/* Copyright 2012 STEC, Inc. * * This file is licensed under the terms of the 3-clause * BSD License (http://opensource.org/licenses/BSD-3-Clause) * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html), * at your option. Both licenses are also available in the LICENSE file * distributed with this project. This file may not be copied, modified, * or distributed except in accordance with those terms. * Gordoni Waidhofer * Initial Driver Design! * Thomas Swann * Interrupt handling. * Ramprasad Chinthekindi * biomode implementation. * Akhil Bhansali * Added support for DISCARD / FLUSH and FUA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "skd_s1120.h" static int skd_dbg_level; static int skd_isr_comp_limit = 4; enum { STEC_LINK_2_5GTS = 0, STEC_LINK_5GTS = 1, STEC_LINK_8GTS = 2, STEC_LINK_UNKNOWN = 0xFF }; enum { SKD_FLUSH_INITIALIZER, SKD_FLUSH_ZERO_SIZE_FIRST, SKD_FLUSH_DATA_SECOND, }; #define SKD_ASSERT(expr) \ do { \ if (unlikely(!(expr))) { \ pr_err("Assertion failed! %s,%s,%s,line=%d\n", \ # expr, __FILE__, __func__, __LINE__); \ } \ } while (0) #define DRV_NAME "skd" #define DRV_VERSION "2.2.1" #define DRV_BUILD_ID "0260" #define PFX DRV_NAME ": " #define DRV_BIN_VERSION 0x100 #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID MODULE_AUTHOR("bug-reports: support@stec-inc.com"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("STEC s1120 PCIe SSD block/BIO driver (b" DRV_BUILD_ID ")"); MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID); #define PCI_VENDOR_ID_STEC 0x1B39 #define PCI_DEVICE_ID_S1120 0x0001 #define SKD_FUA_NV (1 << 1) #define SKD_MINORS_PER_DEVICE 16 #define SKD_MAX_QUEUE_DEPTH 200u #define SKD_PAUSE_TIMEOUT (5 * 1000) #define SKD_N_FITMSG_BYTES (512u) #define SKD_N_SPECIAL_CONTEXT 32u #define SKD_N_SPECIAL_FITMSG_BYTES (128u) /* SG elements are 32 bytes, so we can make this 4096 and still be under the * 128KB limit. That allows 4096*4K = 16M xfer size */ #define SKD_N_SG_PER_REQ_DEFAULT 256u #define SKD_N_SG_PER_SPECIAL 256u #define SKD_N_COMPLETION_ENTRY 256u #define SKD_N_READ_CAP_BYTES (8u) #define SKD_N_INTERNAL_BYTES (512u) /* 5 bits of uniqifier, 0xF800 */ #define SKD_ID_INCR (0x400) #define SKD_ID_TABLE_MASK (3u << 8u) #define SKD_ID_RW_REQUEST (0u << 8u) #define SKD_ID_INTERNAL (1u << 8u) #define SKD_ID_SPECIAL_REQUEST (2u << 8u) #define SKD_ID_FIT_MSG (3u << 8u) #define SKD_ID_SLOT_MASK 0x00FFu #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu #define SKD_N_TIMEOUT_SLOT 4u #define SKD_TIMEOUT_SLOT_MASK 3u #define SKD_N_MAX_SECTORS 2048u #define SKD_MAX_RETRIES 2u #define SKD_TIMER_SECONDS(seconds) (seconds) #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60)) #define INQ_STD_NBYTES 36 #define SKD_DISCARD_CDB_LENGTH 24 enum skd_drvr_state { SKD_DRVR_STATE_LOAD, SKD_DRVR_STATE_IDLE, SKD_DRVR_STATE_BUSY, SKD_DRVR_STATE_STARTING, SKD_DRVR_STATE_ONLINE, SKD_DRVR_STATE_PAUSING, SKD_DRVR_STATE_PAUSED, SKD_DRVR_STATE_DRAINING_TIMEOUT, SKD_DRVR_STATE_RESTARTING, SKD_DRVR_STATE_RESUMING, SKD_DRVR_STATE_STOPPING, SKD_DRVR_STATE_FAULT, SKD_DRVR_STATE_DISAPPEARED, SKD_DRVR_STATE_PROTOCOL_MISMATCH, SKD_DRVR_STATE_BUSY_ERASE, SKD_DRVR_STATE_BUSY_SANITIZE, SKD_DRVR_STATE_BUSY_IMMINENT, SKD_DRVR_STATE_WAIT_BOOT, SKD_DRVR_STATE_SYNCING, }; #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u) #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u) #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u) #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u) #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u) #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u) #define SKD_START_WAIT_SECONDS 90u enum skd_req_state { SKD_REQ_STATE_IDLE, SKD_REQ_STATE_SETUP, SKD_REQ_STATE_BUSY, SKD_REQ_STATE_COMPLETED, SKD_REQ_STATE_TIMEOUT, SKD_REQ_STATE_ABORTED, }; enum skd_fit_msg_state { SKD_MSG_STATE_IDLE, SKD_MSG_STATE_BUSY, }; enum skd_check_status_action { SKD_CHECK_STATUS_REPORT_GOOD, SKD_CHECK_STATUS_REPORT_SMART_ALERT, SKD_CHECK_STATUS_REQUEUE_REQUEST, SKD_CHECK_STATUS_REPORT_ERROR, SKD_CHECK_STATUS_BUSY_IMMINENT, }; struct skd_fitmsg_context { enum skd_fit_msg_state state; struct skd_fitmsg_context *next; u32 id; u16 outstanding; u32 length; u32 offset; u8 *msg_buf; dma_addr_t mb_dma_address; }; struct skd_request_context { enum skd_req_state state; struct skd_request_context *next; u16 id; u32 fitmsg_id; struct request *req; struct bio *bio; unsigned long start_time; u8 flush_cmd; u8 discard_page; u32 timeout_stamp; u8 sg_data_dir; struct scatterlist *sg; u32 n_sg; u32 sg_byte_count; struct fit_sg_descriptor *sksg_list; dma_addr_t sksg_dma_address; struct fit_completion_entry_v1 completion; struct fit_comp_error_info err_info; }; #define SKD_DATA_DIR_HOST_TO_CARD 1 #define SKD_DATA_DIR_CARD_TO_HOST 2 #define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */ struct skd_special_context { struct skd_request_context req; u8 orphaned; void *data_buf; dma_addr_t db_dma_address; u8 *msg_buf; dma_addr_t mb_dma_address; }; struct skd_sg_io { fmode_t mode; void __user *argp; struct sg_io_hdr sg; u8 cdb[16]; u32 dxfer_len; u32 iovcnt; struct sg_iovec *iov; struct sg_iovec no_iov_iov; struct skd_special_context *skspcl; }; typedef enum skd_irq_type { SKD_IRQ_LEGACY, SKD_IRQ_MSI, SKD_IRQ_MSIX } skd_irq_type_t; #define SKD_MAX_BARS 2 struct skd_device { volatile void __iomem *mem_map[SKD_MAX_BARS]; resource_size_t mem_phys[SKD_MAX_BARS]; u32 mem_size[SKD_MAX_BARS]; skd_irq_type_t irq_type; u32 msix_count; struct skd_msix_entry *msix_entries; struct pci_dev *pdev; int pcie_error_reporting_is_enabled; spinlock_t lock; struct gendisk *disk; struct request_queue *queue; struct device *class_dev; int gendisk_on; int sync_done; atomic_t device_count; u32 devno; u32 major; char name[32]; char isr_name[30]; enum skd_drvr_state state; u32 drive_state; u32 in_flight; u32 cur_max_queue_depth; u32 queue_low_water_mark; u32 dev_max_queue_depth; u32 num_fitmsg_context; u32 num_req_context; u32 timeout_slot[SKD_N_TIMEOUT_SLOT]; u32 timeout_stamp; struct skd_fitmsg_context *skmsg_free_list; struct skd_fitmsg_context *skmsg_table; struct skd_request_context *skreq_free_list; struct skd_request_context *skreq_table; struct skd_special_context *skspcl_free_list; struct skd_special_context *skspcl_table; struct skd_special_context internal_skspcl; u32 read_cap_blocksize; u32 read_cap_last_lba; int read_cap_is_valid; int inquiry_is_valid; u8 inq_serial_num[13]; /*12 chars plus null term */ u8 id_str[80]; /* holds a composite name (pci + sernum) */ u8 skcomp_cycle; u32 skcomp_ix; struct fit_completion_entry_v1 *skcomp_table; struct fit_comp_error_info *skerr_table; dma_addr_t cq_dma_address; wait_queue_head_t waitq; struct timer_list timer; u32 timer_countdown; u32 timer_substate; int n_special; int sgs_per_request; u32 last_mtd; u32 proto_ver; int dbg_level; u32 connect_time_stamp; int connect_retries; #define SKD_MAX_CONNECT_RETRIES 16 u32 drive_jiffies; u32 timo_slot; struct work_struct completion_worker; struct bio_list bio_queue; int queue_stopped; struct list_head flush_list; }; #define SKD_FLUSH_JOB "skd-flush-jobs" struct kmem_cache *skd_flush_slab; /* * These commands hold "nonzero size FLUSH bios", * which are enqueud in skdev->flush_list during * completion of "zero size FLUSH commands". * It will be active in biomode. */ struct skd_flush_cmd { void *cmd; struct list_head flist; }; #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF) #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF) #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF) static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset) { u32 val; if (likely(skdev->dbg_level < 2)) return readl(skdev->mem_map[1] + offset); else { barrier(); val = readl(skdev->mem_map[1] + offset); barrier(); pr_debug("%s:%s:%d offset %x = %x\n", skdev->name, __func__, __LINE__, offset, val); return val; } } static inline void skd_reg_write32(struct skd_device *skdev, u32 val, u32 offset) { if (likely(skdev->dbg_level < 2)) { writel(val, skdev->mem_map[1] + offset); barrier(); } else { barrier(); writel(val, skdev->mem_map[1] + offset); barrier(); pr_debug("%s:%s:%d offset %x = %x\n", skdev->name, __func__, __LINE__, offset, val); } } static inline void skd_reg_write64(struct skd_device *skdev, u64 val, u32 offset) { if (likely(skdev->dbg_level < 2)) { writeq(val, skdev->mem_map[1] + offset); barrier(); } else { barrier(); writeq(val, skdev->mem_map[1] + offset); barrier(); pr_debug("%s:%s:%d offset %x = %016llx\n", skdev->name, __func__, __LINE__, offset, val); } } #define SKD_IRQ_DEFAULT SKD_IRQ_MSI static int skd_isr_type = SKD_IRQ_DEFAULT; module_param(skd_isr_type, int, 0444); MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability." " (0==legacy, 1==MSI, 2==MSI-X, default==1)"); #define SKD_MAX_REQ_PER_MSG_DEFAULT 1 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT; module_param(skd_max_req_per_msg, int, 0444); MODULE_PARM_DESC(skd_max_req_per_msg, "Maximum SCSI requests packed in a single message." " (1-14, default==1)"); #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64" static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT; module_param(skd_max_queue_depth, int, 0444); MODULE_PARM_DESC(skd_max_queue_depth, "Maximum SCSI requests issued to s1120." " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")"); static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT; module_param(skd_sgs_per_request, int, 0444); MODULE_PARM_DESC(skd_sgs_per_request, "Maximum SG elements per block request." " (1-4096, default==256)"); static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT; module_param(skd_max_pass_thru, int, 0444); MODULE_PARM_DESC(skd_max_pass_thru, "Maximum SCSI pass-thru at a time." " (1-50, default==32)"); module_param(skd_dbg_level, int, 0444); MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)"); module_param(skd_isr_comp_limit, int, 0444); MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4"); static int skd_bio; module_param(skd_bio, int, 0444); MODULE_PARM_DESC(skd_bio, "Register as a bio device instead of block (0, 1) default=0"); /* Major device number dynamically assigned. */ static u32 skd_major; static struct skd_device *skd_construct(struct pci_dev *pdev); static void skd_destruct(struct skd_device *skdev); static const struct block_device_operations skd_blockdev_ops; static void skd_send_fitmsg(struct skd_device *skdev, struct skd_fitmsg_context *skmsg); static void skd_send_special_fitmsg(struct skd_device *skdev, struct skd_special_context *skspcl); static void skd_request_fn(struct request_queue *rq); static void skd_end_request(struct skd_device *skdev, struct skd_request_context *skreq, int error); static int skd_preop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq); static void skd_postop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq); static void skd_restart_device(struct skd_device *skdev); static int skd_quiesce_dev(struct skd_device *skdev); static int skd_unquiesce_dev(struct skd_device *skdev); static void skd_release_special(struct skd_device *skdev, struct skd_special_context *skspcl); static void skd_disable_interrupts(struct skd_device *skdev); static void skd_isr_fwstate(struct skd_device *skdev); static void skd_recover_requests(struct skd_device *skdev, int requeue); static void skd_soft_reset(struct skd_device *skdev); static const char *skd_name(struct skd_device *skdev); const char *skd_drive_state_to_str(int state); const char *skd_skdev_state_to_str(enum skd_drvr_state state); static void skd_log_skdev(struct skd_device *skdev, const char *event); static void skd_log_skmsg(struct skd_device *skdev, struct skd_fitmsg_context *skmsg, const char *event); static void skd_log_skreq(struct skd_device *skdev, struct skd_request_context *skreq, const char *event); /* FLUSH FUA flag handling. */ static int skd_flush_cmd_enqueue(struct skd_device *, void *); static void *skd_flush_cmd_dequeue(struct skd_device *); /* ***************************************************************************** * READ/WRITE REQUESTS ***************************************************************************** */ static void skd_stop_queue(struct skd_device *skdev) { if (!skd_bio) blk_stop_queue(skdev->queue); else skdev->queue_stopped = 1; } static void skd_unstop_queue(struct skd_device *skdev) { if (!skd_bio) queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue); else skdev->queue_stopped = 0; } static void skd_start_queue(struct skd_device *skdev) { if (!skd_bio) { blk_start_queue(skdev->queue); } else { pr_err("(%s): Starting queue\n", skd_name(skdev)); skdev->queue_stopped = 0; skd_request_fn(skdev->queue); } } static int skd_queue_stopped(struct skd_device *skdev) { if (!skd_bio) return blk_queue_stopped(skdev->queue); else return skdev->queue_stopped; } static void skd_fail_all_pending_blk(struct skd_device *skdev) { struct request_queue *q = skdev->queue; struct request *req; for (;; ) { req = blk_peek_request(q); if (req == NULL) break; blk_start_request(req); __blk_end_request_all(req, -EIO); } } static void skd_fail_all_pending_bio(struct skd_device *skdev) { struct bio *bio; int error = -EIO; for (;; ) { bio = bio_list_pop(&skdev->bio_queue); if (bio == NULL) break; bio_endio(bio, error); } } static void skd_fail_all_pending(struct skd_device *skdev) { if (!skd_bio) skd_fail_all_pending_blk(skdev); else skd_fail_all_pending_bio(skdev); } static void skd_make_request(struct request_queue *q, struct bio *bio) { struct skd_device *skdev = q->queuedata; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); bio_list_add(&skdev->bio_queue, bio); skd_request_fn(skdev->queue); spin_unlock_irqrestore(&skdev->lock, flags); } static void skd_prep_rw_cdb(struct skd_scsi_request *scsi_req, int data_dir, unsigned lba, unsigned count) { if (data_dir == READ) scsi_req->cdb[0] = 0x28; else scsi_req->cdb[0] = 0x2a; scsi_req->cdb[1] = 0; scsi_req->cdb[2] = (lba & 0xff000000) >> 24; scsi_req->cdb[3] = (lba & 0xff0000) >> 16; scsi_req->cdb[4] = (lba & 0xff00) >> 8; scsi_req->cdb[5] = (lba & 0xff); scsi_req->cdb[6] = 0; scsi_req->cdb[7] = (count & 0xff00) >> 8; scsi_req->cdb[8] = count & 0xff; scsi_req->cdb[9] = 0; } static void skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req, struct skd_request_context *skreq) { skreq->flush_cmd = 1; scsi_req->cdb[0] = 0x35; scsi_req->cdb[1] = 0; scsi_req->cdb[2] = 0; scsi_req->cdb[3] = 0; scsi_req->cdb[4] = 0; scsi_req->cdb[5] = 0; scsi_req->cdb[6] = 0; scsi_req->cdb[7] = 0; scsi_req->cdb[8] = 0; scsi_req->cdb[9] = 0; } static void skd_prep_discard_cdb(struct skd_scsi_request *scsi_req, struct skd_request_context *skreq, struct page *page, u32 lba, u32 count) { char *buf; unsigned long len; struct request *req; buf = page_address(page); len = SKD_DISCARD_CDB_LENGTH; scsi_req->cdb[0] = UNMAP; scsi_req->cdb[8] = len; put_unaligned_be16(6 + 16, &buf[0]); put_unaligned_be16(16, &buf[2]); put_unaligned_be64(lba, &buf[8]); put_unaligned_be32(count, &buf[16]); if (!skd_bio) { req = skreq->req; blk_add_request_payload(req, page, len); req->buffer = buf; } else { skreq->bio->bi_io_vec->bv_page = page; skreq->bio->bi_io_vec->bv_offset = 0; skreq->bio->bi_io_vec->bv_len = len; skreq->bio->bi_vcnt = 1; skreq->bio->bi_phys_segments = 1; } } static void skd_request_fn_not_online(struct request_queue *q); static void skd_request_fn(struct request_queue *q) { struct skd_device *skdev = q->queuedata; struct skd_fitmsg_context *skmsg = NULL; struct fit_msg_hdr *fmh = NULL; struct skd_request_context *skreq; struct request *req = NULL; struct bio *bio = NULL; struct skd_scsi_request *scsi_req; struct page *page; unsigned long io_flags; int error; u32 lba; u32 count; int data_dir; u32 be_lba; u32 be_count; u64 be_dmaa; u64 cmdctxt; u32 timo_slot; void *cmd_ptr; int flush, fua; if (skdev->state != SKD_DRVR_STATE_ONLINE) { skd_request_fn_not_online(q); return; } if (skd_queue_stopped(skdev)) { if (skdev->skmsg_free_list == NULL || skdev->skreq_free_list == NULL || skdev->in_flight >= skdev->queue_low_water_mark) /* There is still some kind of shortage */ return; skd_unstop_queue(skdev); } /* * Stop conditions: * - There are no more native requests * - There are already the maximum number of requests in progress * - There are no more skd_request_context entries * - There are no more FIT msg buffers */ for (;; ) { flush = fua = 0; if (!skd_bio) { req = blk_peek_request(q); /* Are there any native requests to start? */ if (req == NULL) break; lba = (u32)blk_rq_pos(req); count = blk_rq_sectors(req); data_dir = rq_data_dir(req); io_flags = req->cmd_flags; if (io_flags & REQ_FLUSH) flush++; if (io_flags & REQ_FUA) fua++; pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) " "count=%u(0x%x) dir=%d\n", skdev->name, __func__, __LINE__, req, lba, lba, count, count, data_dir); } else { if (!list_empty(&skdev->flush_list)) { /* Process data part of FLUSH request. */ bio = (struct bio *)skd_flush_cmd_dequeue(skdev); flush++; pr_debug("%s:%s:%d processing FLUSH request with data.\n", skdev->name, __func__, __LINE__); } else { /* peek at our bio queue */ bio = bio_list_peek(&skdev->bio_queue); } /* Are there any native requests to start? */ if (bio == NULL) break; lba = (u32)bio->bi_sector; count = bio_sectors(bio); data_dir = bio_data_dir(bio); io_flags = bio->bi_rw; pr_debug("%s:%s:%d new bio=%p lba=%u(0x%x) " "count=%u(0x%x) dir=%d\n", skdev->name, __func__, __LINE__, bio, lba, lba, count, count, data_dir); if (io_flags & REQ_FLUSH) flush++; if (io_flags & REQ_FUA) fua++; } /* At this point we know there is a request * (from our bio q or req q depending on the way * the driver is built do checks for resources. */ /* Are too many requets already in progress? */ if (skdev->in_flight >= skdev->cur_max_queue_depth) { pr_debug("%s:%s:%d qdepth %d, limit %d\n", skdev->name, __func__, __LINE__, skdev->in_flight, skdev->cur_max_queue_depth); break; } /* Is a skd_request_context available? */ skreq = skdev->skreq_free_list; if (skreq == NULL) { pr_debug("%s:%s:%d Out of req=%p\n", skdev->name, __func__, __LINE__, q); break; } SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE); SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0); /* Now we check to see if we can get a fit msg */ if (skmsg == NULL) { if (skdev->skmsg_free_list == NULL) { pr_debug("%s:%s:%d Out of msg\n", skdev->name, __func__, __LINE__); break; } } skreq->flush_cmd = 0; skreq->n_sg = 0; skreq->sg_byte_count = 0; skreq->discard_page = 0; /* * OK to now dequeue request from either bio or q. * * At this point we are comitted to either start or reject * the native request. Note that skd_request_context is * available but is still at the head of the free list. */ if (!skd_bio) { blk_start_request(req); skreq->req = req; skreq->fitmsg_id = 0; } else { if (unlikely(flush == SKD_FLUSH_DATA_SECOND)) { skreq->bio = bio; } else { skreq->bio = bio_list_pop(&skdev->bio_queue); SKD_ASSERT(skreq->bio == bio); skreq->start_time = jiffies; part_inc_in_flight(&skdev->disk->part0, bio_data_dir(bio)); } skreq->fitmsg_id = 0; } /* Either a FIT msg is in progress or we have to start one. */ if (skmsg == NULL) { /* Are there any FIT msg buffers available? */ skmsg = skdev->skmsg_free_list; if (skmsg == NULL) { pr_debug("%s:%s:%d Out of msg skdev=%p\n", skdev->name, __func__, __LINE__, skdev); break; } SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE); SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0); skdev->skmsg_free_list = skmsg->next; skmsg->state = SKD_MSG_STATE_BUSY; skmsg->id += SKD_ID_INCR; /* Initialize the FIT msg header */ fmh = (struct fit_msg_hdr *)skmsg->msg_buf; memset(fmh, 0, sizeof(*fmh)); fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT; skmsg->length = sizeof(*fmh); } skreq->fitmsg_id = skmsg->id; /* * Note that a FIT msg may have just been started * but contains no SoFIT requests yet. */ /* * Transcode the request, checking as we go. The outcome of * the transcoding is represented by the error variable. */ cmd_ptr = &skmsg->msg_buf[skmsg->length]; memset(cmd_ptr, 0, 32); be_lba = cpu_to_be32(lba); be_count = cpu_to_be32(count); be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address); cmdctxt = skreq->id + SKD_ID_INCR; scsi_req = cmd_ptr; scsi_req->hdr.tag = cmdctxt; scsi_req->hdr.sg_list_dma_address = be_dmaa; if (data_dir == READ) skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST; else skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD; if (io_flags & REQ_DISCARD) { page = alloc_page(GFP_ATOMIC | __GFP_ZERO); if (!page) { pr_err("request_fn:Page allocation failed.\n"); skd_end_request(skdev, skreq, -ENOMEM); break; } skreq->discard_page = 1; skd_prep_discard_cdb(scsi_req, skreq, page, lba, count); } else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) { skd_prep_zerosize_flush_cdb(scsi_req, skreq); SKD_ASSERT(skreq->flush_cmd == 1); } else { skd_prep_rw_cdb(scsi_req, data_dir, lba, count); } if (fua) scsi_req->cdb[1] |= SKD_FUA_NV; if ((!skd_bio && !req->bio) || (skd_bio && flush == SKD_FLUSH_ZERO_SIZE_FIRST)) goto skip_sg; error = skd_preop_sg_list(skdev, skreq); if (error != 0) { /* * Complete the native request with error. * Note that the request context is still at the * head of the free list, and that the SoFIT request * was encoded into the FIT msg buffer but the FIT * msg length has not been updated. In short, the * only resource that has been allocated but might * not be used is that the FIT msg could be empty. */ pr_debug("%s:%s:%d error Out\n", skdev->name, __func__, __LINE__); skd_end_request(skdev, skreq, error); continue; } skip_sg: scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count); /* Complete resource allocations. */ skdev->skreq_free_list = skreq->next; skreq->state = SKD_REQ_STATE_BUSY; skreq->id += SKD_ID_INCR; skmsg->length += sizeof(struct skd_scsi_request); fmh->num_protocol_cmds_coalesced++; /* * Update the active request counts. * Capture the timeout timestamp. */ skreq->timeout_stamp = skdev->timeout_stamp; timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK; skdev->timeout_slot[timo_slot]++; skdev->in_flight++; pr_debug("%s:%s:%d req=0x%x busy=%d\n", skdev->name, __func__, __LINE__, skreq->id, skdev->in_flight); /* * If the FIT msg buffer is full send it. */ if (skmsg->length >= SKD_N_FITMSG_BYTES || fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) { skd_send_fitmsg(skdev, skmsg); skmsg = NULL; fmh = NULL; } } /* * Is a FIT msg in progress? If it is empty put the buffer back * on the free list. If it is non-empty send what we got. * This minimizes latency when there are fewer requests than * what fits in a FIT msg. */ if (skmsg != NULL) { /* Bigger than just a FIT msg header? */ if (skmsg->length > sizeof(struct fit_msg_hdr)) { pr_debug("%s:%s:%d sending msg=%p, len %d\n", skdev->name, __func__, __LINE__, skmsg, skmsg->length); skd_send_fitmsg(skdev, skmsg); } else { /* * The FIT msg is empty. It means we got started * on the msg, but the requests were rejected. */ skmsg->state = SKD_MSG_STATE_IDLE; skmsg->id += SKD_ID_INCR; skmsg->next = skdev->skmsg_free_list; skdev->skmsg_free_list = skmsg; } skmsg = NULL; fmh = NULL; } /* * If req is non-NULL it means there is something to do but * we are out of a resource. */ if (((!skd_bio) && req) || ((skd_bio) && bio_list_peek(&skdev->bio_queue))) skd_stop_queue(skdev); } static void skd_end_request_blk(struct skd_device *skdev, struct skd_request_context *skreq, int error) { struct request *req = skreq->req; unsigned int io_flags = req->cmd_flags; if ((io_flags & REQ_DISCARD) && (skreq->discard_page == 1)) { pr_debug("%s:%s:%d skd_end_request_blk, free the page!", skdev->name, __func__, __LINE__); free_page((unsigned long)req->buffer); req->buffer = NULL; } if (unlikely(error)) { struct request *req = skreq->req; char *cmd = (rq_data_dir(req) == READ) ? "read" : "write"; u32 lba = (u32)blk_rq_pos(req); u32 count = blk_rq_sectors(req); pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n", skd_name(skdev), cmd, lba, count, skreq->id); } else pr_debug("%s:%s:%d id=0x%x error=%d\n", skdev->name, __func__, __LINE__, skreq->id, error); __blk_end_request_all(skreq->req, error); } static int skd_preop_sg_list_blk(struct skd_device *skdev, struct skd_request_context *skreq) { struct request *req = skreq->req; int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD; int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE; struct scatterlist *sg = &skreq->sg[0]; int n_sg; int i; skreq->sg_byte_count = 0; /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD || skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */ n_sg = blk_rq_map_sg(skdev->queue, req, sg); if (n_sg <= 0) return -EINVAL; /* * Map scatterlist to PCI bus addresses. * Note PCI might change the number of entries. */ n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir); if (n_sg <= 0) return -EINVAL; SKD_ASSERT(n_sg <= skdev->sgs_per_request); skreq->n_sg = n_sg; for (i = 0; i < n_sg; i++) { struct fit_sg_descriptor *sgd = &skreq->sksg_list[i]; u32 cnt = sg_dma_len(&sg[i]); uint64_t dma_addr = sg_dma_address(&sg[i]); sgd->control = FIT_SGD_CONTROL_NOT_LAST; sgd->byte_count = cnt; skreq->sg_byte_count += cnt; sgd->host_side_addr = dma_addr; sgd->dev_side_addr = 0; } skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL; skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST; if (unlikely(skdev->dbg_level > 1)) { pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n", skdev->name, __func__, __LINE__, skreq->id, skreq->sksg_list, skreq->sksg_dma_address); for (i = 0; i < n_sg; i++) { struct fit_sg_descriptor *sgd = &skreq->sksg_list[i]; pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x " "addr=0x%llx next=0x%llx\n", skdev->name, __func__, __LINE__, i, sgd->byte_count, sgd->control, sgd->host_side_addr, sgd->next_desc_ptr); } } return 0; } static void skd_postop_sg_list_blk(struct skd_device *skdev, struct skd_request_context *skreq) { int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD; int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE; /* * restore the next ptr for next IO request so we * don't have to set it every time. */ skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr = skreq->sksg_dma_address + ((skreq->n_sg) * sizeof(struct fit_sg_descriptor)); pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir); } static void skd_end_request_bio(struct skd_device *skdev, struct skd_request_context *skreq, int error) { struct bio *bio = skreq->bio; int rw = bio_data_dir(bio); unsigned long io_flags = bio->bi_rw; if ((io_flags & REQ_DISCARD) && (skreq->discard_page == 1)) { pr_debug("%s:%s:%d biomode: skd_end_request: freeing DISCARD page.\n", skdev->name, __func__, __LINE__); free_page((unsigned long)page_address(bio->bi_io_vec->bv_page)); } if (unlikely(error)) { u32 lba = (u32)skreq->bio->bi_sector; u32 count = bio_sectors(skreq->bio); char *cmd = (rw == WRITE) ? "write" : "read"; pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n", skd_name(skdev), cmd, lba, count, skreq->id); } { int cpu = part_stat_lock(); if (likely(!error)) { part_stat_inc(cpu, &skdev->disk->part0, ios[rw]); part_stat_add(cpu, &skdev->disk->part0, sectors[rw], bio_sectors(bio)); } part_stat_add(cpu, &skdev->disk->part0, ticks[rw], jiffies - skreq->start_time); part_dec_in_flight(&skdev->disk->part0, rw); part_stat_unlock(); } pr_debug("%s:%s:%d id=0x%x error=%d\n", skdev->name, __func__, __LINE__, skreq->id, error); bio_endio(skreq->bio, error); } static int skd_preop_sg_list_bio(struct skd_device *skdev, struct skd_request_context *skreq) { struct bio *bio = skreq->bio; int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD; int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE; int n_sg; int i; struct bio_vec *vec; struct fit_sg_descriptor *sgd; u64 dma_addr; u32 count; int errs = 0; unsigned int io_flags = 0; io_flags |= bio->bi_rw; skreq->sg_byte_count = 0; n_sg = skreq->n_sg = skreq->bio->bi_vcnt; if (n_sg <= 0) return -EINVAL; if (n_sg > skdev->sgs_per_request) { pr_err("(%s): sg overflow n=%d\n", skd_name(skdev), n_sg); skreq->n_sg = 0; return -EIO; } for (i = 0; i < skreq->n_sg; i++) { vec = bio_iovec_idx(bio, i); dma_addr = pci_map_page(skdev->pdev, vec->bv_page, vec->bv_offset, vec->bv_len, pci_dir); count = vec->bv_len; if (count == 0 || count > 64u * 1024u || (count & 3) != 0 || (dma_addr & 3) != 0) { pr_err( "(%s): Bad sg ix=%d count=%d addr=0x%llx\n", skd_name(skdev), i, count, dma_addr); errs++; } sgd = &skreq->sksg_list[i]; sgd->control = FIT_SGD_CONTROL_NOT_LAST; sgd->byte_count = vec->bv_len; skreq->sg_byte_count += vec->bv_len; sgd->host_side_addr = dma_addr; sgd->dev_side_addr = 0; /* not used */ } skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL; skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST; if (!(io_flags & REQ_DISCARD)) { count = bio_sectors(bio) << 9u; if (count != skreq->sg_byte_count) { pr_err("(%s): mismatch count sg=%d req=%d\n", skd_name(skdev), skreq->sg_byte_count, count); errs++; } } if (unlikely(skdev->dbg_level > 1)) { pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n", skdev->name, __func__, __LINE__, skreq->id, skreq->sksg_list, skreq->sksg_dma_address); for (i = 0; i < n_sg; i++) { struct fit_sg_descriptor *sgd = &skreq->sksg_list[i]; pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x " "addr=0x%llx next=0x%llx\n", skdev->name, __func__, __LINE__, i, sgd->byte_count, sgd->control, sgd->host_side_addr, sgd->next_desc_ptr); } } if (errs != 0) { skd_postop_sg_list(skdev, skreq); skreq->n_sg = 0; return -EIO; } return 0; } static int skd_preop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq) { if (!skd_bio) return skd_preop_sg_list_blk(skdev, skreq); else return skd_preop_sg_list_bio(skdev, skreq); } static void skd_postop_sg_list_bio(struct skd_device *skdev, struct skd_request_context *skreq) { int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD; int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE; int i; struct fit_sg_descriptor *sgd; /* * restore the next ptr for next IO request so we * don't have to set it every time. */ skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr = skreq->sksg_dma_address + ((skreq->n_sg) * sizeof(struct fit_sg_descriptor)); for (i = 0; i < skreq->n_sg; i++) { sgd = &skreq->sksg_list[i]; pci_unmap_page(skdev->pdev, sgd->host_side_addr, sgd->byte_count, pci_dir); } } static void skd_postop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq) { if (!skd_bio) skd_postop_sg_list_blk(skdev, skreq); else skd_postop_sg_list_bio(skdev, skreq); } static void skd_end_request(struct skd_device *skdev, struct skd_request_context *skreq, int error) { if (likely(!skd_bio)) skd_end_request_blk(skdev, skreq, error); else skd_end_request_bio(skdev, skreq, error); } static void skd_request_fn_not_online(struct request_queue *q) { struct skd_device *skdev = q->queuedata; int error; SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE); skd_log_skdev(skdev, "req_not_online"); switch (skdev->state) { case SKD_DRVR_STATE_PAUSING: case SKD_DRVR_STATE_PAUSED: case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: case SKD_DRVR_STATE_WAIT_BOOT: /* In case of starting, we haven't started the queue, * so we can't get here... but requests are * possibly hanging out waiting for us because we * reported the dev/skd0 already. They'll wait * forever if connect doesn't complete. * What to do??? delay dev/skd0 ?? */ case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: case SKD_DRVR_STATE_BUSY_ERASE: case SKD_DRVR_STATE_DRAINING_TIMEOUT: return; case SKD_DRVR_STATE_BUSY_SANITIZE: case SKD_DRVR_STATE_STOPPING: case SKD_DRVR_STATE_SYNCING: case SKD_DRVR_STATE_FAULT: case SKD_DRVR_STATE_DISAPPEARED: default: error = -EIO; break; } /* If we get here, terminate all pending block requeusts * with EIO and any scsi pass thru with appropriate sense */ skd_fail_all_pending(skdev); } /* ***************************************************************************** * TIMER ***************************************************************************** */ static void skd_timer_tick_not_online(struct skd_device *skdev); static void skd_timer_tick(ulong arg) { struct skd_device *skdev = (struct skd_device *)arg; u32 timo_slot; u32 overdue_timestamp; unsigned long reqflags; u32 state; if (skdev->state == SKD_DRVR_STATE_FAULT) /* The driver has declared fault, and we want it to * stay that way until driver is reloaded. */ return; spin_lock_irqsave(&skdev->lock, reqflags); state = SKD_READL(skdev, FIT_STATUS); state &= FIT_SR_DRIVE_STATE_MASK; if (state != skdev->drive_state) skd_isr_fwstate(skdev); if (skdev->state != SKD_DRVR_STATE_ONLINE) { skd_timer_tick_not_online(skdev); goto timer_func_out; } skdev->timeout_stamp++; timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK; /* * All requests that happened during the previous use of * this slot should be done by now. The previous use was * over 7 seconds ago. */ if (skdev->timeout_slot[timo_slot] == 0) goto timer_func_out; /* Something is overdue */ overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT; pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n", skdev->name, __func__, __LINE__, skdev->timeout_slot[timo_slot], skdev->in_flight); pr_err("(%s): Overdue IOs (%d), busy %d\n", skd_name(skdev), skdev->timeout_slot[timo_slot], skdev->in_flight); skdev->timer_countdown = SKD_DRAINING_TIMO; skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT; skdev->timo_slot = timo_slot; skd_stop_queue(skdev); timer_func_out: mod_timer(&skdev->timer, (jiffies + HZ)); spin_unlock_irqrestore(&skdev->lock, reqflags); } static void skd_timer_tick_not_online(struct skd_device *skdev) { switch (skdev->state) { case SKD_DRVR_STATE_IDLE: case SKD_DRVR_STATE_LOAD: break; case SKD_DRVR_STATE_BUSY_SANITIZE: pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n", skdev->name, __func__, __LINE__, skdev->drive_state, skdev->state); /* If we've been in sanitize for 3 seconds, we figure we're not * going to get anymore completions, so recover requests now */ if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } skd_recover_requests(skdev, 0); break; case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: case SKD_DRVR_STATE_BUSY_ERASE: pr_debug("%s:%s:%d busy[%x], countdown=%d\n", skdev->name, __func__, __LINE__, skdev->state, skdev->timer_countdown); if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.", skdev->name, __func__, __LINE__, skdev->state, skdev->timer_countdown); skd_restart_device(skdev); break; case SKD_DRVR_STATE_WAIT_BOOT: case SKD_DRVR_STATE_STARTING: if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } /* For now, we fault the drive. Could attempt resets to * revcover at some point. */ skdev->state = SKD_DRVR_STATE_FAULT; pr_err("(%s): DriveFault Connect Timeout (%x)\n", skd_name(skdev), skdev->drive_state); /*start the queue so we can respond with error to requests */ /* wakeup anyone waiting for startup complete */ skd_start_queue(skdev); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; case SKD_DRVR_STATE_ONLINE: /* shouldn't get here. */ break; case SKD_DRVR_STATE_PAUSING: case SKD_DRVR_STATE_PAUSED: break; case SKD_DRVR_STATE_DRAINING_TIMEOUT: pr_debug("%s:%s:%d " "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n", skdev->name, __func__, __LINE__, skdev->timo_slot, skdev->timer_countdown, skdev->in_flight, skdev->timeout_slot[skdev->timo_slot]); /* if the slot has cleared we can let the I/O continue */ if (skdev->timeout_slot[skdev->timo_slot] == 0) { pr_debug("%s:%s:%d Slot drained, starting queue.\n", skdev->name, __func__, __LINE__); skdev->state = SKD_DRVR_STATE_ONLINE; skd_start_queue(skdev); return; } if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } skd_restart_device(skdev); break; case SKD_DRVR_STATE_RESTARTING: if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } /* For now, we fault the drive. Could attempt resets to * revcover at some point. */ skdev->state = SKD_DRVR_STATE_FAULT; pr_err("(%s): DriveFault Reconnect Timeout (%x)\n", skd_name(skdev), skdev->drive_state); /* * Recovering does two things: * 1. completes IO with error * 2. reclaims dma resources * When is it safe to recover requests? * - if the drive state is faulted * - if the state is still soft reset after out timeout * - if the drive registers are dead (state = FF) * If it is "unsafe", we still need to recover, so we will * disable pci bus mastering and disable our interrupts. */ if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) || (skdev->drive_state == FIT_SR_DRIVE_FAULT) || (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK)) /* It never came out of soft reset. Try to * recover the requests and then let them * fail. This is to mitigate hung processes. */ skd_recover_requests(skdev, 0); else { pr_err("(%s): Disable BusMaster (%x)\n", skd_name(skdev), skdev->drive_state); pci_disable_device(skdev->pdev); skd_disable_interrupts(skdev); skd_recover_requests(skdev, 0); } /*start the queue so we can respond with error to requests */ /* wakeup anyone waiting for startup complete */ skd_start_queue(skdev); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; case SKD_DRVR_STATE_RESUMING: case SKD_DRVR_STATE_STOPPING: case SKD_DRVR_STATE_SYNCING: case SKD_DRVR_STATE_FAULT: case SKD_DRVR_STATE_DISAPPEARED: default: break; } } static int skd_start_timer(struct skd_device *skdev) { int rc; init_timer(&skdev->timer); setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev); rc = mod_timer(&skdev->timer, (jiffies + HZ)); if (rc) pr_err("%s: failed to start timer %d\n", __func__, rc); return rc; } static void skd_kill_timer(struct skd_device *skdev) { del_timer_sync(&skdev->timer); } /* ***************************************************************************** * IOCTL ***************************************************************************** */ static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode, void __user *argp); static int skd_sg_io_get_and_check_args(struct skd_device *skdev, struct skd_sg_io *sksgio); static int skd_sg_io_obtain_skspcl(struct skd_device *skdev, struct skd_sg_io *sksgio); static int skd_sg_io_prep_buffering(struct skd_device *skdev, struct skd_sg_io *sksgio); static int skd_sg_io_copy_buffer(struct skd_device *skdev, struct skd_sg_io *sksgio, int dxfer_dir); static int skd_sg_io_send_fitmsg(struct skd_device *skdev, struct skd_sg_io *sksgio); static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio); static int skd_sg_io_release_skspcl(struct skd_device *skdev, struct skd_sg_io *sksgio); static int skd_sg_io_put_status(struct skd_device *skdev, struct skd_sg_io *sksgio); static void skd_complete_special(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr, struct skd_special_context *skspcl); static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode, uint cmd_in, ulong arg) { int rc = 0; struct gendisk *disk = bdev->bd_disk; struct skd_device *skdev = disk->private_data; void __user *p = (void *)arg; pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n", skdev->name, __func__, __LINE__, disk->disk_name, current->comm, mode, cmd_in, arg); if (!capable(CAP_SYS_ADMIN)) return -EPERM; switch (cmd_in) { case SG_SET_TIMEOUT: case SG_GET_TIMEOUT: case SG_GET_VERSION_NUM: rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p); break; case SG_IO: rc = skd_ioctl_sg_io(skdev, mode, p); break; default: rc = -ENOTTY; break; } pr_debug("%s:%s:%d %s: completion rc %d\n", skdev->name, __func__, __LINE__, disk->disk_name, rc); return rc; } static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode, void __user *argp) { int rc; struct skd_sg_io sksgio; memset(&sksgio, 0, sizeof(sksgio)); sksgio.mode = mode; sksgio.argp = argp; sksgio.iov = &sksgio.no_iov_iov; switch (skdev->state) { case SKD_DRVR_STATE_ONLINE: case SKD_DRVR_STATE_BUSY_IMMINENT: break; default: pr_debug("%s:%s:%d drive not online\n", skdev->name, __func__, __LINE__); rc = -ENXIO; goto out; } rc = skd_sg_io_get_and_check_args(skdev, &sksgio); if (rc) goto out; rc = skd_sg_io_obtain_skspcl(skdev, &sksgio); if (rc) goto out; rc = skd_sg_io_prep_buffering(skdev, &sksgio); if (rc) goto out; rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV); if (rc) goto out; rc = skd_sg_io_send_fitmsg(skdev, &sksgio); if (rc) goto out; rc = skd_sg_io_await(skdev, &sksgio); if (rc) goto out; rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV); if (rc) goto out; rc = skd_sg_io_put_status(skdev, &sksgio); if (rc) goto out; rc = 0; out: skd_sg_io_release_skspcl(skdev, &sksgio); if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov) kfree(sksgio.iov); return rc; } static int skd_sg_io_get_and_check_args(struct skd_device *skdev, struct skd_sg_io *sksgio) { struct sg_io_hdr *sgp = &sksgio->sg; int i, acc; if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) { pr_debug("%s:%s:%d access sg failed %p\n", skdev->name, __func__, __LINE__, sksgio->argp); return -EFAULT; } if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) { pr_debug("%s:%s:%d copy_from_user sg failed %p\n", skdev->name, __func__, __LINE__, sksgio->argp); return -EFAULT; } if (sgp->interface_id != SG_INTERFACE_ID_ORIG) { pr_debug("%s:%s:%d interface_id invalid 0x%x\n", skdev->name, __func__, __LINE__, sgp->interface_id); return -EINVAL; } if (sgp->cmd_len > sizeof(sksgio->cdb)) { pr_debug("%s:%s:%d cmd_len invalid %d\n", skdev->name, __func__, __LINE__, sgp->cmd_len); return -EINVAL; } if (sgp->iovec_count > 256) { pr_debug("%s:%s:%d iovec_count invalid %d\n", skdev->name, __func__, __LINE__, sgp->iovec_count); return -EINVAL; } if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) { pr_debug("%s:%s:%d dxfer_len invalid %d\n", skdev->name, __func__, __LINE__, sgp->dxfer_len); return -EINVAL; } switch (sgp->dxfer_direction) { case SG_DXFER_NONE: acc = -1; break; case SG_DXFER_TO_DEV: acc = VERIFY_READ; break; case SG_DXFER_FROM_DEV: case SG_DXFER_TO_FROM_DEV: acc = VERIFY_WRITE; break; default: pr_debug("%s:%s:%d dxfer_dir invalid %d\n", skdev->name, __func__, __LINE__, sgp->dxfer_direction); return -EINVAL; } if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) { pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n", skdev->name, __func__, __LINE__, sgp->cmdp); return -EFAULT; } if (sgp->mx_sb_len != 0) { if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) { pr_debug("%s:%s:%d access sbp failed %p\n", skdev->name, __func__, __LINE__, sgp->sbp); return -EFAULT; } } if (sgp->iovec_count == 0) { sksgio->iov[0].iov_base = sgp->dxferp; sksgio->iov[0].iov_len = sgp->dxfer_len; sksgio->iovcnt = 1; sksgio->dxfer_len = sgp->dxfer_len; } else { struct sg_iovec *iov; uint nbytes = sizeof(*iov) * sgp->iovec_count; size_t iov_data_len; iov = kmalloc(nbytes, GFP_KERNEL); if (iov == NULL) { pr_debug("%s:%s:%d alloc iovec failed %d\n", skdev->name, __func__, __LINE__, sgp->iovec_count); return -ENOMEM; } sksgio->iov = iov; sksgio->iovcnt = sgp->iovec_count; if (copy_from_user(iov, sgp->dxferp, nbytes)) { pr_debug("%s:%s:%d copy_from_user iovec failed %p\n", skdev->name, __func__, __LINE__, sgp->dxferp); return -EFAULT; } /* * Sum up the vecs, making sure they don't overflow */ iov_data_len = 0; for (i = 0; i < sgp->iovec_count; i++) { if (iov_data_len + iov[i].iov_len < iov_data_len) return -EINVAL; iov_data_len += iov[i].iov_len; } /* SG_IO howto says that the shorter of the two wins */ if (sgp->dxfer_len < iov_data_len) { sksgio->iovcnt = iov_shorten((struct iovec *)iov, sgp->iovec_count, sgp->dxfer_len); sksgio->dxfer_len = sgp->dxfer_len; } else sksgio->dxfer_len = iov_data_len; } if (sgp->dxfer_direction != SG_DXFER_NONE) { struct sg_iovec *iov = sksgio->iov; for (i = 0; i < sksgio->iovcnt; i++, iov++) { if (!access_ok(acc, iov->iov_base, iov->iov_len)) { pr_debug("%s:%s:%d access data failed %p/%d\n", skdev->name, __func__, __LINE__, iov->iov_base, (int)iov->iov_len); return -EFAULT; } } } return 0; } static int skd_sg_io_obtain_skspcl(struct skd_device *skdev, struct skd_sg_io *sksgio) { struct skd_special_context *skspcl = NULL; int rc; for (;; ) { ulong flags; spin_lock_irqsave(&skdev->lock, flags); skspcl = skdev->skspcl_free_list; if (skspcl != NULL) { skdev->skspcl_free_list = (struct skd_special_context *)skspcl->req.next; skspcl->req.id += SKD_ID_INCR; skspcl->req.state = SKD_REQ_STATE_SETUP; skspcl->orphaned = 0; skspcl->req.n_sg = 0; } spin_unlock_irqrestore(&skdev->lock, flags); if (skspcl != NULL) { rc = 0; break; } pr_debug("%s:%s:%d blocking\n", skdev->name, __func__, __LINE__); rc = wait_event_interruptible_timeout( skdev->waitq, (skdev->skspcl_free_list != NULL), msecs_to_jiffies(sksgio->sg.timeout)); pr_debug("%s:%s:%d unblocking, rc=%d\n", skdev->name, __func__, __LINE__, rc); if (rc <= 0) { if (rc == 0) rc = -ETIMEDOUT; else rc = -EINTR; break; } /* * If we get here rc > 0 meaning the timeout to * wait_event_interruptible_timeout() had time left, hence the * sought event -- non-empty free list -- happened. * Retry the allocation. */ } sksgio->skspcl = skspcl; return rc; } static int skd_skreq_prep_buffering(struct skd_device *skdev, struct skd_request_context *skreq, u32 dxfer_len) { u32 resid = dxfer_len; /* * The DMA engine must have aligned addresses and byte counts. */ resid += (-resid) & 3; skreq->sg_byte_count = resid; skreq->n_sg = 0; while (resid > 0) { u32 nbytes = PAGE_SIZE; u32 ix = skreq->n_sg; struct scatterlist *sg = &skreq->sg[ix]; struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix]; struct page *page; if (nbytes > resid) nbytes = resid; page = alloc_page(GFP_KERNEL); if (page == NULL) return -ENOMEM; sg_set_page(sg, page, nbytes, 0); /* TODO: This should be going through a pci_???() * routine to do proper mapping. */ sksg->control = FIT_SGD_CONTROL_NOT_LAST; sksg->byte_count = nbytes; sksg->host_side_addr = sg_phys(sg); sksg->dev_side_addr = 0; sksg->next_desc_ptr = skreq->sksg_dma_address + (ix + 1) * sizeof(*sksg); skreq->n_sg++; resid -= nbytes; } if (skreq->n_sg > 0) { u32 ix = skreq->n_sg - 1; struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix]; sksg->control = FIT_SGD_CONTROL_LAST; sksg->next_desc_ptr = 0; } if (unlikely(skdev->dbg_level > 1)) { u32 i; pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n", skdev->name, __func__, __LINE__, skreq->id, skreq->sksg_list, skreq->sksg_dma_address); for (i = 0; i < skreq->n_sg; i++) { struct fit_sg_descriptor *sgd = &skreq->sksg_list[i]; pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x " "addr=0x%llx next=0x%llx\n", skdev->name, __func__, __LINE__, i, sgd->byte_count, sgd->control, sgd->host_side_addr, sgd->next_desc_ptr); } } return 0; } static int skd_sg_io_prep_buffering(struct skd_device *skdev, struct skd_sg_io *sksgio) { struct skd_special_context *skspcl = sksgio->skspcl; struct skd_request_context *skreq = &skspcl->req; u32 dxfer_len = sksgio->dxfer_len; int rc; rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len); /* * Eventually, errors or not, skd_release_special() is called * to recover allocations including partial allocations. */ return rc; } static int skd_sg_io_copy_buffer(struct skd_device *skdev, struct skd_sg_io *sksgio, int dxfer_dir) { struct skd_special_context *skspcl = sksgio->skspcl; u32 iov_ix = 0; struct sg_iovec curiov; u32 sksg_ix = 0; u8 *bufp = NULL; u32 buf_len = 0; u32 resid = sksgio->dxfer_len; int rc; curiov.iov_len = 0; curiov.iov_base = NULL; if (dxfer_dir != sksgio->sg.dxfer_direction) { if (dxfer_dir != SG_DXFER_TO_DEV || sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV) return 0; } while (resid > 0) { u32 nbytes = PAGE_SIZE; if (curiov.iov_len == 0) { curiov = sksgio->iov[iov_ix++]; continue; } if (buf_len == 0) { struct page *page; page = sg_page(&skspcl->req.sg[sksg_ix++]); bufp = page_address(page); buf_len = PAGE_SIZE; } nbytes = min_t(u32, nbytes, resid); nbytes = min_t(u32, nbytes, curiov.iov_len); nbytes = min_t(u32, nbytes, buf_len); if (dxfer_dir == SG_DXFER_TO_DEV) rc = __copy_from_user(bufp, curiov.iov_base, nbytes); else rc = __copy_to_user(curiov.iov_base, bufp, nbytes); if (rc) return -EFAULT; resid -= nbytes; curiov.iov_len -= nbytes; curiov.iov_base += nbytes; buf_len -= nbytes; } return 0; } static int skd_sg_io_send_fitmsg(struct skd_device *skdev, struct skd_sg_io *sksgio) { struct skd_special_context *skspcl = sksgio->skspcl; struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf; struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1]; memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES); /* Initialize the FIT msg header */ fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT; fmh->num_protocol_cmds_coalesced = 1; /* Initialize the SCSI request */ if (sksgio->sg.dxfer_direction != SG_DXFER_NONE) scsi_req->hdr.sg_list_dma_address = cpu_to_be64(skspcl->req.sksg_dma_address); scsi_req->hdr.tag = skspcl->req.id; scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skspcl->req.sg_byte_count); memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb)); skspcl->req.state = SKD_REQ_STATE_BUSY; skd_send_special_fitmsg(skdev, skspcl); return 0; } static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio) { unsigned long flags; int rc; rc = wait_event_interruptible_timeout(skdev->waitq, (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY), msecs_to_jiffies(sksgio->sg. timeout)); spin_lock_irqsave(&skdev->lock, flags); if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) { pr_debug("%s:%s:%d skspcl %p aborted\n", skdev->name, __func__, __LINE__, sksgio->skspcl); /* Build check cond, sense and let command finish. */ /* For a timeout, we must fabricate completion and sense * data to complete the command */ sksgio->skspcl->req.completion.status = SAM_STAT_CHECK_CONDITION; memset(&sksgio->skspcl->req.err_info, 0, sizeof(sksgio->skspcl->req.err_info)); sksgio->skspcl->req.err_info.type = 0x70; sksgio->skspcl->req.err_info.key = ABORTED_COMMAND; sksgio->skspcl->req.err_info.code = 0x44; sksgio->skspcl->req.err_info.qual = 0; rc = 0; } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY) /* No longer on the adapter. We finish. */ rc = 0; else { /* Something's gone wrong. Still busy. Timeout or * user interrupted (control-C). Mark as an orphan * so it will be disposed when completed. */ sksgio->skspcl->orphaned = 1; sksgio->skspcl = NULL; if (rc == 0) { pr_debug("%s:%s:%d timed out %p (%u ms)\n", skdev->name, __func__, __LINE__, sksgio, sksgio->sg.timeout); rc = -ETIMEDOUT; } else { pr_debug("%s:%s:%d cntlc %p\n", skdev->name, __func__, __LINE__, sksgio); rc = -EINTR; } } spin_unlock_irqrestore(&skdev->lock, flags); return rc; } static int skd_sg_io_put_status(struct skd_device *skdev, struct skd_sg_io *sksgio) { struct sg_io_hdr *sgp = &sksgio->sg; struct skd_special_context *skspcl = sksgio->skspcl; int resid = 0; u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes); sgp->status = skspcl->req.completion.status; resid = sksgio->dxfer_len - nb; sgp->masked_status = sgp->status & STATUS_MASK; sgp->msg_status = 0; sgp->host_status = 0; sgp->driver_status = 0; sgp->resid = resid; if (sgp->masked_status || sgp->host_status || sgp->driver_status) sgp->info |= SG_INFO_CHECK; pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n", skdev->name, __func__, __LINE__, sgp->status, sgp->masked_status, sgp->resid); if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) { if (sgp->mx_sb_len > 0) { struct fit_comp_error_info *ei = &skspcl->req.err_info; u32 nbytes = sizeof(*ei); nbytes = min_t(u32, nbytes, sgp->mx_sb_len); sgp->sb_len_wr = nbytes; if (__copy_to_user(sgp->sbp, ei, nbytes)) { pr_debug("%s:%s:%d copy_to_user sense failed %p\n", skdev->name, __func__, __LINE__, sgp->sbp); return -EFAULT; } } } if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) { pr_debug("%s:%s:%d copy_to_user sg failed %p\n", skdev->name, __func__, __LINE__, sksgio->argp); return -EFAULT; } return 0; } static int skd_sg_io_release_skspcl(struct skd_device *skdev, struct skd_sg_io *sksgio) { struct skd_special_context *skspcl = sksgio->skspcl; if (skspcl != NULL) { ulong flags; sksgio->skspcl = NULL; spin_lock_irqsave(&skdev->lock, flags); skd_release_special(skdev, skspcl); spin_unlock_irqrestore(&skdev->lock, flags); } return 0; } /* ***************************************************************************** * INTERNAL REQUESTS -- generated by driver itself ***************************************************************************** */ static int skd_format_internal_skspcl(struct skd_device *skdev) { struct skd_special_context *skspcl = &skdev->internal_skspcl; struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0]; struct fit_msg_hdr *fmh; uint64_t dma_address; struct skd_scsi_request *scsi; fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0]; fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT; fmh->num_protocol_cmds_coalesced = 1; scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64]; memset(scsi, 0, sizeof(*scsi)); dma_address = skspcl->req.sksg_dma_address; scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address); sgd->control = FIT_SGD_CONTROL_LAST; sgd->byte_count = 0; sgd->host_side_addr = skspcl->db_dma_address; sgd->dev_side_addr = 0; sgd->next_desc_ptr = 0LL; return 1; } #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES static void skd_send_internal_skspcl(struct skd_device *skdev, struct skd_special_context *skspcl, u8 opcode) { struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0]; struct skd_scsi_request *scsi; unsigned char *buf = skspcl->data_buf; int i; if (skspcl->req.state != SKD_REQ_STATE_IDLE) /* * A refresh is already in progress. * Just wait for it to finish. */ return; SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0); skspcl->req.state = SKD_REQ_STATE_BUSY; skspcl->req.id += SKD_ID_INCR; scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64]; scsi->hdr.tag = skspcl->req.id; memset(scsi->cdb, 0, sizeof(scsi->cdb)); switch (opcode) { case TEST_UNIT_READY: scsi->cdb[0] = TEST_UNIT_READY; sgd->byte_count = 0; scsi->hdr.sg_list_len_bytes = 0; break; case READ_CAPACITY: scsi->cdb[0] = READ_CAPACITY; sgd->byte_count = SKD_N_READ_CAP_BYTES; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); break; case INQUIRY: scsi->cdb[0] = INQUIRY; scsi->cdb[1] = 0x01; /* evpd */ scsi->cdb[2] = 0x80; /* serial number page */ scsi->cdb[4] = 0x10; sgd->byte_count = 16; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); break; case SYNCHRONIZE_CACHE: scsi->cdb[0] = SYNCHRONIZE_CACHE; sgd->byte_count = 0; scsi->hdr.sg_list_len_bytes = 0; break; case WRITE_BUFFER: scsi->cdb[0] = WRITE_BUFFER; scsi->cdb[1] = 0x02; scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8; scsi->cdb[8] = WR_BUF_SIZE & 0xFF; sgd->byte_count = WR_BUF_SIZE; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); /* fill incrementing byte pattern */ for (i = 0; i < sgd->byte_count; i++) buf[i] = i & 0xFF; break; case READ_BUFFER: scsi->cdb[0] = READ_BUFFER; scsi->cdb[1] = 0x02; scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8; scsi->cdb[8] = WR_BUF_SIZE & 0xFF; sgd->byte_count = WR_BUF_SIZE; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); memset(skspcl->data_buf, 0, sgd->byte_count); break; default: SKD_ASSERT("Don't know what to send"); return; } skd_send_special_fitmsg(skdev, skspcl); } static void skd_refresh_device_data(struct skd_device *skdev) { struct skd_special_context *skspcl = &skdev->internal_skspcl; skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY); } static int skd_chk_read_buf(struct skd_device *skdev, struct skd_special_context *skspcl) { unsigned char *buf = skspcl->data_buf; int i; /* check for incrementing byte pattern */ for (i = 0; i < WR_BUF_SIZE; i++) if (buf[i] != (i & 0xFF)) return 1; return 0; } static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key, u8 code, u8 qual, u8 fruc) { /* If the check condition is of special interest, log a message */ if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02) && (code == 0x04) && (qual == 0x06)) { pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/" "ascq/fruc %02x/%02x/%02x/%02x\n", skd_name(skdev), key, code, qual, fruc); } } static void skd_complete_internal(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr, struct skd_special_context *skspcl) { u8 *buf = skspcl->data_buf; u8 status; int i; struct skd_scsi_request *scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64]; SKD_ASSERT(skspcl == &skdev->internal_skspcl); pr_debug("%s:%s:%d complete internal %x\n", skdev->name, __func__, __LINE__, scsi->cdb[0]); skspcl->req.completion = *skcomp; skspcl->req.state = SKD_REQ_STATE_IDLE; skspcl->req.id += SKD_ID_INCR; status = skspcl->req.completion.status; skd_log_check_status(skdev, status, skerr->key, skerr->code, skerr->qual, skerr->fruc); switch (scsi->cdb[0]) { case TEST_UNIT_READY: if (status == SAM_STAT_GOOD) skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER); else if ((status == SAM_STAT_CHECK_CONDITION) && (skerr->key == MEDIUM_ERROR)) skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER); else { if (skdev->state == SKD_DRVR_STATE_STOPPING) { pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n", skdev->name, __func__, __LINE__, skdev->state); return; } pr_debug("%s:%s:%d **** TUR failed, retry skerr\n", skdev->name, __func__, __LINE__); skd_send_internal_skspcl(skdev, skspcl, 0x00); } break; case WRITE_BUFFER: if (status == SAM_STAT_GOOD) skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER); else { if (skdev->state == SKD_DRVR_STATE_STOPPING) { pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n", skdev->name, __func__, __LINE__, skdev->state); return; } pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n", skdev->name, __func__, __LINE__); skd_send_internal_skspcl(skdev, skspcl, 0x00); } break; case READ_BUFFER: if (status == SAM_STAT_GOOD) { if (skd_chk_read_buf(skdev, skspcl) == 0) skd_send_internal_skspcl(skdev, skspcl, READ_CAPACITY); else { pr_err( "(%s):*** W/R Buffer mismatch %d ***\n", skd_name(skdev), skdev->connect_retries); if (skdev->connect_retries < SKD_MAX_CONNECT_RETRIES) { skdev->connect_retries++; skd_soft_reset(skdev); } else { pr_err( "(%s): W/R Buffer Connect Error\n", skd_name(skdev)); return; } } } else { if (skdev->state == SKD_DRVR_STATE_STOPPING) { pr_debug("%s:%s:%d " "read buffer failed, don't send anymore state 0x%x\n", skdev->name, __func__, __LINE__, skdev->state); return; } pr_debug("%s:%s:%d " "**** read buffer failed, retry skerr\n", skdev->name, __func__, __LINE__); skd_send_internal_skspcl(skdev, skspcl, 0x00); } break; case READ_CAPACITY: skdev->read_cap_is_valid = 0; if (status == SAM_STAT_GOOD) { skdev->read_cap_last_lba = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; skdev->read_cap_blocksize = (buf[4] << 24) | (buf[5] << 16) | (buf[6] << 8) | buf[7]; pr_debug("%s:%s:%d last lba %d, bs %d\n", skdev->name, __func__, __LINE__, skdev->read_cap_last_lba, skdev->read_cap_blocksize); set_capacity(skdev->disk, skdev->read_cap_last_lba + 1); skdev->read_cap_is_valid = 1; skd_send_internal_skspcl(skdev, skspcl, INQUIRY); } else if ((status == SAM_STAT_CHECK_CONDITION) && (skerr->key == MEDIUM_ERROR)) { skdev->read_cap_last_lba = ~0; set_capacity(skdev->disk, skdev->read_cap_last_lba + 1); pr_debug("%s:%s:%d " "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n", skdev->name, __func__, __LINE__); skd_send_internal_skspcl(skdev, skspcl, INQUIRY); } else { pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n", skdev->name, __func__, __LINE__); skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY); } break; case INQUIRY: skdev->inquiry_is_valid = 0; if (status == SAM_STAT_GOOD) { skdev->inquiry_is_valid = 1; for (i = 0; i < 12; i++) skdev->inq_serial_num[i] = buf[i + 4]; skdev->inq_serial_num[12] = 0; } if (skd_unquiesce_dev(skdev) < 0) pr_debug("%s:%s:%d **** failed, to ONLINE device\n", skdev->name, __func__, __LINE__); /* connection is complete */ skdev->connect_retries = 0; break; case SYNCHRONIZE_CACHE: if (status == SAM_STAT_GOOD) skdev->sync_done = 1; else skdev->sync_done = -1; wake_up_interruptible(&skdev->waitq); break; default: SKD_ASSERT("we didn't send this"); } } /* ***************************************************************************** * FIT MESSAGES ***************************************************************************** */ static void skd_send_fitmsg(struct skd_device *skdev, struct skd_fitmsg_context *skmsg) { u64 qcmd; struct fit_msg_hdr *fmh; pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n", skdev->name, __func__, __LINE__, skmsg->mb_dma_address, skdev->in_flight); pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n", skdev->name, __func__, __LINE__, skmsg->msg_buf, skmsg->offset); qcmd = skmsg->mb_dma_address; qcmd |= FIT_QCMD_QID_NORMAL; fmh = (struct fit_msg_hdr *)skmsg->msg_buf; skmsg->outstanding = fmh->num_protocol_cmds_coalesced; if (unlikely(skdev->dbg_level > 1)) { u8 *bp = (u8 *)skmsg->msg_buf; int i; for (i = 0; i < skmsg->length; i += 8) { pr_debug("%s:%s:%d msg[%2d] %02x %02x %02x %02x " "%02x %02x %02x %02x\n", skdev->name, __func__, __LINE__, i, bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3], bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]); if (i == 0) i = 64 - 8; } } if (skmsg->length > 256) qcmd |= FIT_QCMD_MSGSIZE_512; else if (skmsg->length > 128) qcmd |= FIT_QCMD_MSGSIZE_256; else if (skmsg->length > 64) qcmd |= FIT_QCMD_MSGSIZE_128; else /* * This makes no sense because the FIT msg header is * 64 bytes. If the msg is only 64 bytes long it has * no payload. */ qcmd |= FIT_QCMD_MSGSIZE_64; SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND); } static void skd_send_special_fitmsg(struct skd_device *skdev, struct skd_special_context *skspcl) { u64 qcmd; if (unlikely(skdev->dbg_level > 1)) { u8 *bp = (u8 *)skspcl->msg_buf; int i; for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) { pr_debug("%s:%s:%d spcl[%2d] %02x %02x %02x %02x " "%02x %02x %02x %02x\n", skdev->name, __func__, __LINE__, i, bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3], bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]); if (i == 0) i = 64 - 8; } pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n", skdev->name, __func__, __LINE__, skspcl, skspcl->req.id, skspcl->req.sksg_list, skspcl->req.sksg_dma_address); for (i = 0; i < skspcl->req.n_sg; i++) { struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[i]; pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x " "addr=0x%llx next=0x%llx\n", skdev->name, __func__, __LINE__, i, sgd->byte_count, sgd->control, sgd->host_side_addr, sgd->next_desc_ptr); } } /* * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr * and one 64-byte SSDI command. */ qcmd = skspcl->mb_dma_address; qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128; SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND); } /* ***************************************************************************** * COMPLETION QUEUE ***************************************************************************** */ static void skd_complete_other(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr); static void skd_requeue_request(struct skd_device *skdev, struct skd_request_context *skreq); struct sns_info { u8 type; u8 stat; u8 key; u8 asc; u8 ascq; u8 mask; enum skd_check_status_action action; }; static struct sns_info skd_chkstat_table[] = { /* Good */ { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c, SKD_CHECK_STATUS_REPORT_GOOD }, /* Smart alerts */ { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */ SKD_CHECK_STATUS_REPORT_SMART_ALERT }, { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */ SKD_CHECK_STATUS_REPORT_SMART_ALERT }, { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */ SKD_CHECK_STATUS_REPORT_SMART_ALERT }, /* Retry (with limits) */ { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, /* Busy (or about to be) */ { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */ SKD_CHECK_STATUS_BUSY_IMMINENT }, }; /* * Look up status and sense data to decide how to handle the error * from the device. * mask says which fields must match e.g., mask=0x18 means check * type and stat, ignore key, asc, ascq. */ static enum skd_check_status_action skd_check_status(struct skd_device *skdev, u8 cmp_status, volatile struct fit_comp_error_info *skerr) { int i, n; pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n", skd_name(skdev), skerr->key, skerr->code, skerr->qual, skerr->fruc); pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n", skdev->name, __func__, __LINE__, skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual, skerr->fruc); /* Does the info match an entry in the good category? */ n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]); for (i = 0; i < n; i++) { struct sns_info *sns = &skd_chkstat_table[i]; if (sns->mask & 0x10) if (skerr->type != sns->type) continue; if (sns->mask & 0x08) if (cmp_status != sns->stat) continue; if (sns->mask & 0x04) if (skerr->key != sns->key) continue; if (sns->mask & 0x02) if (skerr->code != sns->asc) continue; if (sns->mask & 0x01) if (skerr->qual != sns->ascq) continue; if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) { pr_err("(%s): SMART Alert: sense key/asc/ascq " "%02x/%02x/%02x\n", skd_name(skdev), skerr->key, skerr->code, skerr->qual); } return sns->action; } /* No other match, so nonzero status means error, * zero status means good */ if (cmp_status) { pr_debug("%s:%s:%d status check: error\n", skdev->name, __func__, __LINE__); return SKD_CHECK_STATUS_REPORT_ERROR; } pr_debug("%s:%s:%d status check good default\n", skdev->name, __func__, __LINE__); return SKD_CHECK_STATUS_REPORT_GOOD; } static void skd_resolve_req_exception(struct skd_device *skdev, struct skd_request_context *skreq) { u8 cmp_status = skreq->completion.status; switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) { case SKD_CHECK_STATUS_REPORT_GOOD: case SKD_CHECK_STATUS_REPORT_SMART_ALERT: skd_end_request(skdev, skreq, 0); break; case SKD_CHECK_STATUS_BUSY_IMMINENT: skd_log_skreq(skdev, skreq, "retry(busy)"); skd_requeue_request(skdev, skreq); pr_info("(%s) drive BUSY imminent\n", skd_name(skdev)); skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT; skdev->timer_countdown = SKD_TIMER_MINUTES(20); skd_quiesce_dev(skdev); break; case SKD_CHECK_STATUS_REQUEUE_REQUEST: if (!skd_bio) { if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) { skd_log_skreq(skdev, skreq, "retry"); skd_requeue_request(skdev, skreq); break; } } /* fall through to report error */ case SKD_CHECK_STATUS_REPORT_ERROR: default: skd_end_request(skdev, skreq, -EIO); break; } } static void skd_requeue_request(struct skd_device *skdev, struct skd_request_context *skreq) { if (!skd_bio) { blk_requeue_request(skdev->queue, skreq->req); } else { bio_list_add_head(&skdev->bio_queue, skreq->bio); skreq->bio = NULL; } } /* assume spinlock is already held */ static void skd_release_skreq(struct skd_device *skdev, struct skd_request_context *skreq) { u32 msg_slot; struct skd_fitmsg_context *skmsg; u32 timo_slot; /* * Reclaim the FIT msg buffer if this is * the first of the requests it carried to * be completed. The FIT msg buffer used to * send this request cannot be reused until * we are sure the s1120 card has copied * it to its memory. The FIT msg might have * contained several requests. As soon as * any of them are completed we know that * the entire FIT msg was transferred. * Only the first completed request will * match the FIT msg buffer id. The FIT * msg buffer id is immediately updated. * When subsequent requests complete the FIT * msg buffer id won't match, so we know * quite cheaply that it is already done. */ msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK; SKD_ASSERT(msg_slot < skdev->num_fitmsg_context); skmsg = &skdev->skmsg_table[msg_slot]; if (skmsg->id == skreq->fitmsg_id) { SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY); SKD_ASSERT(skmsg->outstanding > 0); skmsg->outstanding--; if (skmsg->outstanding == 0) { skmsg->state = SKD_MSG_STATE_IDLE; skmsg->id += SKD_ID_INCR; skmsg->next = skdev->skmsg_free_list; skdev->skmsg_free_list = skmsg; } } /* * Decrease the number of active requests. * Also decrements the count in the timeout slot. */ SKD_ASSERT(skdev->in_flight > 0); skdev->in_flight -= 1; timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK; SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0); skdev->timeout_slot[timo_slot] -= 1; /* * Reset backpointer */ if (likely(!skd_bio)) skreq->req = NULL; else skreq->bio = NULL; /* * Reclaim the skd_request_context */ skreq->state = SKD_REQ_STATE_IDLE; skreq->id += SKD_ID_INCR; skreq->next = skdev->skreq_free_list; skdev->skreq_free_list = skreq; } #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA static void skd_do_inq_page_00(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr, uint8_t *cdb, uint8_t *buf) { uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size; /* Caller requested "supported pages". The driver needs to insert * its page. */ pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n", skdev->name, __func__, __LINE__); /* If the device rejected the request because the CDB was * improperly formed, then just leave. */ if (skcomp->status == SAM_STAT_CHECK_CONDITION && skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24) return; /* Get the amount of space the caller allocated */ max_bytes = (cdb[3] << 8) | cdb[4]; /* Get the number of pages actually returned by the device */ drive_pages = (buf[2] << 8) | buf[3]; drive_bytes = drive_pages + 4; new_size = drive_pages + 1; /* Supported pages must be in numerical order, so find where * the driver page needs to be inserted into the list of * pages returned by the device. */ for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) { if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE) return; /* Device using this page code. abort */ else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE) break; } if (insert_pt < max_bytes) { uint16_t u; /* Shift everything up one byte to make room. */ for (u = new_size + 3; u > insert_pt; u--) buf[u] = buf[u - 1]; buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE; /* SCSI byte order increment of num_returned_bytes by 1 */ skcomp->num_returned_bytes = be32_to_cpu(skcomp->num_returned_bytes) + 1; skcomp->num_returned_bytes = be32_to_cpu(skcomp->num_returned_bytes); } /* update page length field to reflect the driver's page too */ buf[2] = (uint8_t)((new_size >> 8) & 0xFF); buf[3] = (uint8_t)((new_size >> 0) & 0xFF); } static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width) { int pcie_reg; u16 pci_bus_speed; u8 pci_lanes; pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (pcie_reg) { u16 linksta; pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta); pci_bus_speed = linksta & 0xF; pci_lanes = (linksta & 0x3F0) >> 4; } else { *speed = STEC_LINK_UNKNOWN; *width = 0xFF; return; } switch (pci_bus_speed) { case 1: *speed = STEC_LINK_2_5GTS; break; case 2: *speed = STEC_LINK_5GTS; break; case 3: *speed = STEC_LINK_8GTS; break; default: *speed = STEC_LINK_UNKNOWN; break; } if (pci_lanes <= 0x20) *width = pci_lanes; else *width = 0xFF; } static void skd_do_inq_page_da(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr, uint8_t *cdb, uint8_t *buf) { unsigned max_bytes; struct driver_inquiry_data inq; u16 val; pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n", skdev->name, __func__, __LINE__); memset(&inq, 0, sizeof(inq)); inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE; if (skdev->pdev && skdev->pdev->bus) { skd_get_link_info(skdev->pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes); inq.pcie_bus_number = cpu_to_be16(skdev->pdev->bus->number); inq.pcie_device_number = PCI_SLOT(skdev->pdev->devfn); inq.pcie_function_number = PCI_FUNC(skdev->pdev->devfn); pci_read_config_word(skdev->pdev, PCI_VENDOR_ID, &val); inq.pcie_vendor_id = cpu_to_be16(val); pci_read_config_word(skdev->pdev, PCI_DEVICE_ID, &val); inq.pcie_device_id = cpu_to_be16(val); pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_VENDOR_ID, &val); inq.pcie_subsystem_vendor_id = cpu_to_be16(val); pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_ID, &val); inq.pcie_subsystem_device_id = cpu_to_be16(val); } else { inq.pcie_bus_number = 0xFFFF; inq.pcie_device_number = 0xFF; inq.pcie_function_number = 0xFF; inq.pcie_link_speed = 0xFF; inq.pcie_link_lanes = 0xFF; inq.pcie_vendor_id = 0xFFFF; inq.pcie_device_id = 0xFFFF; inq.pcie_subsystem_vendor_id = 0xFFFF; inq.pcie_subsystem_device_id = 0xFFFF; } /* Driver version, fixed lenth, padded with spaces on the right */ inq.driver_version_length = sizeof(inq.driver_version); memset(&inq.driver_version, ' ', sizeof(inq.driver_version)); memcpy(inq.driver_version, DRV_VER_COMPL, min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL))); inq.page_length = cpu_to_be16((sizeof(inq) - 4)); /* Clear the error set by the device */ skcomp->status = SAM_STAT_GOOD; memset((void *)skerr, 0, sizeof(*skerr)); /* copy response into output buffer */ max_bytes = (cdb[3] << 8) | cdb[4]; memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq))); skcomp->num_returned_bytes = be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq))); } static void skd_do_driver_inq(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr, uint8_t *cdb, uint8_t *buf) { if (!buf) return; else if (cdb[0] != INQUIRY) return; /* Not an INQUIRY */ else if ((cdb[1] & 1) == 0) return; /* EVPD not set */ else if (cdb[2] == 0) /* Need to add driver's page to supported pages list */ skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf); else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE) /* Caller requested driver's page */ skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf); } static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg) { if (!sg) return NULL; if (!sg_page(sg)) return NULL; return sg_virt(sg); } static void skd_process_scsi_inq(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr, struct skd_special_context *skspcl) { uint8_t *buf; struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf; struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1]; dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg, skspcl->req.sg_data_dir); buf = skd_sg_1st_page_ptr(skspcl->req.sg); if (buf) skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf); } static int skd_isr_completion_posted(struct skd_device *skdev, int limit, int *enqueued) { volatile struct fit_completion_entry_v1 *skcmp = NULL; volatile struct fit_comp_error_info *skerr; u16 req_id; u32 req_slot; struct skd_request_context *skreq; u16 cmp_cntxt = 0; u8 cmp_status = 0; u8 cmp_cycle = 0; u32 cmp_bytes = 0; int rc = 0; int processed = 0; int ret; for (;; ) { SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY); skcmp = &skdev->skcomp_table[skdev->skcomp_ix]; cmp_cycle = skcmp->cycle; cmp_cntxt = skcmp->tag; cmp_status = skcmp->status; cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes); skerr = &skdev->skerr_table[skdev->skcomp_ix]; pr_debug("%s:%s:%d " "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d " "busy=%d rbytes=0x%x proto=%d\n", skdev->name, __func__, __LINE__, skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status, skdev->in_flight, cmp_bytes, skdev->proto_ver); if (cmp_cycle != skdev->skcomp_cycle) { pr_debug("%s:%s:%d end of completions\n", skdev->name, __func__, __LINE__); break; } /* * Update the completion queue head index and possibly * the completion cycle count. 8-bit wrap-around. */ skdev->skcomp_ix++; if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) { skdev->skcomp_ix = 0; skdev->skcomp_cycle++; } /* * The command context is a unique 32-bit ID. The low order * bits help locate the request. The request is usually a * r/w request (see skd_start() above) or a special request. */ req_id = cmp_cntxt; req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK; /* Is this other than a r/w request? */ if (req_slot >= skdev->num_req_context) { /* * This is not a completion for a r/w request. */ skd_complete_other(skdev, skcmp, skerr); continue; } skreq = &skdev->skreq_table[req_slot]; /* * Make sure the request ID for the slot matches. */ if (skreq->id != req_id) { pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n", skdev->name, __func__, __LINE__, req_id, skreq->id); { u16 new_id = cmp_cntxt; pr_err("(%s): Completion mismatch " "comp_id=0x%04x skreq=0x%04x new=0x%04x\n", skd_name(skdev), req_id, skreq->id, new_id); continue; } } SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY); if (skreq->state == SKD_REQ_STATE_ABORTED) { pr_debug("%s:%s:%d reclaim req %p id=%04x\n", skdev->name, __func__, __LINE__, skreq, skreq->id); /* a previously timed out command can * now be cleaned up */ skd_release_skreq(skdev, skreq); continue; } skreq->completion = *skcmp; if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) { skreq->err_info = *skerr; skd_log_check_status(skdev, cmp_status, skerr->key, skerr->code, skerr->qual, skerr->fruc); } /* Release DMA resources for the request. */ if (skreq->n_sg > 0) skd_postop_sg_list(skdev, skreq); if (((!skd_bio) && !skreq->req) || ((skd_bio) && !skreq->bio)) { pr_debug("%s:%s:%d NULL backptr skdreq %p, " "req=0x%x req_id=0x%x\n", skdev->name, __func__, __LINE__, skreq, skreq->id, req_id); } else { /* * Capture the outcome and post it back to the * native request. */ if (likely(cmp_status == SAM_STAT_GOOD)) { if (unlikely(skreq->flush_cmd)) { if (skd_bio) { /* if empty size bio, we are all done */ if (bio_sectors(skreq->bio) == 0) { skd_end_request(skdev, skreq, 0); } else { ret = skd_flush_cmd_enqueue(skdev, (void *)skreq->bio); if (ret != 0) { pr_err("Failed to enqueue flush bio with Data. Err=%d.\n", ret); skd_end_request(skdev, skreq, ret); } else { ((*enqueued)++); } } } else { skd_end_request(skdev, skreq, 0); } } else { skd_end_request(skdev, skreq, 0); } } else { skd_resolve_req_exception(skdev, skreq); } } /* * Release the skreq, its FIT msg (if one), timeout slot, * and queue depth. */ skd_release_skreq(skdev, skreq); /* skd_isr_comp_limit equal zero means no limit */ if (limit) { if (++processed >= limit) { rc = 1; break; } } } if ((skdev->state == SKD_DRVR_STATE_PAUSING) && (skdev->in_flight) == 0) { skdev->state = SKD_DRVR_STATE_PAUSED; wake_up_interruptible(&skdev->waitq); } return rc; } static void skd_complete_other(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr) { u32 req_id = 0; u32 req_table; u32 req_slot; struct skd_special_context *skspcl; req_id = skcomp->tag; req_table = req_id & SKD_ID_TABLE_MASK; req_slot = req_id & SKD_ID_SLOT_MASK; pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n", skdev->name, __func__, __LINE__, req_table, req_id, req_slot); /* * Based on the request id, determine how to dispatch this completion. * This swich/case is finding the good cases and forwarding the * completion entry. Errors are reported below the switch. */ switch (req_table) { case SKD_ID_RW_REQUEST: /* * The caller, skd_completion_posted_isr() above, * handles r/w requests. The only way we get here * is if the req_slot is out of bounds. */ break; case SKD_ID_SPECIAL_REQUEST: /* * Make sure the req_slot is in bounds and that the id * matches. */ if (req_slot < skdev->n_special) { skspcl = &skdev->skspcl_table[req_slot]; if (skspcl->req.id == req_id && skspcl->req.state == SKD_REQ_STATE_BUSY) { skd_complete_special(skdev, skcomp, skerr, skspcl); return; } } break; case SKD_ID_INTERNAL: if (req_slot == 0) { skspcl = &skdev->internal_skspcl; if (skspcl->req.id == req_id && skspcl->req.state == SKD_REQ_STATE_BUSY) { skd_complete_internal(skdev, skcomp, skerr, skspcl); return; } } break; case SKD_ID_FIT_MSG: /* * These id's should never appear in a completion record. */ break; default: /* * These id's should never appear anywhere; */ break; } /* * If we get here it is a bad or stale id. */ } static void skd_complete_special(struct skd_device *skdev, volatile struct fit_completion_entry_v1 *skcomp, volatile struct fit_comp_error_info *skerr, struct skd_special_context *skspcl) { pr_debug("%s:%s:%d completing special request %p\n", skdev->name, __func__, __LINE__, skspcl); if (skspcl->orphaned) { /* Discard orphaned request */ /* ?: Can this release directly or does it need * to use a worker? */ pr_debug("%s:%s:%d release orphaned %p\n", skdev->name, __func__, __LINE__, skspcl); skd_release_special(skdev, skspcl); return; } skd_process_scsi_inq(skdev, skcomp, skerr, skspcl); skspcl->req.state = SKD_REQ_STATE_COMPLETED; skspcl->req.completion = *skcomp; skspcl->req.err_info = *skerr; skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key, skerr->code, skerr->qual, skerr->fruc); wake_up_interruptible(&skdev->waitq); } /* assume spinlock is already held */ static void skd_release_special(struct skd_device *skdev, struct skd_special_context *skspcl) { int i, was_depleted; for (i = 0; i < skspcl->req.n_sg; i++) { struct page *page = sg_page(&skspcl->req.sg[i]); __free_page(page); } was_depleted = (skdev->skspcl_free_list == NULL); skspcl->req.state = SKD_REQ_STATE_IDLE; skspcl->req.id += SKD_ID_INCR; skspcl->req.next = (struct skd_request_context *)skdev->skspcl_free_list; skdev->skspcl_free_list = (struct skd_special_context *)skspcl; if (was_depleted) { pr_debug("%s:%s:%d skspcl was depleted\n", skdev->name, __func__, __LINE__); /* Free list was depleted. Their might be waiters. */ wake_up_interruptible(&skdev->waitq); } } static void skd_reset_skcomp(struct skd_device *skdev) { u32 nbytes; struct fit_completion_entry_v1 *skcomp; nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY; nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY; memset(skdev->skcomp_table, 0, nbytes); skdev->skcomp_ix = 0; skdev->skcomp_cycle = 1; } /* ***************************************************************************** * INTERRUPTS ***************************************************************************** */ static void skd_completion_worker(struct work_struct *work) { struct skd_device *skdev = container_of(work, struct skd_device, completion_worker); unsigned long flags; int flush_enqueued = 0; spin_lock_irqsave(&skdev->lock, flags); /* * pass in limit=0, which means no limit.. * process everything in compq */ skd_isr_completion_posted(skdev, 0, &flush_enqueued); skd_request_fn(skdev->queue); spin_unlock_irqrestore(&skdev->lock, flags); } static void skd_isr_msg_from_dev(struct skd_device *skdev); irqreturn_t static skd_isr(int irq, void *ptr) { struct skd_device *skdev; u32 intstat; u32 ack; int rc = 0; int deferred = 0; int flush_enqueued = 0; skdev = (struct skd_device *)ptr; spin_lock(&skdev->lock); for (;; ) { intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST); ack = FIT_INT_DEF_MASK; ack &= intstat; pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n", skdev->name, __func__, __LINE__, intstat, ack); /* As long as there is an int pending on device, keep * running loop. When none, get out, but if we've never * done any processing, call completion handler? */ if (ack == 0) { /* No interrupts on device, but run the completion * processor anyway? */ if (rc == 0) if (likely (skdev->state == SKD_DRVR_STATE_ONLINE)) deferred = 1; break; } rc = IRQ_HANDLED; SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST); if (likely((skdev->state != SKD_DRVR_STATE_LOAD) && (skdev->state != SKD_DRVR_STATE_STOPPING))) { if (intstat & FIT_ISH_COMPLETION_POSTED) { /* * If we have already deferred completion * processing, don't bother running it again */ if (deferred == 0) deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit, &flush_enqueued); } if (intstat & FIT_ISH_FW_STATE_CHANGE) { skd_isr_fwstate(skdev); if (skdev->state == SKD_DRVR_STATE_FAULT || skdev->state == SKD_DRVR_STATE_DISAPPEARED) { spin_unlock(&skdev->lock); return rc; } } if (intstat & FIT_ISH_MSG_FROM_DEV) skd_isr_msg_from_dev(skdev); } } if (unlikely(flush_enqueued)) skd_request_fn(skdev->queue); if (deferred) schedule_work(&skdev->completion_worker); else if (!flush_enqueued) skd_request_fn(skdev->queue); spin_unlock(&skdev->lock); return rc; } static void skd_drive_fault(struct skd_device *skdev) { skdev->state = SKD_DRVR_STATE_FAULT; pr_err("(%s): Drive FAULT\n", skd_name(skdev)); } static void skd_drive_disappeared(struct skd_device *skdev) { skdev->state = SKD_DRVR_STATE_DISAPPEARED; pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev)); } static void skd_isr_fwstate(struct skd_device *skdev) { u32 sense; u32 state; u32 mtd; int prev_driver_state = skdev->state; sense = SKD_READL(skdev, FIT_STATUS); state = sense & FIT_SR_DRIVE_STATE_MASK; pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n", skd_name(skdev), skd_drive_state_to_str(skdev->drive_state), skdev->drive_state, skd_drive_state_to_str(state), state); skdev->drive_state = state; switch (skdev->drive_state) { case FIT_SR_DRIVE_INIT: if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) { skd_disable_interrupts(skdev); break; } if (skdev->state == SKD_DRVR_STATE_RESTARTING) skd_recover_requests(skdev, 0); if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) { skdev->timer_countdown = SKD_STARTING_TIMO; skdev->state = SKD_DRVR_STATE_STARTING; skd_soft_reset(skdev); break; } mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_SR_DRIVE_ONLINE: skdev->cur_max_queue_depth = skd_max_queue_depth; if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth) skdev->cur_max_queue_depth = skdev->dev_max_queue_depth; skdev->queue_low_water_mark = skdev->cur_max_queue_depth * 2 / 3 + 1; if (skdev->queue_low_water_mark < 1) skdev->queue_low_water_mark = 1; pr_info( "(%s): Queue depth limit=%d dev=%d lowat=%d\n", skd_name(skdev), skdev->cur_max_queue_depth, skdev->dev_max_queue_depth, skdev->queue_low_water_mark); skd_refresh_device_data(skdev); break; case FIT_SR_DRIVE_BUSY: skdev->state = SKD_DRVR_STATE_BUSY; skdev->timer_countdown = SKD_BUSY_TIMO; skd_quiesce_dev(skdev); break; case FIT_SR_DRIVE_BUSY_SANITIZE: /* set timer for 3 seconds, we'll abort any unfinished * commands after that expires */ skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE; skdev->timer_countdown = SKD_TIMER_SECONDS(3); skd_start_queue(skdev); break; case FIT_SR_DRIVE_BUSY_ERASE: skdev->state = SKD_DRVR_STATE_BUSY_ERASE; skdev->timer_countdown = SKD_BUSY_TIMO; break; case FIT_SR_DRIVE_OFFLINE: skdev->state = SKD_DRVR_STATE_IDLE; break; case FIT_SR_DRIVE_SOFT_RESET: switch (skdev->state) { case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: /* Expected by a caller of skd_soft_reset() */ break; default: skdev->state = SKD_DRVR_STATE_RESTARTING; break; } break; case FIT_SR_DRIVE_FW_BOOTING: pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n", skdev->name, __func__, __LINE__, skdev->name); skdev->state = SKD_DRVR_STATE_WAIT_BOOT; skdev->timer_countdown = SKD_WAIT_BOOT_TIMO; break; case FIT_SR_DRIVE_DEGRADED: case FIT_SR_PCIE_LINK_DOWN: case FIT_SR_DRIVE_NEED_FW_DOWNLOAD: break; case FIT_SR_DRIVE_FAULT: skd_drive_fault(skdev); skd_recover_requests(skdev, 0); skd_start_queue(skdev); break; /* PCIe bus returned all Fs? */ case 0xFF: pr_info("(%s): state=0x%x sense=0x%x\n", skd_name(skdev), state, sense); skd_drive_disappeared(skdev); skd_recover_requests(skdev, 0); skd_start_queue(skdev); break; default: /* * Uknown FW State. Wait for a state we recognize. */ break; } pr_err("(%s): Driver state %s(%d)=>%s(%d)\n", skd_name(skdev), skd_skdev_state_to_str(prev_driver_state), prev_driver_state, skd_skdev_state_to_str(skdev->state), skdev->state); } static void skd_recover_requests(struct skd_device *skdev, int requeue) { int i; for (i = 0; i < skdev->num_req_context; i++) { struct skd_request_context *skreq = &skdev->skreq_table[i]; if (skreq->state == SKD_REQ_STATE_BUSY) { skd_log_skreq(skdev, skreq, "recover"); SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0); if (!skd_bio) SKD_ASSERT(skreq->req != NULL); else SKD_ASSERT(skreq->bio != NULL); /* Release DMA resources for the request. */ if (skreq->n_sg > 0) skd_postop_sg_list(skdev, skreq); if (!skd_bio) { if (requeue && (unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) skd_requeue_request(skdev, skreq); else skd_end_request(skdev, skreq, -EIO); } else skd_end_request(skdev, skreq, -EIO); if (!skd_bio) skreq->req = NULL; else skreq->bio = NULL; skreq->state = SKD_REQ_STATE_IDLE; skreq->id += SKD_ID_INCR; } if (i > 0) skreq[-1].next = skreq; skreq->next = NULL; } skdev->skreq_free_list = skdev->skreq_table; for (i = 0; i < skdev->num_fitmsg_context; i++) { struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i]; if (skmsg->state == SKD_MSG_STATE_BUSY) { skd_log_skmsg(skdev, skmsg, "salvaged"); SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0); skmsg->state = SKD_MSG_STATE_IDLE; skmsg->id += SKD_ID_INCR; } if (i > 0) skmsg[-1].next = skmsg; skmsg->next = NULL; } skdev->skmsg_free_list = skdev->skmsg_table; for (i = 0; i < skdev->n_special; i++) { struct skd_special_context *skspcl = &skdev->skspcl_table[i]; /* If orphaned, reclaim it because it has already been reported * to the process as an error (it was just waiting for * a completion that didn't come, and now it will never come) * If busy, change to a state that will cause it to error * out in the wait routine and let it do the normal * reporting and reclaiming */ if (skspcl->req.state == SKD_REQ_STATE_BUSY) { if (skspcl->orphaned) { pr_debug("%s:%s:%d orphaned %p\n", skdev->name, __func__, __LINE__, skspcl); skd_release_special(skdev, skspcl); } else { pr_debug("%s:%s:%d not orphaned %p\n", skdev->name, __func__, __LINE__, skspcl); skspcl->req.state = SKD_REQ_STATE_ABORTED; } } } skdev->skspcl_free_list = skdev->skspcl_table; for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++) skdev->timeout_slot[i] = 0; skdev->in_flight = 0; } static void skd_isr_msg_from_dev(struct skd_device *skdev) { u32 mfd; u32 mtd; u32 data; mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE); pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n", skdev->name, __func__, __LINE__, mfd, skdev->last_mtd); /* ignore any mtd that is an ack for something we didn't send */ if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd)) return; switch (FIT_MXD_TYPE(mfd)) { case FIT_MTD_FITFW_INIT: skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd); if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) { pr_err("(%s): protocol mismatch\n", skdev->name); pr_err("(%s): got=%d support=%d\n", skdev->name, skdev->proto_ver, FIT_PROTOCOL_VERSION_1); pr_err("(%s): please upgrade driver\n", skdev->name); skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH; skd_soft_reset(skdev); break; } mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_GET_CMDQ_DEPTH: skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd); mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0, SKD_N_COMPLETION_ENTRY); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_SET_COMPQ_DEPTH: SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG); mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_SET_COMPQ_ADDR: skd_reset_skcomp(skdev); mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_CMD_LOG_HOST_ID: skdev->connect_time_stamp = get_seconds(); data = skdev->connect_time_stamp & 0xFFFF; mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_CMD_LOG_TIME_STAMP_LO: skdev->drive_jiffies = FIT_MXD_DATA(mfd); data = (skdev->connect_time_stamp >> 16) & 0xFFFF; mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_CMD_LOG_TIME_STAMP_HI: skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16); mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; pr_err("(%s): Time sync driver=0x%x device=0x%x\n", skd_name(skdev), skdev->connect_time_stamp, skdev->drive_jiffies); break; case FIT_MTD_ARM_QUEUE: skdev->last_mtd = 0; /* * State should be, or soon will be, FIT_SR_DRIVE_ONLINE. */ break; default: break; } } static void skd_disable_interrupts(struct skd_device *skdev) { u32 sense; sense = SKD_READL(skdev, FIT_CONTROL); sense &= ~FIT_CR_ENABLE_INTERRUPTS; SKD_WRITEL(skdev, sense, FIT_CONTROL); pr_debug("%s:%s:%d sense 0x%x\n", skdev->name, __func__, __LINE__, sense); /* Note that the 1s is written. A 1-bit means * disable, a 0 means enable. */ SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST); } static void skd_enable_interrupts(struct skd_device *skdev) { u32 val; /* unmask interrupts first */ val = FIT_ISH_FW_STATE_CHANGE + FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV; /* Note that the compliment of mask is written. A 1-bit means * disable, a 0 means enable. */ SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST); pr_debug("%s:%s:%d interrupt mask=0x%x\n", skdev->name, __func__, __LINE__, ~val); val = SKD_READL(skdev, FIT_CONTROL); val |= FIT_CR_ENABLE_INTERRUPTS; pr_debug("%s:%s:%d control=0x%x\n", skdev->name, __func__, __LINE__, val); SKD_WRITEL(skdev, val, FIT_CONTROL); } /* ***************************************************************************** * START, STOP, RESTART, QUIESCE, UNQUIESCE ***************************************************************************** */ static void skd_soft_reset(struct skd_device *skdev) { u32 val; val = SKD_READL(skdev, FIT_CONTROL); val |= (FIT_CR_SOFT_RESET); pr_debug("%s:%s:%d control=0x%x\n", skdev->name, __func__, __LINE__, val); SKD_WRITEL(skdev, val, FIT_CONTROL); } static void skd_start_device(struct skd_device *skdev) { unsigned long flags; u32 sense; u32 state; spin_lock_irqsave(&skdev->lock, flags); /* ack all ghost interrupts */ SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST); sense = SKD_READL(skdev, FIT_STATUS); pr_debug("%s:%s:%d initial status=0x%x\n", skdev->name, __func__, __LINE__, sense); state = sense & FIT_SR_DRIVE_STATE_MASK; skdev->drive_state = state; skdev->last_mtd = 0; skdev->state = SKD_DRVR_STATE_STARTING; skdev->timer_countdown = SKD_STARTING_TIMO; skd_enable_interrupts(skdev); switch (skdev->drive_state) { case FIT_SR_DRIVE_OFFLINE: pr_err("(%s): Drive offline...\n", skd_name(skdev)); break; case FIT_SR_DRIVE_FW_BOOTING: pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n", skdev->name, __func__, __LINE__, skdev->name); skdev->state = SKD_DRVR_STATE_WAIT_BOOT; skdev->timer_countdown = SKD_WAIT_BOOT_TIMO; break; case FIT_SR_DRIVE_BUSY_SANITIZE: pr_info("(%s): Start: BUSY_SANITIZE\n", skd_name(skdev)); skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE; skdev->timer_countdown = SKD_STARTED_BUSY_TIMO; break; case FIT_SR_DRIVE_BUSY_ERASE: pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev)); skdev->state = SKD_DRVR_STATE_BUSY_ERASE; skdev->timer_countdown = SKD_STARTED_BUSY_TIMO; break; case FIT_SR_DRIVE_INIT: case FIT_SR_DRIVE_ONLINE: skd_soft_reset(skdev); break; case FIT_SR_DRIVE_BUSY: pr_err("(%s): Drive Busy...\n", skd_name(skdev)); skdev->state = SKD_DRVR_STATE_BUSY; skdev->timer_countdown = SKD_STARTED_BUSY_TIMO; break; case FIT_SR_DRIVE_SOFT_RESET: pr_err("(%s) drive soft reset in prog\n", skd_name(skdev)); break; case FIT_SR_DRIVE_FAULT: /* Fault state is bad...soft reset won't do it... * Hard reset, maybe, but does it work on device? * For now, just fault so the system doesn't hang. */ skd_drive_fault(skdev); /*start the queue so we can respond with error to requests */ pr_debug("%s:%s:%d starting %s queue\n", skdev->name, __func__, __LINE__, skdev->name); skd_start_queue(skdev); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; case 0xFF: /* Most likely the device isn't there or isn't responding * to the BAR1 addresses. */ skd_drive_disappeared(skdev); /*start the queue so we can respond with error to requests */ pr_debug("%s:%s:%d starting %s queue to error-out reqs\n", skdev->name, __func__, __LINE__, skdev->name); skd_start_queue(skdev); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; default: pr_err("(%s) Start: unknown state %x\n", skd_name(skdev), skdev->drive_state); break; } state = SKD_READL(skdev, FIT_CONTROL); pr_debug("%s:%s:%d FIT Control Status=0x%x\n", skdev->name, __func__, __LINE__, state); state = SKD_READL(skdev, FIT_INT_STATUS_HOST); pr_debug("%s:%s:%d Intr Status=0x%x\n", skdev->name, __func__, __LINE__, state); state = SKD_READL(skdev, FIT_INT_MASK_HOST); pr_debug("%s:%s:%d Intr Mask=0x%x\n", skdev->name, __func__, __LINE__, state); state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE); pr_debug("%s:%s:%d Msg from Dev=0x%x\n", skdev->name, __func__, __LINE__, state); state = SKD_READL(skdev, FIT_HW_VERSION); pr_debug("%s:%s:%d HW version=0x%x\n", skdev->name, __func__, __LINE__, state); spin_unlock_irqrestore(&skdev->lock, flags); } static void skd_stop_device(struct skd_device *skdev) { unsigned long flags; struct skd_special_context *skspcl = &skdev->internal_skspcl; u32 dev_state; int i; spin_lock_irqsave(&skdev->lock, flags); if (skdev->state != SKD_DRVR_STATE_ONLINE) { pr_err("(%s): skd_stop_device not online no sync\n", skd_name(skdev)); goto stop_out; } if (skspcl->req.state != SKD_REQ_STATE_IDLE) { pr_err("(%s): skd_stop_device no special\n", skd_name(skdev)); goto stop_out; } skdev->state = SKD_DRVR_STATE_SYNCING; skdev->sync_done = 0; skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE); spin_unlock_irqrestore(&skdev->lock, flags); wait_event_interruptible_timeout(skdev->waitq, (skdev->sync_done), (10 * HZ)); spin_lock_irqsave(&skdev->lock, flags); switch (skdev->sync_done) { case 0: pr_err("(%s): skd_stop_device no sync\n", skd_name(skdev)); break; case 1: pr_err("(%s): skd_stop_device sync done\n", skd_name(skdev)); break; default: pr_err("(%s): skd_stop_device sync error\n", skd_name(skdev)); } stop_out: skdev->state = SKD_DRVR_STATE_STOPPING; spin_unlock_irqrestore(&skdev->lock, flags); skd_kill_timer(skdev); spin_lock_irqsave(&skdev->lock, flags); skd_disable_interrupts(skdev); /* ensure all ints on device are cleared */ /* soft reset the device to unload with a clean slate */ SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST); SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL); spin_unlock_irqrestore(&skdev->lock, flags); /* poll every 100ms, 1 second timeout */ for (i = 0; i < 10; i++) { dev_state = SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK; if (dev_state == FIT_SR_DRIVE_INIT) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(100)); } if (dev_state != FIT_SR_DRIVE_INIT) pr_err("(%s): skd_stop_device state error 0x%02x\n", skd_name(skdev), dev_state); } /* assume spinlock is held */ static void skd_restart_device(struct skd_device *skdev) { u32 state; /* ack all ghost interrupts */ SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST); state = SKD_READL(skdev, FIT_STATUS); pr_debug("%s:%s:%d drive status=0x%x\n", skdev->name, __func__, __LINE__, state); state &= FIT_SR_DRIVE_STATE_MASK; skdev->drive_state = state; skdev->last_mtd = 0; skdev->state = SKD_DRVR_STATE_RESTARTING; skdev->timer_countdown = SKD_RESTARTING_TIMO; skd_soft_reset(skdev); } /* assume spinlock is held */ static int skd_quiesce_dev(struct skd_device *skdev) { int rc = 0; switch (skdev->state) { case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: pr_debug("%s:%s:%d stopping %s queue\n", skdev->name, __func__, __LINE__, skdev->name); skd_stop_queue(skdev); break; case SKD_DRVR_STATE_ONLINE: case SKD_DRVR_STATE_STOPPING: case SKD_DRVR_STATE_SYNCING: case SKD_DRVR_STATE_PAUSING: case SKD_DRVR_STATE_PAUSED: case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: case SKD_DRVR_STATE_RESUMING: default: rc = -EINVAL; pr_debug("%s:%s:%d state [%d] not implemented\n", skdev->name, __func__, __LINE__, skdev->state); } return rc; } /* assume spinlock is held */ static int skd_unquiesce_dev(struct skd_device *skdev) { int prev_driver_state = skdev->state; skd_log_skdev(skdev, "unquiesce"); if (skdev->state == SKD_DRVR_STATE_ONLINE) { pr_debug("%s:%s:%d **** device already ONLINE\n", skdev->name, __func__, __LINE__); return 0; } if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) { /* * If there has been an state change to other than * ONLINE, we will rely on controller state change * to come back online and restart the queue. * The BUSY state means that driver is ready to * continue normal processing but waiting for controller * to become available. */ skdev->state = SKD_DRVR_STATE_BUSY; pr_debug("%s:%s:%d drive BUSY state\n", skdev->name, __func__, __LINE__); return 0; } /* * Drive has just come online, driver is either in startup, * paused performing a task, or bust waiting for hardware. */ switch (skdev->state) { case SKD_DRVR_STATE_PAUSED: case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: case SKD_DRVR_STATE_BUSY_ERASE: case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: case SKD_DRVR_STATE_FAULT: case SKD_DRVR_STATE_IDLE: case SKD_DRVR_STATE_LOAD: skdev->state = SKD_DRVR_STATE_ONLINE; pr_err("(%s): Driver state %s(%d)=>%s(%d)\n", skd_name(skdev), skd_skdev_state_to_str(prev_driver_state), prev_driver_state, skd_skdev_state_to_str(skdev->state), skdev->state); pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n", skdev->name, __func__, __LINE__); pr_debug("%s:%s:%d starting %s queue\n", skdev->name, __func__, __LINE__, skdev->name); pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev)); skd_start_queue(skdev); skdev->gendisk_on = 1; wake_up_interruptible(&skdev->waitq); break; case SKD_DRVR_STATE_DISAPPEARED: default: pr_debug("%s:%s:%d **** driver state %d, not implemented \n", skdev->name, __func__, __LINE__, skdev->state); return -EBUSY; } return 0; } /* ***************************************************************************** * PCIe MSI/MSI-X INTERRUPT HANDLERS ***************************************************************************** */ static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); pr_debug("%s:%s:%d MSIX = 0x%x\n", skdev->name, __func__, __LINE__, SKD_READL(skdev, FIT_INT_STATUS_HOST)); pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev), irq, SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_statec_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); pr_debug("%s:%s:%d MSIX = 0x%x\n", skdev->name, __func__, __LINE__, SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST); skd_isr_fwstate(skdev); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_comp_q(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; int flush_enqueued = 0; int deferred; spin_lock_irqsave(&skdev->lock, flags); pr_debug("%s:%s:%d MSIX = 0x%x\n", skdev->name, __func__, __LINE__, SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST); deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit, &flush_enqueued); if (flush_enqueued) skd_request_fn(skdev->queue); if (deferred) schedule_work(&skdev->completion_worker); else if (!flush_enqueued) skd_request_fn(skdev->queue); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_msg_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); pr_debug("%s:%s:%d MSIX = 0x%x\n", skdev->name, __func__, __LINE__, SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST); skd_isr_msg_from_dev(skdev); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); pr_debug("%s:%s:%d MSIX = 0x%x\n", skdev->name, __func__, __LINE__, SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } /* ***************************************************************************** * PCIe MSI/MSI-X SETUP ***************************************************************************** */ struct skd_msix_entry { int have_irq; u32 vector; u32 entry; struct skd_device *rsp; char isr_name[30]; }; struct skd_init_msix_entry { const char *name; irq_handler_t handler; }; #define SKD_MAX_MSIX_COUNT 13 #define SKD_MIN_MSIX_COUNT 7 #define SKD_BASE_MSIX_IRQ 4 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = { { "(DMA 0)", skd_reserved_isr }, { "(DMA 1)", skd_reserved_isr }, { "(DMA 2)", skd_reserved_isr }, { "(DMA 3)", skd_reserved_isr }, { "(State Change)", skd_statec_isr }, { "(COMPL_Q)", skd_comp_q }, { "(MSG)", skd_msg_isr }, { "(Reserved)", skd_reserved_isr }, { "(Reserved)", skd_reserved_isr }, { "(Queue Full 0)", skd_qfull_isr }, { "(Queue Full 1)", skd_qfull_isr }, { "(Queue Full 2)", skd_qfull_isr }, { "(Queue Full 3)", skd_qfull_isr }, }; static void skd_release_msix(struct skd_device *skdev) { struct skd_msix_entry *qentry; int i; if (skdev->msix_entries == NULL) return; for (i = 0; i < skdev->msix_count; i++) { qentry = &skdev->msix_entries[i]; skdev = qentry->rsp; if (qentry->have_irq) devm_free_irq(&skdev->pdev->dev, qentry->vector, qentry->rsp); } pci_disable_msix(skdev->pdev); kfree(skdev->msix_entries); skdev->msix_count = 0; skdev->msix_entries = NULL; } static int skd_acquire_msix(struct skd_device *skdev) { int i, rc; struct pci_dev *pdev; struct msix_entry *entries = NULL; struct skd_msix_entry *qentry; pdev = skdev->pdev; skdev->msix_count = SKD_MAX_MSIX_COUNT; entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT, GFP_KERNEL); if (!entries) return -ENOMEM; for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) entries[i].entry = i; rc = pci_enable_msix(pdev, entries, SKD_MAX_MSIX_COUNT); if (rc < 0) goto msix_out; if (rc) { if (rc < SKD_MIN_MSIX_COUNT) { pr_err("(%s): failed to enable MSI-X %d\n", skd_name(skdev), rc); goto msix_out; } pr_debug("%s:%s:%d %s: <%s> allocated %d MSI-X vectors\n", skdev->name, __func__, __LINE__, pci_name(pdev), skdev->name, rc); skdev->msix_count = rc; rc = pci_enable_msix(pdev, entries, skdev->msix_count); if (rc) { pr_err("(%s): failed to enable MSI-X " "support (%d) %d\n", skd_name(skdev), skdev->msix_count, rc); goto msix_out; } } skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) * skdev->msix_count, GFP_KERNEL); if (!skdev->msix_entries) { rc = -ENOMEM; skdev->msix_count = 0; pr_err("(%s): msix table allocation error\n", skd_name(skdev)); goto msix_out; } qentry = skdev->msix_entries; for (i = 0; i < skdev->msix_count; i++) { qentry->vector = entries[i].vector; qentry->entry = entries[i].entry; qentry->rsp = NULL; qentry->have_irq = 0; pr_debug("%s:%s:%d %s: <%s> msix (%d) vec %d, entry %x\n", skdev->name, __func__, __LINE__, pci_name(pdev), skdev->name, i, qentry->vector, qentry->entry); qentry++; } /* Enable MSI-X vectors for the base queue */ for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) { qentry = &skdev->msix_entries[i]; snprintf(qentry->isr_name, sizeof(qentry->isr_name), "%s%d-msix %s", DRV_NAME, skdev->devno, msix_entries[i].name); rc = devm_request_irq(&skdev->pdev->dev, qentry->vector, msix_entries[i].handler, 0, qentry->isr_name, skdev); if (rc) { pr_err("(%s): Unable to register(%d) MSI-X " "handler %d: %s\n", skd_name(skdev), rc, i, qentry->isr_name); goto msix_out; } else { qentry->have_irq = 1; qentry->rsp = skdev; } } pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n", skdev->name, __func__, __LINE__, pci_name(pdev), skdev->name, skdev->msix_count); return 0; msix_out: if (entries) kfree(entries); skd_release_msix(skdev); return rc; } static int skd_acquire_irq(struct skd_device *skdev) { int rc; struct pci_dev *pdev; pdev = skdev->pdev; skdev->msix_count = 0; RETRY_IRQ_TYPE: switch (skdev->irq_type) { case SKD_IRQ_MSIX: rc = skd_acquire_msix(skdev); if (!rc) pr_info("(%s): MSI-X %d irqs enabled\n", skd_name(skdev), skdev->msix_count); else { pr_err( "(%s): failed to enable MSI-X, re-trying with MSI %d\n", skd_name(skdev), rc); skdev->irq_type = SKD_IRQ_MSI; goto RETRY_IRQ_TYPE; } break; case SKD_IRQ_MSI: snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi", DRV_NAME, skdev->devno); rc = pci_enable_msi(pdev); if (!rc) { rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0, skdev->isr_name, skdev); if (rc) { pci_disable_msi(pdev); pr_err( "(%s): failed to allocate the MSI interrupt %d\n", skd_name(skdev), rc); goto RETRY_IRQ_LEGACY; } pr_info("(%s): MSI irq %d enabled\n", skd_name(skdev), pdev->irq); } else { RETRY_IRQ_LEGACY: pr_err( "(%s): failed to enable MSI, re-trying with LEGACY %d\n", skd_name(skdev), rc); skdev->irq_type = SKD_IRQ_LEGACY; goto RETRY_IRQ_TYPE; } break; case SKD_IRQ_LEGACY: snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-legacy", DRV_NAME, skdev->devno); rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, IRQF_SHARED, skdev->isr_name, skdev); if (!rc) pr_info("(%s): LEGACY irq %d enabled\n", skd_name(skdev), pdev->irq); else pr_err("(%s): request LEGACY irq error %d\n", skd_name(skdev), rc); break; default: pr_info("(%s): irq_type %d invalid, re-set to %d\n", skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT); skdev->irq_type = SKD_IRQ_LEGACY; goto RETRY_IRQ_TYPE; } return rc; } static void skd_release_irq(struct skd_device *skdev) { switch (skdev->irq_type) { case SKD_IRQ_MSIX: skd_release_msix(skdev); break; case SKD_IRQ_MSI: devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev); pci_disable_msi(skdev->pdev); break; case SKD_IRQ_LEGACY: devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev); break; default: pr_err("(%s): wrong irq type %d!", skd_name(skdev), skdev->irq_type); break; } } /* ***************************************************************************** * CONSTRUCT ***************************************************************************** */ static int skd_cons_skcomp(struct skd_device *skdev); static int skd_cons_skmsg(struct skd_device *skdev); static int skd_cons_skreq(struct skd_device *skdev); static int skd_cons_skspcl(struct skd_device *skdev); static int skd_cons_sksb(struct skd_device *skdev); static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev, u32 n_sg, dma_addr_t *ret_dma_addr); static int skd_cons_disk(struct skd_device *skdev); #define SKD_N_DEV_TABLE 16u static u32 skd_next_devno; static struct skd_device *skd_construct(struct pci_dev *pdev) { struct skd_device *skdev; int blk_major = skd_major; int rc; skdev = kzalloc(sizeof(*skdev), GFP_KERNEL); if (!skdev) { pr_err(PFX "(%s): memory alloc failure\n", pci_name(pdev)); return NULL; } skdev->state = SKD_DRVR_STATE_LOAD; skdev->pdev = pdev; skdev->devno = skd_next_devno++; skdev->major = blk_major; skdev->irq_type = skd_isr_type; sprintf(skdev->name, DRV_NAME "%d", skdev->devno); skdev->dev_max_queue_depth = 0; skdev->num_req_context = skd_max_queue_depth; skdev->num_fitmsg_context = skd_max_queue_depth; skdev->n_special = skd_max_pass_thru; skdev->cur_max_queue_depth = 1; skdev->queue_low_water_mark = 1; skdev->proto_ver = 99; skdev->sgs_per_request = skd_sgs_per_request; skdev->dbg_level = skd_dbg_level; if (skd_bio) bio_list_init(&skdev->bio_queue); atomic_set(&skdev->device_count, 0); spin_lock_init(&skdev->lock); INIT_WORK(&skdev->completion_worker, skd_completion_worker); INIT_LIST_HEAD(&skdev->flush_list); pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__); rc = skd_cons_skcomp(skdev); if (rc < 0) goto err_out; pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__); rc = skd_cons_skmsg(skdev); if (rc < 0) goto err_out; pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__); rc = skd_cons_skreq(skdev); if (rc < 0) goto err_out; pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__); rc = skd_cons_skspcl(skdev); if (rc < 0) goto err_out; pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__); rc = skd_cons_sksb(skdev); if (rc < 0) goto err_out; pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__); rc = skd_cons_disk(skdev); if (rc < 0) goto err_out; pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__); return skdev; err_out: pr_debug("%s:%s:%d construct failed\n", skdev->name, __func__, __LINE__); skd_destruct(skdev); return NULL; } static int skd_cons_skcomp(struct skd_device *skdev) { int rc = 0; struct fit_completion_entry_v1 *skcomp; u32 nbytes; nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY; nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY; pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n", skdev->name, __func__, __LINE__, nbytes, SKD_N_COMPLETION_ENTRY); skcomp = pci_alloc_consistent(skdev->pdev, nbytes, &skdev->cq_dma_address); if (skcomp == NULL) { rc = -ENOMEM; goto err_out; } memset(skcomp, 0, nbytes); skdev->skcomp_table = skcomp; skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp + sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY); err_out: return rc; } static int skd_cons_skmsg(struct skd_device *skdev) { int rc = 0; u32 i; pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n", skdev->name, __func__, __LINE__, sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context, sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context); skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context) *skdev->num_fitmsg_context, GFP_KERNEL); if (skdev->skmsg_table == NULL) { rc = -ENOMEM; goto err_out; } for (i = 0; i < skdev->num_fitmsg_context; i++) { struct skd_fitmsg_context *skmsg; skmsg = &skdev->skmsg_table[i]; skmsg->id = i + SKD_ID_FIT_MSG; skmsg->state = SKD_MSG_STATE_IDLE; skmsg->msg_buf = pci_alloc_consistent(skdev->pdev, SKD_N_FITMSG_BYTES + 64, &skmsg->mb_dma_address); if (skmsg->msg_buf == NULL) { rc = -ENOMEM; goto err_out; } skmsg->offset = (u32)((u64)skmsg->msg_buf & (~FIT_QCMD_BASE_ADDRESS_MASK)); skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK; skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf & FIT_QCMD_BASE_ADDRESS_MASK); skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK; skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK; memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES); skmsg->next = &skmsg[1]; } /* Free list is in order starting with the 0th entry. */ skdev->skmsg_table[i - 1].next = NULL; skdev->skmsg_free_list = skdev->skmsg_table; err_out: return rc; } static int skd_cons_skreq(struct skd_device *skdev) { int rc = 0; u32 i; pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n", skdev->name, __func__, __LINE__, sizeof(struct skd_request_context), skdev->num_req_context, sizeof(struct skd_request_context) * skdev->num_req_context); skdev->skreq_table = kzalloc(sizeof(struct skd_request_context) * skdev->num_req_context, GFP_KERNEL); if (skdev->skreq_table == NULL) { rc = -ENOMEM; goto err_out; } pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n", skdev->name, __func__, __LINE__, skdev->sgs_per_request, sizeof(struct scatterlist), skdev->sgs_per_request * sizeof(struct scatterlist)); for (i = 0; i < skdev->num_req_context; i++) { struct skd_request_context *skreq; skreq = &skdev->skreq_table[i]; skreq->id = i + SKD_ID_RW_REQUEST; skreq->state = SKD_REQ_STATE_IDLE; skreq->sg = kzalloc(sizeof(struct scatterlist) * skdev->sgs_per_request, GFP_KERNEL); if (skreq->sg == NULL) { rc = -ENOMEM; goto err_out; } sg_init_table(skreq->sg, skdev->sgs_per_request); skreq->sksg_list = skd_cons_sg_list(skdev, skdev->sgs_per_request, &skreq->sksg_dma_address); if (skreq->sksg_list == NULL) { rc = -ENOMEM; goto err_out; } skreq->next = &skreq[1]; } /* Free list is in order starting with the 0th entry. */ skdev->skreq_table[i - 1].next = NULL; skdev->skreq_free_list = skdev->skreq_table; err_out: return rc; } static int skd_cons_skspcl(struct skd_device *skdev) { int rc = 0; u32 i, nbytes; pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n", skdev->name, __func__, __LINE__, sizeof(struct skd_special_context), skdev->n_special, sizeof(struct skd_special_context) * skdev->n_special); skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context) * skdev->n_special, GFP_KERNEL); if (skdev->skspcl_table == NULL) { rc = -ENOMEM; goto err_out; } for (i = 0; i < skdev->n_special; i++) { struct skd_special_context *skspcl; skspcl = &skdev->skspcl_table[i]; skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST; skspcl->req.state = SKD_REQ_STATE_IDLE; skspcl->req.next = &skspcl[1].req; nbytes = SKD_N_SPECIAL_FITMSG_BYTES; skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes, &skspcl->mb_dma_address); if (skspcl->msg_buf == NULL) { rc = -ENOMEM; goto err_out; } memset(skspcl->msg_buf, 0, nbytes); skspcl->req.sg = kzalloc(sizeof(struct scatterlist) * SKD_N_SG_PER_SPECIAL, GFP_KERNEL); if (skspcl->req.sg == NULL) { rc = -ENOMEM; goto err_out; } skspcl->req.sksg_list = skd_cons_sg_list(skdev, SKD_N_SG_PER_SPECIAL, &skspcl->req. sksg_dma_address); if (skspcl->req.sksg_list == NULL) { rc = -ENOMEM; goto err_out; } } /* Free list is in order starting with the 0th entry. */ skdev->skspcl_table[i - 1].req.next = NULL; skdev->skspcl_free_list = skdev->skspcl_table; return rc; err_out: return rc; } static int skd_cons_sksb(struct skd_device *skdev) { int rc = 0; struct skd_special_context *skspcl; u32 nbytes; skspcl = &skdev->internal_skspcl; skspcl->req.id = 0 + SKD_ID_INTERNAL; skspcl->req.state = SKD_REQ_STATE_IDLE; nbytes = SKD_N_INTERNAL_BYTES; skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes, &skspcl->db_dma_address); if (skspcl->data_buf == NULL) { rc = -ENOMEM; goto err_out; } memset(skspcl->data_buf, 0, nbytes); nbytes = SKD_N_SPECIAL_FITMSG_BYTES; skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes, &skspcl->mb_dma_address); if (skspcl->msg_buf == NULL) { rc = -ENOMEM; goto err_out; } memset(skspcl->msg_buf, 0, nbytes); skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1, &skspcl->req.sksg_dma_address); if (skspcl->req.sksg_list == NULL) { rc = -ENOMEM; goto err_out; } if (!skd_format_internal_skspcl(skdev)) { rc = -EINVAL; goto err_out; } err_out: return rc; } static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev, u32 n_sg, dma_addr_t *ret_dma_addr) { struct fit_sg_descriptor *sg_list; u32 nbytes; nbytes = sizeof(*sg_list) * n_sg; sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr); if (sg_list != NULL) { uint64_t dma_address = *ret_dma_addr; u32 i; memset(sg_list, 0, nbytes); for (i = 0; i < n_sg - 1; i++) { uint64_t ndp_off; ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor); sg_list[i].next_desc_ptr = dma_address + ndp_off; } sg_list[i].next_desc_ptr = 0LL; } return sg_list; } static int skd_cons_disk(struct skd_device *skdev) { int rc = 0; struct gendisk *disk; struct request_queue *q; unsigned long flags; disk = alloc_disk(SKD_MINORS_PER_DEVICE); if (!disk) { rc = -ENOMEM; goto err_out; } skdev->disk = disk; sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno); disk->major = skdev->major; disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE; disk->fops = &skd_blockdev_ops; disk->private_data = skdev; if (!skd_bio) { q = blk_init_queue(skd_request_fn, &skdev->lock); } else { q = blk_alloc_queue(GFP_KERNEL); q->queue_flags = QUEUE_FLAG_IO_STAT | QUEUE_FLAG_STACKABLE; } if (!q) { rc = -ENOMEM; goto err_out; } skdev->queue = q; disk->queue = q; q->queuedata = skdev; if (skd_bio) { q->queue_lock = &skdev->lock; blk_queue_make_request(q, skd_make_request); } blk_queue_flush(q, REQ_FLUSH | REQ_FUA); blk_queue_max_segments(q, skdev->sgs_per_request); blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS); /* set sysfs ptimal_io_size to 8K */ blk_queue_io_opt(q, 8192); /* DISCARD Flag initialization. */ q->limits.discard_granularity = 8192; q->limits.discard_alignment = 0; q->limits.max_discard_sectors = UINT_MAX >> 9; q->limits.discard_zeroes_data = 1; queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); spin_lock_irqsave(&skdev->lock, flags); pr_debug("%s:%s:%d stopping %s queue\n", skdev->name, __func__, __LINE__, skdev->name); skd_stop_queue(skdev); spin_unlock_irqrestore(&skdev->lock, flags); err_out: return rc; } /* ***************************************************************************** * DESTRUCT (FREE) ***************************************************************************** */ static void skd_free_skcomp(struct skd_device *skdev); static void skd_free_skmsg(struct skd_device *skdev); static void skd_free_skreq(struct skd_device *skdev); static void skd_free_skspcl(struct skd_device *skdev); static void skd_free_sksb(struct skd_device *skdev); static void skd_free_sg_list(struct skd_device *skdev, struct fit_sg_descriptor *sg_list, u32 n_sg, dma_addr_t dma_addr); static void skd_free_disk(struct skd_device *skdev); static void skd_destruct(struct skd_device *skdev) { if (skdev == NULL) return; pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__); skd_free_disk(skdev); pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__); skd_free_sksb(skdev); pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__); skd_free_skspcl(skdev); pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__); skd_free_skreq(skdev); pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__); skd_free_skmsg(skdev); pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__); skd_free_skcomp(skdev); pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__); kfree(skdev); } static void skd_free_skcomp(struct skd_device *skdev) { if (skdev->skcomp_table != NULL) { u32 nbytes; nbytes = sizeof(skdev->skcomp_table[0]) * SKD_N_COMPLETION_ENTRY; pci_free_consistent(skdev->pdev, nbytes, skdev->skcomp_table, skdev->cq_dma_address); } skdev->skcomp_table = NULL; skdev->cq_dma_address = 0; } static void skd_free_skmsg(struct skd_device *skdev) { u32 i; if (skdev->skmsg_table == NULL) return; for (i = 0; i < skdev->num_fitmsg_context; i++) { struct skd_fitmsg_context *skmsg; skmsg = &skdev->skmsg_table[i]; if (skmsg->msg_buf != NULL) { skmsg->msg_buf += skmsg->offset; skmsg->mb_dma_address += skmsg->offset; pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES, skmsg->msg_buf, skmsg->mb_dma_address); } skmsg->msg_buf = NULL; skmsg->mb_dma_address = 0; } kfree(skdev->skmsg_table); skdev->skmsg_table = NULL; } static void skd_free_skreq(struct skd_device *skdev) { u32 i; if (skdev->skreq_table == NULL) return; for (i = 0; i < skdev->num_req_context; i++) { struct skd_request_context *skreq; skreq = &skdev->skreq_table[i]; skd_free_sg_list(skdev, skreq->sksg_list, skdev->sgs_per_request, skreq->sksg_dma_address); skreq->sksg_list = NULL; skreq->sksg_dma_address = 0; kfree(skreq->sg); } kfree(skdev->skreq_table); skdev->skreq_table = NULL; } static void skd_free_skspcl(struct skd_device *skdev) { u32 i; u32 nbytes; if (skdev->skspcl_table == NULL) return; for (i = 0; i < skdev->n_special; i++) { struct skd_special_context *skspcl; skspcl = &skdev->skspcl_table[i]; if (skspcl->msg_buf != NULL) { nbytes = SKD_N_SPECIAL_FITMSG_BYTES; pci_free_consistent(skdev->pdev, nbytes, skspcl->msg_buf, skspcl->mb_dma_address); } skspcl->msg_buf = NULL; skspcl->mb_dma_address = 0; skd_free_sg_list(skdev, skspcl->req.sksg_list, SKD_N_SG_PER_SPECIAL, skspcl->req.sksg_dma_address); skspcl->req.sksg_list = NULL; skspcl->req.sksg_dma_address = 0; kfree(skspcl->req.sg); } kfree(skdev->skspcl_table); skdev->skspcl_table = NULL; } static void skd_free_sksb(struct skd_device *skdev) { struct skd_special_context *skspcl; u32 nbytes; skspcl = &skdev->internal_skspcl; if (skspcl->data_buf != NULL) { nbytes = SKD_N_INTERNAL_BYTES; pci_free_consistent(skdev->pdev, nbytes, skspcl->data_buf, skspcl->db_dma_address); } skspcl->data_buf = NULL; skspcl->db_dma_address = 0; if (skspcl->msg_buf != NULL) { nbytes = SKD_N_SPECIAL_FITMSG_BYTES; pci_free_consistent(skdev->pdev, nbytes, skspcl->msg_buf, skspcl->mb_dma_address); } skspcl->msg_buf = NULL; skspcl->mb_dma_address = 0; skd_free_sg_list(skdev, skspcl->req.sksg_list, 1, skspcl->req.sksg_dma_address); skspcl->req.sksg_list = NULL; skspcl->req.sksg_dma_address = 0; } static void skd_free_sg_list(struct skd_device *skdev, struct fit_sg_descriptor *sg_list, u32 n_sg, dma_addr_t dma_addr) { if (sg_list != NULL) { u32 nbytes; nbytes = sizeof(*sg_list) * n_sg; pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr); } } static void skd_free_disk(struct skd_device *skdev) { struct gendisk *disk = skdev->disk; if (disk != NULL) { struct request_queue *q = disk->queue; if (disk->flags & GENHD_FL_UP) del_gendisk(disk); if (q) blk_cleanup_queue(q); put_disk(disk); } skdev->disk = NULL; } /* ***************************************************************************** * BLOCK DEVICE (BDEV) GLUE ***************************************************************************** */ static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct skd_device *skdev; u64 capacity; skdev = bdev->bd_disk->private_data; pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n", skdev->name, __func__, __LINE__, bdev->bd_disk->disk_name, current->comm); if (skdev->read_cap_is_valid) { capacity = get_capacity(skdev->disk); geo->heads = 64; geo->sectors = 255; geo->cylinders = (capacity) / (255 * 64); return 0; } return -EIO; } static int skd_bdev_attach(struct skd_device *skdev) { pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__); add_disk(skdev->disk); return 0; } static const struct block_device_operations skd_blockdev_ops = { .owner = THIS_MODULE, .ioctl = skd_bdev_ioctl, .getgeo = skd_bdev_getgeo, }; /* ***************************************************************************** * PCIe DRIVER GLUE ***************************************************************************** */ static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = { { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, { 0 } /* terminate list */ }; MODULE_DEVICE_TABLE(pci, skd_pci_tbl); static char *skd_pci_info(struct skd_device *skdev, char *str) { int pcie_reg; strcpy(str, "PCIe ("); pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP); if (pcie_reg) { char lwstr[6]; uint16_t pcie_lstat, lspeed, lwidth; pcie_reg += 0x12; pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat); lspeed = pcie_lstat & (0xF); lwidth = (pcie_lstat & 0x3F0) >> 4; if (lspeed == 1) strcat(str, "2.5GT/s "); else if (lspeed == 2) strcat(str, "5.0GT/s "); else strcat(str, " "); snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth); strcat(str, lwstr); } return str; } static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int i; int rc = 0; char pci_str[32]; struct skd_device *skdev; pr_info("STEC s1120 Driver(%s) version %s-b%s\n", DRV_NAME, DRV_VERSION, DRV_BUILD_ID); pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n", pci_name(pdev), pdev->vendor, pdev->device); rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out; rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (!rc) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { pr_err("(%s): consistent DMA mask error %d\n", pci_name(pdev), rc); } } else { (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))); if (rc) { pr_err("(%s): DMA mask error %d\n", pci_name(pdev), rc); goto err_out_regions; } } skdev = skd_construct(pdev); if (skdev == NULL) { rc = -ENOMEM; goto err_out_regions; } skd_pci_info(skdev, pci_str); pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str); pci_set_master(pdev); rc = pci_enable_pcie_error_reporting(pdev); if (rc) { pr_err( "(%s): bad enable of PCIe error reporting rc=%d\n", skd_name(skdev), rc); skdev->pcie_error_reporting_is_enabled = 0; } else skdev->pcie_error_reporting_is_enabled = 1; pci_set_drvdata(pdev, skdev); skdev->pdev = pdev; skdev->disk->driverfs_dev = &pdev->dev; for (i = 0; i < SKD_MAX_BARS; i++) { skdev->mem_phys[i] = pci_resource_start(pdev, i); skdev->mem_size[i] = (u32)pci_resource_len(pdev, i); skdev->mem_map[i] = ioremap(skdev->mem_phys[i], skdev->mem_size[i]); if (!skdev->mem_map[i]) { pr_err("(%s): Unable to map adapter memory!\n", skd_name(skdev)); rc = -ENODEV; goto err_out_iounmap; } pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n", skdev->name, __func__, __LINE__, skdev->mem_map[i], (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]); } rc = skd_acquire_irq(skdev); if (rc) { pr_err("(%s): interrupt resource error %d\n", skd_name(skdev), rc); goto err_out_iounmap; } rc = skd_start_timer(skdev); if (rc) goto err_out_timer; init_waitqueue_head(&skdev->waitq); skd_start_device(skdev); rc = wait_event_interruptible_timeout(skdev->waitq, (skdev->gendisk_on), (SKD_START_WAIT_SECONDS * HZ)); if (skdev->gendisk_on > 0) { /* device came on-line after reset */ skd_bdev_attach(skdev); rc = 0; } else { /* we timed out, something is wrong with the device, don't add the disk structure */ pr_err( "(%s): error: waiting for s1120 timed out %d!\n", skd_name(skdev), rc); /* in case of no error; we timeout with ENXIO */ if (!rc) rc = -ENXIO; goto err_out_timer; } #ifdef SKD_VMK_POLL_HANDLER if (skdev->irq_type == SKD_IRQ_MSIX) { /* MSIX completion handler is being used for coredump */ vmklnx_scsi_register_poll_handler(skdev->scsi_host, skdev->msix_entries[5].vector, skd_comp_q, skdev); } else { vmklnx_scsi_register_poll_handler(skdev->scsi_host, skdev->pdev->irq, skd_isr, skdev); } #endif /* SKD_VMK_POLL_HANDLER */ return rc; err_out_timer: skd_stop_device(skdev); skd_release_irq(skdev); err_out_iounmap: for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap(skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); skd_destruct(skdev); err_out_regions: pci_release_regions(pdev); err_out: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return rc; } static void skd_pci_remove(struct pci_dev *pdev) { int i; struct skd_device *skdev; skdev = pci_get_drvdata(pdev); if (!skdev) { pr_err("%s: no device data for PCI\n", pci_name(pdev)); return; } skd_stop_device(skdev); skd_release_irq(skdev); for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap((u32 *)skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); skd_destruct(skdev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return; } static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state) { int i; struct skd_device *skdev; skdev = pci_get_drvdata(pdev); if (!skdev) { pr_err("%s: no device data for PCI\n", pci_name(pdev)); return -EIO; } skd_stop_device(skdev); skd_release_irq(skdev); for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap((u32 *)skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); pci_release_regions(pdev); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int skd_pci_resume(struct pci_dev *pdev) { int i; int rc = 0; struct skd_device *skdev; skdev = pci_get_drvdata(pdev); if (!skdev) { pr_err("%s: no device data for PCI\n", pci_name(pdev)); return -1; } pci_set_power_state(pdev, PCI_D0); pci_enable_wake(pdev, PCI_D0, 0); pci_restore_state(pdev); rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out; rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (!rc) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { pr_err("(%s): consistent DMA mask error %d\n", pci_name(pdev), rc); } } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { pr_err("(%s): DMA mask error %d\n", pci_name(pdev), rc); goto err_out_regions; } } pci_set_master(pdev); rc = pci_enable_pcie_error_reporting(pdev); if (rc) { pr_err("(%s): bad enable of PCIe error reporting rc=%d\n", skdev->name, rc); skdev->pcie_error_reporting_is_enabled = 0; } else skdev->pcie_error_reporting_is_enabled = 1; for (i = 0; i < SKD_MAX_BARS; i++) { skdev->mem_phys[i] = pci_resource_start(pdev, i); skdev->mem_size[i] = (u32)pci_resource_len(pdev, i); skdev->mem_map[i] = ioremap(skdev->mem_phys[i], skdev->mem_size[i]); if (!skdev->mem_map[i]) { pr_err("(%s): Unable to map adapter memory!\n", skd_name(skdev)); rc = -ENODEV; goto err_out_iounmap; } pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n", skdev->name, __func__, __LINE__, skdev->mem_map[i], (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]); } rc = skd_acquire_irq(skdev); if (rc) { pr_err("(%s): interrupt resource error %d\n", pci_name(pdev), rc); goto err_out_iounmap; } rc = skd_start_timer(skdev); if (rc) goto err_out_timer; init_waitqueue_head(&skdev->waitq); skd_start_device(skdev); return rc; err_out_timer: skd_stop_device(skdev); skd_release_irq(skdev); err_out_iounmap: for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap(skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); err_out_regions: pci_release_regions(pdev); err_out: pci_disable_device(pdev); return rc; } static void skd_pci_shutdown(struct pci_dev *pdev) { struct skd_device *skdev; pr_err("skd_pci_shutdown called\n"); skdev = pci_get_drvdata(pdev); if (!skdev) { pr_err("%s: no device data for PCI\n", pci_name(pdev)); return; } pr_err("%s: calling stop\n", skd_name(skdev)); skd_stop_device(skdev); } static struct pci_driver skd_driver = { .name = DRV_NAME, .id_table = skd_pci_tbl, .probe = skd_pci_probe, .remove = skd_pci_remove, .suspend = skd_pci_suspend, .resume = skd_pci_resume, .shutdown = skd_pci_shutdown, }; /* ***************************************************************************** * LOGGING SUPPORT ***************************************************************************** */ static const char *skd_name(struct skd_device *skdev) { memset(skdev->id_str, 0, sizeof(skdev->id_str)); if (skdev->inquiry_is_valid) snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]", skdev->name, skdev->inq_serial_num, pci_name(skdev->pdev)); else snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]", skdev->name, pci_name(skdev->pdev)); return skdev->id_str; } const char *skd_drive_state_to_str(int state) { switch (state) { case FIT_SR_DRIVE_OFFLINE: return "OFFLINE"; case FIT_SR_DRIVE_INIT: return "INIT"; case FIT_SR_DRIVE_ONLINE: return "ONLINE"; case FIT_SR_DRIVE_BUSY: return "BUSY"; case FIT_SR_DRIVE_FAULT: return "FAULT"; case FIT_SR_DRIVE_DEGRADED: return "DEGRADED"; case FIT_SR_PCIE_LINK_DOWN: return "INK_DOWN"; case FIT_SR_DRIVE_SOFT_RESET: return "SOFT_RESET"; case FIT_SR_DRIVE_NEED_FW_DOWNLOAD: return "NEED_FW"; case FIT_SR_DRIVE_INIT_FAULT: return "INIT_FAULT"; case FIT_SR_DRIVE_BUSY_SANITIZE: return "BUSY_SANITIZE"; case FIT_SR_DRIVE_BUSY_ERASE: return "BUSY_ERASE"; case FIT_SR_DRIVE_FW_BOOTING: return "FW_BOOTING"; default: return "???"; } } const char *skd_skdev_state_to_str(enum skd_drvr_state state) { switch (state) { case SKD_DRVR_STATE_LOAD: return "LOAD"; case SKD_DRVR_STATE_IDLE: return "IDLE"; case SKD_DRVR_STATE_BUSY: return "BUSY"; case SKD_DRVR_STATE_STARTING: return "STARTING"; case SKD_DRVR_STATE_ONLINE: return "ONLINE"; case SKD_DRVR_STATE_PAUSING: return "PAUSING"; case SKD_DRVR_STATE_PAUSED: return "PAUSED"; case SKD_DRVR_STATE_DRAINING_TIMEOUT: return "DRAINING_TIMEOUT"; case SKD_DRVR_STATE_RESTARTING: return "RESTARTING"; case SKD_DRVR_STATE_RESUMING: return "RESUMING"; case SKD_DRVR_STATE_STOPPING: return "STOPPING"; case SKD_DRVR_STATE_SYNCING: return "SYNCING"; case SKD_DRVR_STATE_FAULT: return "FAULT"; case SKD_DRVR_STATE_DISAPPEARED: return "DISAPPEARED"; case SKD_DRVR_STATE_BUSY_ERASE: return "BUSY_ERASE"; case SKD_DRVR_STATE_BUSY_SANITIZE: return "BUSY_SANITIZE"; case SKD_DRVR_STATE_BUSY_IMMINENT: return "BUSY_IMMINENT"; case SKD_DRVR_STATE_WAIT_BOOT: return "WAIT_BOOT"; default: return "???"; } } const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state) { switch (state) { case SKD_MSG_STATE_IDLE: return "IDLE"; case SKD_MSG_STATE_BUSY: return "BUSY"; default: return "???"; } } const char *skd_skreq_state_to_str(enum skd_req_state state) { switch (state) { case SKD_REQ_STATE_IDLE: return "IDLE"; case SKD_REQ_STATE_SETUP: return "SETUP"; case SKD_REQ_STATE_BUSY: return "BUSY"; case SKD_REQ_STATE_COMPLETED: return "COMPLETED"; case SKD_REQ_STATE_TIMEOUT: return "TIMEOUT"; case SKD_REQ_STATE_ABORTED: return "ABORTED"; default: return "???"; } } static void skd_log_skdev(struct skd_device *skdev, const char *event) { pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n", skdev->name, __func__, __LINE__, skdev->name, skdev, event); pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n", skdev->name, __func__, __LINE__, skd_drive_state_to_str(skdev->drive_state), skdev->drive_state, skd_skdev_state_to_str(skdev->state), skdev->state); pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n", skdev->name, __func__, __LINE__, skdev->in_flight, skdev->cur_max_queue_depth, skdev->dev_max_queue_depth, skdev->queue_low_water_mark); pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n", skdev->name, __func__, __LINE__, skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix); } static void skd_log_skmsg(struct skd_device *skdev, struct skd_fitmsg_context *skmsg, const char *event) { pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n", skdev->name, __func__, __LINE__, skdev->name, skmsg, event); pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n", skdev->name, __func__, __LINE__, skd_skmsg_state_to_str(skmsg->state), skmsg->state, skmsg->id, skmsg->length); } static void skd_log_skreq(struct skd_device *skdev, struct skd_request_context *skreq, const char *event) { pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n", skdev->name, __func__, __LINE__, skdev->name, skreq, event); pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n", skdev->name, __func__, __LINE__, skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id, skreq->fitmsg_id); pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n", skdev->name, __func__, __LINE__, skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg); if (!skd_bio) { if (skreq->req != NULL) { struct request *req = skreq->req; u32 lba = (u32)blk_rq_pos(req); u32 count = blk_rq_sectors(req); pr_debug("%s:%s:%d " "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", skdev->name, __func__, __LINE__, req, lba, lba, count, count, (int)rq_data_dir(req)); } else pr_debug("%s:%s:%d req=NULL\n", skdev->name, __func__, __LINE__); } else { if (skreq->bio != NULL) { struct bio *bio = skreq->bio; u32 lba = (u32)bio->bi_sector; u32 count = bio_sectors(bio); pr_debug("%s:%s:%d " "bio=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", skdev->name, __func__, __LINE__, bio, lba, lba, count, count, (int)bio_data_dir(bio)); } else pr_debug("%s:%s:%d req=NULL\n", skdev->name, __func__, __LINE__); } } /* ***************************************************************************** * MODULE GLUE ***************************************************************************** */ static int __init skd_init(void) { int rc = 0; pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID); switch (skd_isr_type) { case SKD_IRQ_LEGACY: case SKD_IRQ_MSI: case SKD_IRQ_MSIX: break; default: pr_info("skd_isr_type %d invalid, re-set to %d\n", skd_isr_type, SKD_IRQ_DEFAULT); skd_isr_type = SKD_IRQ_DEFAULT; } skd_flush_slab = kmem_cache_create(SKD_FLUSH_JOB, sizeof(struct skd_flush_cmd), 0, 0, NULL); if (!skd_flush_slab) { pr_err("failed to allocated flush slab.\n"); return -ENOMEM; } if (skd_max_queue_depth < 1 || skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) { pr_info( "skd_max_queue_depth %d invalid, re-set to %d\n", skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT); skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT; } if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) { pr_info( "skd_max_req_per_msg %d invalid, re-set to %d\n", skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT); skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT; } if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) { pr_info( "skd_sg_per_request %d invalid, re-set to %d\n", skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT); skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT; } if (skd_dbg_level < 0 || skd_dbg_level > 2) { pr_info("skd_dbg_level %d invalid, re-set to %d\n", skd_dbg_level, 0); skd_dbg_level = 0; } if (skd_isr_comp_limit < 0) { pr_info("skd_isr_comp_limit %d invalid, set to %d\n", skd_isr_comp_limit, 0); skd_isr_comp_limit = 0; } if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) { pr_info("skd_max_pass_thru %d invalid, re-set to %d\n", skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT); skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT; } /* Obtain major device number. */ rc = register_blkdev(0, DRV_NAME); if (rc < 0) return rc; skd_major = rc; return pci_register_driver(&skd_driver); } static void __exit skd_exit(void) { pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID); unregister_blkdev(skd_major, DRV_NAME); pci_unregister_driver(&skd_driver); kmem_cache_destroy(skd_flush_slab); } static int skd_flush_cmd_enqueue(struct skd_device *skdev, void *cmd) { struct skd_flush_cmd *item; item = kmem_cache_zalloc(skd_flush_slab, GFP_ATOMIC); if (!item) { pr_err("skd_flush_cmd_enqueue: Failed to allocated item.\n"); return -ENOMEM; } item->cmd = cmd; list_add_tail(&item->flist, &skdev->flush_list); return 0; } static void * skd_flush_cmd_dequeue(struct skd_device *skdev) { void *cmd; struct skd_flush_cmd *item; item = list_entry(skdev->flush_list.next, struct skd_flush_cmd, flist); list_del_init(&item->flist); cmd = item->cmd; kmem_cache_free(skd_flush_slab, item); return cmd; } module_init(skd_init); module_exit(skd_exit);