ctx->keylen = AES_KEYSIZE_128; ctx->flags |= FLAGS_NEW_KEY; /* copy the key to the key slot */ memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128); memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128); dd->iv = seed; dd->ivlen = slen; dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; ret = clk_prepare_enable(dd->aes_clk); if (ret) { mutex_unlock(&aes_lock); return ret; } aes_set_key(dd); /* set seed to the aes hw slot */ memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ); ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, dd->dma_buf_out, 1, FLAGS_CBC, false); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); goto out; } if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128; } else { get_random_bytes(tmp, sizeof(tmp)); dt = tmp; } memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ); out: clk_disable_unprepare(dd->aes_clk); mutex_unlock(&aes_lock); dev_dbg(dd->dev, "%s: done\n", __func__); return ret; } static int tegra_aes_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx); return 0; } static void tegra_aes_cra_exit(struct crypto_tfm *tfm) { struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm); if (ctx && ctx->slot) aes_release_key_slot(ctx->slot); } static struct crypto_alg algs[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-tegra", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_alignmask = 3, .cra_type = &crypto_ablkcipher_type, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_ecb_encrypt, .decrypt = tegra_aes_ecb_decrypt, }, }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-tegra", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_alignmask = 3, .cra_type = &crypto_ablkcipher_type, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_MIN_KEY_SIZE, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_cbc_encrypt, .decrypt = tegra_aes_cbc_decrypt, } }, { .cra_name = "ofb(aes)", .cra_driver_name = "ofb-aes-tegra", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_alignmask = 3, .cra_type = &crypto_ablkcipher_type, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_MIN_KEY_SIZE, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_ofb_encrypt, .decrypt = tegra_aes_ofb_decrypt, } }, { .cra_name = "ansi_cprng", .cra_driver_name = "rng-aes-tegra", .cra_flags = CRYPTO_ALG_TYPE_RNG, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_type = &crypto_rng_type, .cra_u.rng = { .rng_make_random = tegra_aes_get_random, .rng_reset = tegra_aes_rng_reset, .seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ), } } }; static int tegra_aes_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra_aes_dev *dd; struct resource *res; int err = -ENOMEM, i = 0, j; dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL); if (dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); return err; } dd->dev = dev; platform_set_drvdata(pdev, dd); dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) * AES_NR_KEYSLOTS, GFP_KERNEL); if (dd->slots == NULL) { dev_err(dev, "unable to alloc slot struct.\n"); goto out; } spin_lock_init(&dd->lock); crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH); /* Get the module base address */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "invalid resource type: base\n"); err = -ENODEV; goto out; } if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res), dev_name(&pdev->dev))) { dev_err(&pdev->dev, "Couldn't request MEM resource\n"); return -ENODEV; } dd->io_base = devm_ioremap(dev, res->start, resource_size(res)); if (!dd->io_base) { dev_err(dev, "can't ioremap register space\n"); err = -ENOMEM; goto out; } /* Initialize the vde clock */ dd->aes_clk = devm_clk_get(dev, "vde"); if (IS_ERR(dd->aes_clk)) { dev_err(dev, "iclock intialization failed.\n"); err = -ENODEV; goto out; } err = clk_set_rate(dd->aes_clk, ULONG_MAX); if (err) { dev_err(dd->dev, "iclk set_rate fail(%d)\n", err); goto out; } /* * the foll contiguous memory is allocated as follows - * - hardware key table * - key schedule */ dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, &dd->ivkey_phys_base, GFP_KERNEL); if (!dd->ivkey_base) { dev_err(dev, "can not allocate iv/key buffer\n"); err = -ENOMEM; goto out; } dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, &dd->dma_buf_in, GFP_KERNEL); if (!dd->buf_in) { dev_err(dev, "can not allocate dma-in buffer\n"); err = -ENOMEM; goto out; } dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, &dd->dma_buf_out, GFP_KERNEL); if (!dd->buf_out) { dev_err(dev, "can not allocate dma-out buffer\n"); err = -ENOMEM; goto out; } init_completion(&dd->op_complete); aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1); if (!aes_wq) { dev_err(dev, "alloc_workqueue failed\n"); err = -ENOMEM; goto out; } /* get the irq */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(dev, "invalid resource type: base\n"); err = -ENODEV; goto out; } dd->irq = res->start; err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH | IRQF_SHARED, "tegra-aes", dd); if (err) { dev_err(dev, "request_irq failed\n"); goto out; } mutex_init(&aes_lock); INIT_LIST_HEAD(&dev_list); spin_lock_init(&list_lock); spin_lock(&list_lock); for (i = 0; i < AES_NR_KEYSLOTS; i++) { if (i == SSK_SLOT_NUM) continue; dd->slots[i].slot_num = i; INIT_LIST_HEAD(&dd->slots[i].node); list_add_tail(&dd->slots[i].node, &dev_list); } spin_unlock(&list_lock); aes_dev = dd; for (i = 0; i < ARRAY_SIZE(algs); i++) { algs[i].cra_priority = 300; algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx); algs[i].cra_module = THIS_MODULE; algs[i].cra_init = tegra_aes_cra_init; algs[i].cra_exit = tegra_aes_cra_exit; err = crypto_register_alg(&algs[i]); if (err) goto out; } dev_info(dev, "registered"); return 0; out: for (j = 0; j < i; j++) crypto_unregister_alg(&algs[j]); if (dd->ivkey_base) dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, dd->ivkey_base, dd->ivkey_phys_base); if (dd->buf_in) dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->buf_in, dd->dma_buf_in); if (dd->buf_out) dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->buf_out, dd->dma_buf_out); if (aes_wq) destroy_workqueue(aes_wq); spin_lock(&list_lock); list_del(&dev_list); spin_unlock(&list_lock); aes_dev = NULL; dev_err(dev, "%s: initialization failed.\n", __func__); return err; } static int tegra_aes_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra_aes_dev *dd = platform_get_drvdata(pdev); int i; for (i = 0; i < ARRAY_SIZE(algs); i++) crypto_unregister_alg(&algs[i]); cancel_work_sync(&aes_work); destroy_workqueue(aes_wq); spin_lock(&list_lock); list_del(&dev_list); spin_unlock(&list_lock); dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, dd->ivkey_base, dd->ivkey_phys_base); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->buf_in, dd->dma_buf_in); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->buf_out, dd->dma_buf_out); aes_dev = NULL; return 0; } static struct of_device_id tegra_aes_of_match[] = { { .compatible = "nvidia,tegra20-aes", }, { .compatible = "nvidia,tegra30-aes", }, { }, }; static struct platform_driver tegra_aes_driver = { .probe = tegra_aes_probe, .remove = tegra_aes_remove, .driver = { .name = "tegra-aes", .owner = THIS_MODULE, .of_match_table = tegra_aes_of_match, }, }; module_platform_driver(tegra_aes_driver); MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support."); MODULE_AUTHOR("NVIDIA Corporation"); MODULE_LICENSE("GPL v2");