// SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/ata/sata_dwc_460ex.c * * Synopsys DesignWare Cores (DWC) SATA host driver * * Author: Mark Miesfeld * * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese * Copyright 2008 DENX Software Engineering * * Based on versions provided by AMCC and Synopsys which are: * Copyright 2006 Applied Micro Circuits Corporation * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED */ #ifdef CONFIG_SATA_DWC_DEBUG #define DEBUG #endif #ifdef CONFIG_SATA_DWC_VDEBUG #define VERBOSE_DEBUG #define DEBUG_NCQ #endif #include #include #include #include #include #include #include #include #include #include #include #include "libata.h" #include #include /* These two are defined in "libata.h" */ #undef DRV_NAME #undef DRV_VERSION #define DRV_NAME "sata-dwc" #define DRV_VERSION "1.3" #define sata_dwc_writel(a, v) writel_relaxed(v, a) #define sata_dwc_readl(a) readl_relaxed(a) #ifndef NO_IRQ #define NO_IRQ 0 #endif #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ enum { SATA_DWC_MAX_PORTS = 1, SATA_DWC_SCR_OFFSET = 0x24, SATA_DWC_REG_OFFSET = 0x64, }; /* DWC SATA Registers */ struct sata_dwc_regs { u32 fptagr; /* 1st party DMA tag */ u32 fpbor; /* 1st party DMA buffer offset */ u32 fptcr; /* 1st party DMA Xfr count */ u32 dmacr; /* DMA Control */ u32 dbtsr; /* DMA Burst Transac size */ u32 intpr; /* Interrupt Pending */ u32 intmr; /* Interrupt Mask */ u32 errmr; /* Error Mask */ u32 llcr; /* Link Layer Control */ u32 phycr; /* PHY Control */ u32 physr; /* PHY Status */ u32 rxbistpd; /* Recvd BIST pattern def register */ u32 rxbistpd1; /* Recvd BIST data dword1 */ u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ u32 txbistpd; /* Trans BIST pattern def register */ u32 txbistpd1; /* Trans BIST data dword1 */ u32 txbistpd2; /* Trans BIST data dword2 */ u32 bistcr; /* BIST Control Register */ u32 bistfctr; /* BIST FIS Count Register */ u32 bistsr; /* BIST Status Register */ u32 bistdecr; /* BIST Dword Error count register */ u32 res[15]; /* Reserved locations */ u32 testr; /* Test Register */ u32 versionr; /* Version Register */ u32 idr; /* ID Register */ u32 unimpl[192]; /* Unimplemented */ u32 dmadr[256]; /* FIFO Locations in DMA Mode */ }; enum { SCR_SCONTROL_DET_ENABLE = 0x00000001, SCR_SSTATUS_DET_PRESENT = 0x00000001, SCR_SERROR_DIAG_X = 0x04000000, /* DWC SATA Register Operations */ SATA_DWC_TXFIFO_DEPTH = 0x01FF, SATA_DWC_RXFIFO_DEPTH = 0x01FF, SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004, SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN), SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN), SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN, SATA_DWC_INTPR_DMAT = 0x00000001, SATA_DWC_INTPR_NEWFP = 0x00000002, SATA_DWC_INTPR_PMABRT = 0x00000004, SATA_DWC_INTPR_ERR = 0x00000008, SATA_DWC_INTPR_NEWBIST = 0x00000010, SATA_DWC_INTPR_IPF = 0x10000000, SATA_DWC_INTMR_DMATM = 0x00000001, SATA_DWC_INTMR_NEWFPM = 0x00000002, SATA_DWC_INTMR_PMABRTM = 0x00000004, SATA_DWC_INTMR_ERRM = 0x00000008, SATA_DWC_INTMR_NEWBISTM = 0x00000010, SATA_DWC_LLCR_SCRAMEN = 0x00000001, SATA_DWC_LLCR_DESCRAMEN = 0x00000002, SATA_DWC_LLCR_RPDEN = 0x00000004, /* This is all error bits, zero's are reserved fields. */ SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03 }; #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F) #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\ SATA_DWC_DMACR_TMOD_TXCHEN) #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\ SATA_DWC_DMACR_TMOD_TXCHEN) #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH) #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\ << 16) struct sata_dwc_device { struct device *dev; /* generic device struct */ struct ata_probe_ent *pe; /* ptr to probe-ent */ struct ata_host *host; struct sata_dwc_regs __iomem *sata_dwc_regs; /* DW SATA specific */ u32 sactive_issued; u32 sactive_queued; struct phy *phy; phys_addr_t dmadr; #ifdef CONFIG_SATA_DWC_OLD_DMA struct dw_dma_chip *dma; #endif }; #define SATA_DWC_QCMD_MAX 32 struct sata_dwc_device_port { struct sata_dwc_device *hsdev; int cmd_issued[SATA_DWC_QCMD_MAX]; int dma_pending[SATA_DWC_QCMD_MAX]; /* DMA info */ struct dma_chan *chan; struct dma_async_tx_descriptor *desc[SATA_DWC_QCMD_MAX]; u32 dma_interrupt_count; }; /* * Commonly used DWC SATA driver macros */ #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)(host)->private_data) #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)(ap)->host->private_data) #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)(ap)->private_data) #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)(qc)->ap->host->private_data) #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)(p)->hsdev) enum { SATA_DWC_CMD_ISSUED_NOT = 0, SATA_DWC_CMD_ISSUED_PEND = 1, SATA_DWC_CMD_ISSUED_EXEC = 2, SATA_DWC_CMD_ISSUED_NODATA = 3, SATA_DWC_DMA_PENDING_NONE = 0, SATA_DWC_DMA_PENDING_TX = 1, SATA_DWC_DMA_PENDING_RX = 2, }; /* * Prototypes */ static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, u32 check_status); static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); static void sata_dwc_port_stop(struct ata_port *ap); static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); #ifdef CONFIG_SATA_DWC_OLD_DMA #include #include static struct dw_dma_slave sata_dwc_dma_dws = { .src_id = 0, .dst_id = 0, .m_master = 1, .p_master = 0, }; static bool sata_dwc_dma_filter(struct dma_chan *chan, void *param) { struct dw_dma_slave *dws = &sata_dwc_dma_dws; if (dws->dma_dev != chan->device->dev) return false; chan->private = dws; return true; } static int sata_dwc_dma_get_channel_old(struct sata_dwc_device_port *hsdevp) { struct sata_dwc_device *hsdev = hsdevp->hsdev; struct dw_dma_slave *dws = &sata_dwc_dma_dws; dma_cap_mask_t mask; dws->dma_dev = hsdev->dev; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* Acquire DMA channel */ hsdevp->chan = dma_request_channel(mask, sata_dwc_dma_filter, hsdevp); if (!hsdevp->chan) { dev_err(hsdev->dev, "%s: dma channel unavailable\n", __func__); return -EAGAIN; } return 0; } static int sata_dwc_dma_init_old(struct platform_device *pdev, struct sata_dwc_device *hsdev) { struct device_node *np = pdev->dev.of_node; struct resource *res; hsdev->dma = devm_kzalloc(&pdev->dev, sizeof(*hsdev->dma), GFP_KERNEL); if (!hsdev->dma) return -ENOMEM; hsdev->dma->dev = &pdev->dev; hsdev->dma->id = pdev->id; /* Get SATA DMA interrupt number */ hsdev->dma->irq = irq_of_parse_and_map(np, 1); if (hsdev->dma->irq == NO_IRQ) { dev_err(&pdev->dev, "no SATA DMA irq\n"); return -ENODEV; } /* Get physical SATA DMA register base address */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); hsdev->dma->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(hsdev->dma->regs)) return PTR_ERR(hsdev->dma->regs); /* Initialize AHB DMAC */ return dw_dma_probe(hsdev->dma); } static void sata_dwc_dma_exit_old(struct sata_dwc_device *hsdev) { if (!hsdev->dma) return; dw_dma_remove(hsdev->dma); } #endif static const char *get_prot_descript(u8 protocol) { switch (protocol) { case ATA_PROT_NODATA: return "ATA no data"; case ATA_PROT_PIO: return "ATA PIO"; case ATA_PROT_DMA: return "ATA DMA"; case ATA_PROT_NCQ: return "ATA NCQ"; case ATA_PROT_NCQ_NODATA: return "ATA NCQ no data"; case ATAPI_PROT_NODATA: return "ATAPI no data"; case ATAPI_PROT_PIO: return "ATAPI PIO"; case ATAPI_PROT_DMA: return "ATAPI DMA"; default: return "unknown"; } } static const char *get_dma_dir_descript(int dma_dir) { switch ((enum dma_data_direction)dma_dir) { case DMA_BIDIRECTIONAL: return "bidirectional"; case DMA_TO_DEVICE: return "to device"; case DMA_FROM_DEVICE: return "from device"; default: return "none"; } } static void sata_dwc_tf_dump(struct ata_port *ap, struct ata_taskfile *tf) { dev_vdbg(ap->dev, "taskfile cmd: 0x%02x protocol: %s flags: 0x%lx device: %x\n", tf->command, get_prot_descript(tf->protocol), tf->flags, tf->device); dev_vdbg(ap->dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); dev_vdbg(ap->dev, "hob_feature: 0x%02x hob_nsect: 0x%x hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } static void dma_dwc_xfer_done(void *hsdev_instance) { unsigned long flags; struct sata_dwc_device *hsdev = hsdev_instance; struct ata_host *host = (struct ata_host *)hsdev->host; struct ata_port *ap; struct sata_dwc_device_port *hsdevp; u8 tag = 0; unsigned int port = 0; spin_lock_irqsave(&host->lock, flags); ap = host->ports[port]; hsdevp = HSDEVP_FROM_AP(ap); tag = ap->link.active_tag; /* * Each DMA command produces 2 interrupts. Only * complete the command after both interrupts have been * seen. (See sata_dwc_isr()) */ hsdevp->dma_interrupt_count++; sata_dwc_clear_dmacr(hsdevp, tag); if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { dev_err(ap->dev, "DMA not pending tag=0x%02x pending=%d\n", tag, hsdevp->dma_pending[tag]); } if ((hsdevp->dma_interrupt_count % 2) == 0) sata_dwc_dma_xfer_complete(ap, 1); spin_unlock_irqrestore(&host->lock, flags); } static struct dma_async_tx_descriptor *dma_dwc_xfer_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); struct dma_slave_config sconf; struct dma_async_tx_descriptor *desc; if (qc->dma_dir == DMA_DEV_TO_MEM) { sconf.src_addr = hsdev->dmadr; sconf.device_fc = false; } else { /* DMA_MEM_TO_DEV */ sconf.dst_addr = hsdev->dmadr; sconf.device_fc = false; } sconf.direction = qc->dma_dir; sconf.src_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */ sconf.dst_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */ sconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; sconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dmaengine_slave_config(hsdevp->chan, &sconf); /* Convert SG list to linked list of items (LLIs) for AHB DMA */ desc = dmaengine_prep_slave_sg(hsdevp->chan, qc->sg, qc->n_elem, qc->dma_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return NULL; desc->callback = dma_dwc_xfer_done; desc->callback_param = hsdev; dev_dbg(hsdev->dev, "%s sg: 0x%p, count: %d addr: %pa\n", __func__, qc->sg, qc->n_elem, &hsdev->dmadr); return desc; } static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) { if (scr > SCR_NOTIFICATION) { dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", __func__, scr); return -EINVAL; } *val = sata_dwc_readl(link->ap->ioaddr.scr_addr + (scr * 4)); dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__, link->ap->print_id, scr, *val); return 0; } static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) { dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__, link->ap->print_id, scr, val); if (scr > SCR_NOTIFICATION) { dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", __func__, scr); return -EINVAL; } sata_dwc_writel(link->ap->ioaddr.scr_addr + (scr * 4), val); return 0; } static void clear_serror(struct ata_port *ap) { u32 val; sata_dwc_scr_read(&ap->link, SCR_ERROR, &val); sata_dwc_scr_write(&ap->link, SCR_ERROR, val); } static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) { sata_dwc_writel(&hsdev->sata_dwc_regs->intpr, sata_dwc_readl(&hsdev->sata_dwc_regs->intpr)); } static u32 qcmd_tag_to_mask(u8 tag) { return 0x00000001 << (tag & 0x1f); } /* See ahci.c */ static void sata_dwc_error_intr(struct ata_port *ap, struct sata_dwc_device *hsdev, uint intpr) { struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); struct ata_eh_info *ehi = &ap->link.eh_info; unsigned int err_mask = 0, action = 0; struct ata_queued_cmd *qc; u32 serror; u8 status, tag; ata_ehi_clear_desc(ehi); sata_dwc_scr_read(&ap->link, SCR_ERROR, &serror); status = ap->ops->sff_check_status(ap); tag = ap->link.active_tag; dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x dma_intp=%d pending=%d issued=%d", __func__, serror, intpr, status, hsdevp->dma_interrupt_count, hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag]); /* Clear error register and interrupt bit */ clear_serror(ap); clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); /* This is the only error happening now. TODO check for exact error */ err_mask |= AC_ERR_HOST_BUS; action |= ATA_EH_RESET; /* Pass this on to EH */ ehi->serror |= serror; ehi->action |= action; qc = ata_qc_from_tag(ap, tag); if (qc) qc->err_mask |= err_mask; else ehi->err_mask |= err_mask; ata_port_abort(ap); } /* * Function : sata_dwc_isr * arguments : irq, void *dev_instance, struct pt_regs *regs * Return value : irqreturn_t - status of IRQ * This Interrupt handler called via port ops registered function. * .irq_handler = sata_dwc_isr */ static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) { struct ata_host *host = (struct ata_host *)dev_instance; struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); struct ata_port *ap; struct ata_queued_cmd *qc; unsigned long flags; u8 status, tag; int handled, num_processed, port = 0; uint intpr, sactive, sactive2, tag_mask; struct sata_dwc_device_port *hsdevp; hsdev->sactive_issued = 0; spin_lock_irqsave(&host->lock, flags); /* Read the interrupt register */ intpr = sata_dwc_readl(&hsdev->sata_dwc_regs->intpr); ap = host->ports[port]; hsdevp = HSDEVP_FROM_AP(ap); dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, ap->link.active_tag); /* Check for error interrupt */ if (intpr & SATA_DWC_INTPR_ERR) { sata_dwc_error_intr(ap, hsdev, intpr); handled = 1; goto DONE; } /* Check for DMA SETUP FIS (FP DMA) interrupt */ if (intpr & SATA_DWC_INTPR_NEWFP) { clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); tag = (u8)(sata_dwc_readl(&hsdev->sata_dwc_regs->fptagr)); dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND) dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); hsdev->sactive_issued |= qcmd_tag_to_mask(tag); qc = ata_qc_from_tag(ap, tag); if (unlikely(!qc)) { dev_err(ap->dev, "failed to get qc"); handled = 1; goto DONE; } /* * Start FP DMA for NCQ command. At this point the tag is the * active tag. It is the tag that matches the command about to * be completed. */ qc->ap->link.active_tag = tag; sata_dwc_bmdma_start_by_tag(qc, tag); handled = 1; goto DONE; } sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive); tag_mask = (hsdev->sactive_issued | sactive) ^ sactive; /* If no sactive issued and tag_mask is zero then this is not NCQ */ if (hsdev->sactive_issued == 0 && tag_mask == 0) { if (ap->link.active_tag == ATA_TAG_POISON) tag = 0; else tag = ap->link.active_tag; qc = ata_qc_from_tag(ap, tag); /* DEV interrupt w/ no active qc? */ if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { dev_err(ap->dev, "%s interrupt with no active qc qc=%p\n", __func__, qc); ap->ops->sff_check_status(ap); handled = 1; goto DONE; } status = ap->ops->sff_check_status(ap); qc->ap->link.active_tag = tag; hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; if (status & ATA_ERR) { dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); sata_dwc_qc_complete(ap, qc, 1); handled = 1; goto DONE; } dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", __func__, get_prot_descript(qc->tf.protocol)); DRVSTILLBUSY: if (ata_is_dma(qc->tf.protocol)) { /* * Each DMA transaction produces 2 interrupts. The DMAC * transfer complete interrupt and the SATA controller * operation done interrupt. The command should be * completed only after both interrupts are seen. */ hsdevp->dma_interrupt_count++; if (hsdevp->dma_pending[tag] == \ SATA_DWC_DMA_PENDING_NONE) { dev_err(ap->dev, "%s: DMA not pending intpr=0x%08x status=0x%08x pending=%d\n", __func__, intpr, status, hsdevp->dma_pending[tag]); } if ((hsdevp->dma_interrupt_count % 2) == 0) sata_dwc_dma_xfer_complete(ap, 1); } else if (ata_is_pio(qc->tf.protocol)) { ata_sff_hsm_move(ap, qc, status, 0); handled = 1; goto DONE; } else { if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) goto DRVSTILLBUSY; } handled = 1; goto DONE; } /* * This is a NCQ command. At this point we need to figure out for which * tags we have gotten a completion interrupt. One interrupt may serve * as completion for more than one operation when commands are queued * (NCQ). We need to process each completed command. */ /* process completed commands */ sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive); tag_mask = (hsdev->sactive_issued | sactive) ^ sactive; if (sactive != 0 || hsdev->sactive_issued > 1 || tag_mask > 1) { dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n", __func__, sactive, hsdev->sactive_issued, tag_mask); } if ((tag_mask | hsdev->sactive_issued) != hsdev->sactive_issued) { dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n", sactive, hsdev->sactive_issued, tag_mask); } /* read just to clear ... not bad if currently still busy */ status = ap->ops->sff_check_status(ap); dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); tag = 0; num_processed = 0; while (tag_mask) { num_processed++; while (!(tag_mask & 0x00000001)) { tag++; tag_mask <<= 1; } tag_mask &= (~0x00000001); qc = ata_qc_from_tag(ap, tag); if (unlikely(!qc)) { dev_err(ap->dev, "failed to get qc"); handled = 1; goto DONE; } /* To be picked up by completion functions */ qc->ap->link.active_tag = tag; hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; /* Let libata/scsi layers handle error */ if (status & ATA_ERR) { dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__, status); sata_dwc_qc_complete(ap, qc, 1); handled = 1; goto DONE; } /* Process completed command */ dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, get_prot_descript(qc->tf.protocol)); if (ata_is_dma(qc->tf.protocol)) { hsdevp->dma_interrupt_count++; if (hsdevp->dma_pending[tag] == \ SATA_DWC_DMA_PENDING_NONE) dev_warn(ap->dev, "%s: DMA not pending?\n", __func__); if ((hsdevp->dma_interrupt_count % 2) == 0) sata_dwc_dma_xfer_complete(ap, 1); } else { if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) goto STILLBUSY; } continue; STILLBUSY: ap->stats.idle_irq++; dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", ap->print_id); } /* while tag_mask */ /* * Check to see if any commands completed while we were processing our * initial set of completed commands (read status clears interrupts, * so we might miss a completed command interrupt if one came in while * we were processing --we read status as part of processing a completed * command). */ sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive2); if (sactive2 != sactive) { dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2=0x%x\n", sactive, sactive2); } handled = 1; DONE: spin_unlock_irqrestore(&host->lock, flags); return IRQ_RETVAL(handled); } static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) { struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); u32 dmacr = sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr); if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { dmacr = SATA_DWC_DMACR_RX_CLEAR(dmacr); sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr); } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { dmacr = SATA_DWC_DMACR_TX_CLEAR(dmacr); sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr); } else { /* * This should not happen, it indicates the driver is out of * sync. If it does happen, clear dmacr anyway. */ dev_err(hsdev->dev, "%s DMA protocol RX and TX DMA not pending tag=0x%02x pending=%d dmacr: 0x%08x\n", __func__, tag, hsdevp->dma_pending[tag], dmacr); sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_TXRXCH_CLEAR); } } static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) { struct ata_queued_cmd *qc; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); u8 tag = 0; tag = ap->link.active_tag; qc = ata_qc_from_tag(ap, tag); if (!qc) { dev_err(ap->dev, "failed to get qc"); return; } #ifdef DEBUG_NCQ if (tag > 0) { dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s dmacr=0x%08x\n", __func__, qc->hw_tag, qc->tf.command, get_dma_dir_descript(qc->dma_dir), get_prot_descript(qc->tf.protocol), sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr)); } #endif if (ata_is_dma(qc->tf.protocol)) { if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { dev_err(ap->dev, "%s DMA protocol RX and TX DMA not pending dmacr: 0x%08x\n", __func__, sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr)); } hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; sata_dwc_qc_complete(ap, qc, check_status); ap->link.active_tag = ATA_TAG_POISON; } else { sata_dwc_qc_complete(ap, qc, check_status); } } static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, u32 check_status) { u8 status = 0; u32 mask = 0x0; u8 tag = qc->hw_tag; struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); hsdev->sactive_queued = 0; dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) dev_err(ap->dev, "TX DMA PENDING\n"); else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) dev_err(ap->dev, "RX DMA PENDING\n"); dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u: protocol=%d\n", qc->tf.command, status, ap->print_id, qc->tf.protocol); /* clear active bit */ mask = (~(qcmd_tag_to_mask(tag))); hsdev->sactive_queued = hsdev->sactive_queued & mask; hsdev->sactive_issued = hsdev->sactive_issued & mask; ata_qc_complete(qc); return 0; } static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) { /* Enable selective interrupts by setting the interrupt maskregister*/ sata_dwc_writel(&hsdev->sata_dwc_regs->intmr, SATA_DWC_INTMR_ERRM | SATA_DWC_INTMR_NEWFPM | SATA_DWC_INTMR_PMABRTM | SATA_DWC_INTMR_DMATM); /* * Unmask the error bits that should trigger an error interrupt by * setting the error mask register. */ sata_dwc_writel(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", __func__, sata_dwc_readl(&hsdev->sata_dwc_regs->intmr), sata_dwc_readl(&hsdev->sata_dwc_regs->errmr)); } static void sata_dwc_setup_port(struct ata_ioports *port, void __iomem *base) { port->cmd_addr = base + 0x00; port->data_addr = base + 0x00; port->error_addr = base + 0x04; port->feature_addr = base + 0x04; port->nsect_addr = base + 0x08; port->lbal_addr = base + 0x0c; port->lbam_addr = base + 0x10; port->lbah_addr = base + 0x14; port->device_addr = base + 0x18; port->command_addr = base + 0x1c; port->status_addr = base + 0x1c; port->altstatus_addr = base + 0x20; port->ctl_addr = base + 0x20; } static int sata_dwc_dma_get_channel(struct sata_dwc_device_port *hsdevp) { struct sata_dwc_device *hsdev = hsdevp->hsdev; struct device *dev = hsdev->dev; #ifdef CONFIG_SATA_DWC_OLD_DMA if (!of_find_property(dev->of_node, "dmas", NULL)) return sata_dwc_dma_get_channel_old(hsdevp); #endif hsdevp->chan = dma_request_chan(dev, "sata-dma"); if (IS_ERR(hsdevp->chan)) { dev_err(dev, "failed to allocate dma channel: %ld\n", PTR_ERR(hsdevp->chan)); return PTR_ERR(hsdevp->chan); } return 0; } /* * Function : sata_dwc_port_start * arguments : struct ata_ioports *port * Return value : returns 0 if success, error code otherwise * This function allocates the scatter gather LLI table for AHB DMA */ static int sata_dwc_port_start(struct ata_port *ap) { int err = 0; struct sata_dwc_device *hsdev; struct sata_dwc_device_port *hsdevp = NULL; struct device *pdev; int i; hsdev = HSDEV_FROM_AP(ap); dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); hsdev->host = ap->host; pdev = ap->host->dev; if (!pdev) { dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); err = -ENODEV; goto CLEANUP; } /* Allocate Port Struct */ hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL); if (!hsdevp) { err = -ENOMEM; goto CLEANUP; } hsdevp->hsdev = hsdev; err = sata_dwc_dma_get_channel(hsdevp); if (err) goto CLEANUP_ALLOC; err = phy_power_on(hsdev->phy); if (err) goto CLEANUP_ALLOC; for (i = 0; i < SATA_DWC_QCMD_MAX; i++) hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; ap->bmdma_prd = NULL; /* set these so libata doesn't use them */ ap->bmdma_prd_dma = 0; if (ap->port_no == 0) { dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", __func__); sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_TXRXCH_CLEAR); dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", __func__); sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr, (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); } /* Clear any error bits before libata starts issuing commands */ clear_serror(ap); ap->private_data = hsdevp; dev_dbg(ap->dev, "%s: done\n", __func__); return 0; CLEANUP_ALLOC: kfree(hsdevp); CLEANUP: dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id); return err; } static void sata_dwc_port_stop(struct ata_port *ap) { struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); dmaengine_terminate_sync(hsdevp->chan); dma_release_channel(hsdevp->chan); phy_power_off(hsdev->phy); kfree(hsdevp); ap->private_data = NULL; } /* * Function : sata_dwc_exec_command_by_tag * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued * Return value : None * This function keeps track of individual command tag ids and calls * ata_exec_command in libata */ static void sata_dwc_exec_command_by_tag(struct ata_port *ap, struct ata_taskfile *tf, u8 tag, u32 cmd_issued) { struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, ata_get_cmd_descript(tf->command), tag); hsdevp->cmd_issued[tag] = cmd_issued; /* * Clear SError before executing a new command. * sata_dwc_scr_write and read can not be used here. Clearing the PM * managed SError register for the disk needs to be done before the * task file is loaded. */ clear_serror(ap); ata_sff_exec_command(ap, tf); } static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) { sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, SATA_DWC_CMD_ISSUED_PEND); } static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) { u8 tag = qc->hw_tag; if (ata_is_ncq(qc->tf.protocol)) { dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", __func__, qc->ap->link.sactive, tag); } else { tag = 0; } sata_dwc_bmdma_setup_by_tag(qc, tag); } static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) { int start_dma; u32 reg; struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); struct ata_port *ap = qc->ap; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); struct dma_async_tx_descriptor *desc = hsdevp->desc[tag]; int dir = qc->dma_dir; if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { start_dma = 1; if (dir == DMA_TO_DEVICE) hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; else hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; } else { dev_err(ap->dev, "%s: Command not pending cmd_issued=%d (tag=%d) DMA NOT started\n", __func__, hsdevp->cmd_issued[tag], tag); start_dma = 0; } dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s start_dma? %x\n", __func__, qc, tag, qc->tf.command, get_dma_dir_descript(qc->dma_dir), start_dma); sata_dwc_tf_dump(ap, &qc->tf); if (start_dma) { sata_dwc_scr_read(&ap->link, SCR_ERROR, ®); if (reg & SATA_DWC_SERROR_ERR_BITS) { dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", __func__, reg); } if (dir == DMA_TO_DEVICE) sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_TXCHEN); else sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_RXCHEN); /* Enable AHB DMA transfer on the specified channel */ dmaengine_submit(desc); dma_async_issue_pending(hsdevp->chan); } } static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) { u8 tag = qc->hw_tag; if (ata_is_ncq(qc->tf.protocol)) { dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", __func__, qc->ap->link.sactive, tag); } else { tag = 0; } dev_dbg(qc->ap->dev, "%s\n", __func__); sata_dwc_bmdma_start_by_tag(qc, tag); } static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) { u32 sactive; u8 tag = qc->hw_tag; struct ata_port *ap = qc->ap; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); #ifdef DEBUG_NCQ if (qc->hw_tag > 0 || ap->link.sactive > 1) dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n", __func__, ap->print_id, qc->tf.command, ata_get_cmd_descript(qc->tf.command), qc->hw_tag, get_prot_descript(qc->tf.protocol), ap->link.active_tag, ap->link.sactive); #endif if (!ata_is_ncq(qc->tf.protocol)) tag = 0; if (ata_is_dma(qc->tf.protocol)) { hsdevp->desc[tag] = dma_dwc_xfer_setup(qc); if (!hsdevp->desc[tag]) return AC_ERR_SYSTEM; } else { hsdevp->desc[tag] = NULL; } if (ata_is_ncq(qc->tf.protocol)) { sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive); sactive |= (0x00000001 << tag); sata_dwc_scr_write(&ap->link, SCR_ACTIVE, sactive); dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, sactive); ap->ops->sff_tf_load(ap, &qc->tf); sata_dwc_exec_command_by_tag(ap, &qc->tf, tag, SATA_DWC_CMD_ISSUED_PEND); } else { return ata_bmdma_qc_issue(qc); } return 0; } static void sata_dwc_error_handler(struct ata_port *ap) { ata_sff_error_handler(ap); } static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); int ret; ret = sata_sff_hardreset(link, class, deadline); sata_dwc_enable_interrupts(hsdev); /* Reconfigure the DMA control register */ sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_TXRXCH_CLEAR); /* Reconfigure the DMA Burst Transaction Size register */ sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr, SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)); return ret; } static void sata_dwc_dev_select(struct ata_port *ap, unsigned int device) { /* SATA DWC is master only */ } /* * scsi mid-layer and libata interface structures */ static struct scsi_host_template sata_dwc_sht = { ATA_NCQ_SHT(DRV_NAME), /* * test-only: Currently this driver doesn't handle NCQ * correctly. We enable NCQ but set the queue depth to a * max of 1. This will get fixed in in a future release. */ .sg_tablesize = LIBATA_MAX_PRD, /* .can_queue = ATA_MAX_QUEUE, */ /* * Make sure a LLI block is not created that will span 8K max FIS * boundary. If the block spans such a FIS boundary, there is a chance * that a DMA burst will cross that boundary -- this results in an * error in the host controller. */ .dma_boundary = 0x1fff /* ATA_DMA_BOUNDARY */, }; static struct ata_port_operations sata_dwc_ops = { .inherits = &ata_sff_port_ops, .error_handler = sata_dwc_error_handler, .hardreset = sata_dwc_hardreset, .qc_issue = sata_dwc_qc_issue, .scr_read = sata_dwc_scr_read, .scr_write = sata_dwc_scr_write, .port_start = sata_dwc_port_start, .port_stop = sata_dwc_port_stop, .sff_dev_select = sata_dwc_dev_select, .bmdma_setup = sata_dwc_bmdma_setup, .bmdma_start = sata_dwc_bmdma_start, }; static const struct ata_port_info sata_dwc_port_info[] = { { .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &sata_dwc_ops, }, }; static int sata_dwc_probe(struct platform_device *ofdev) { struct sata_dwc_device *hsdev; u32 idr, versionr; char *ver = (char *)&versionr; void __iomem *base; int err = 0; int irq; struct ata_host *host; struct ata_port_info pi = sata_dwc_port_info[0]; const struct ata_port_info *ppi[] = { &pi, NULL }; struct device_node *np = ofdev->dev.of_node; struct resource *res; /* Allocate DWC SATA device */ host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); hsdev = devm_kzalloc(&ofdev->dev, sizeof(*hsdev), GFP_KERNEL); if (!host || !hsdev) return -ENOMEM; host->private_data = hsdev; /* Ioremap SATA registers */ res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&ofdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); /* Synopsys DWC SATA specific Registers */ hsdev->sata_dwc_regs = base + SATA_DWC_REG_OFFSET; hsdev->dmadr = res->start + SATA_DWC_REG_OFFSET + offsetof(struct sata_dwc_regs, dmadr); /* Setup port */ host->ports[0]->ioaddr.cmd_addr = base; host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; sata_dwc_setup_port(&host->ports[0]->ioaddr, base); /* Read the ID and Version Registers */ idr = sata_dwc_readl(&hsdev->sata_dwc_regs->idr); versionr = sata_dwc_readl(&hsdev->sata_dwc_regs->versionr); dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", idr, ver[0], ver[1], ver[2]); /* Save dev for later use in dev_xxx() routines */ hsdev->dev = &ofdev->dev; /* Enable SATA Interrupts */ sata_dwc_enable_interrupts(hsdev); /* Get SATA interrupt number */ irq = irq_of_parse_and_map(np, 0); if (irq == NO_IRQ) { dev_err(&ofdev->dev, "no SATA DMA irq\n"); err = -ENODEV; goto error_out; } #ifdef CONFIG_SATA_DWC_OLD_DMA if (!of_find_property(np, "dmas", NULL)) { err = sata_dwc_dma_init_old(ofdev, hsdev); if (err) goto error_out; } #endif hsdev->phy = devm_phy_optional_get(hsdev->dev, "sata-phy"); if (IS_ERR(hsdev->phy)) { err = PTR_ERR(hsdev->phy); hsdev->phy = NULL; goto error_out; } err = phy_init(hsdev->phy); if (err) goto error_out; /* * Now, register with libATA core, this will also initiate the * device discovery process, invoking our port_start() handler & * error_handler() to execute a dummy Softreset EH session */ err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); if (err) dev_err(&ofdev->dev, "failed to activate host"); return 0; error_out: phy_exit(hsdev->phy); return err; } static int sata_dwc_remove(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct ata_host *host = dev_get_drvdata(dev); struct sata_dwc_device *hsdev = host->private_data; ata_host_detach(host); phy_exit(hsdev->phy); #ifdef CONFIG_SATA_DWC_OLD_DMA /* Free SATA DMA resources */ sata_dwc_dma_exit_old(hsdev); #endif dev_dbg(&ofdev->dev, "done\n"); return 0; } static const struct of_device_id sata_dwc_match[] = { { .compatible = "amcc,sata-460ex", }, {} }; MODULE_DEVICE_TABLE(of, sata_dwc_match); static struct platform_driver sata_dwc_driver = { .driver = { .name = DRV_NAME, .of_match_table = sata_dwc_match, }, .probe = sata_dwc_probe, .remove = sata_dwc_remove, }; module_platform_driver(sata_dwc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mark Miesfeld "); MODULE_DESCRIPTION("DesignWare Cores SATA controller low level driver"); MODULE_VERSION(DRV_VERSION);