// SPDX-License-Identifier: GPL-2.0-or-later /* * Cryptographic API for algorithms (i.e., low-level API). * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> */ #include <crypto/algapi.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/fips.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/string.h> #include "internal.h" static LIST_HEAD(crypto_template_list); static inline void crypto_check_module_sig(struct module *mod) { if (fips_enabled && mod && !module_sig_ok(mod)) panic("Module %s signature verification failed in FIPS mode\n", module_name(mod)); } static int crypto_check_alg(struct crypto_alg *alg) { crypto_check_module_sig(alg->cra_module); if (!alg->cra_name[0] || !alg->cra_driver_name[0]) return -EINVAL; if (alg->cra_alignmask & (alg->cra_alignmask + 1)) return -EINVAL; /* General maximums for all algs. */ if (alg->cra_alignmask > MAX_ALGAPI_ALIGNMASK) return -EINVAL; if (alg->cra_blocksize > MAX_ALGAPI_BLOCKSIZE) return -EINVAL; /* Lower maximums for specific alg types. */ if (!alg->cra_type && (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { if (alg->cra_alignmask > MAX_CIPHER_ALIGNMASK) return -EINVAL; if (alg->cra_blocksize > MAX_CIPHER_BLOCKSIZE) return -EINVAL; } if (alg->cra_priority < 0) return -EINVAL; refcount_set(&alg->cra_refcnt, 1); return 0; } static void crypto_free_instance(struct crypto_instance *inst) { inst->alg.cra_type->free(inst); } static void crypto_destroy_instance(struct crypto_alg *alg) { struct crypto_instance *inst = (void *)alg; struct crypto_template *tmpl = inst->tmpl; crypto_free_instance(inst); crypto_tmpl_put(tmpl); } /* * This function adds a spawn to the list secondary_spawns which * will be used at the end of crypto_remove_spawns to unregister * instances, unless the spawn happens to be one that is depended * on by the new algorithm (nalg in crypto_remove_spawns). * * This function is also responsible for resurrecting any algorithms * in the dependency chain of nalg by unsetting n->dead. */ static struct list_head *crypto_more_spawns(struct crypto_alg *alg, struct list_head *stack, struct list_head *top, struct list_head *secondary_spawns) { struct crypto_spawn *spawn, *n; spawn = list_first_entry_or_null(stack, struct crypto_spawn, list); if (!spawn) return NULL; n = list_prev_entry(spawn, list); list_move(&spawn->list, secondary_spawns); if (list_is_last(&n->list, stack)) return top; n = list_next_entry(n, list); if (!spawn->dead) n->dead = false; return &n->inst->alg.cra_users; } static void crypto_remove_instance(struct crypto_instance *inst, struct list_head *list) { struct crypto_template *tmpl = inst->tmpl; if (crypto_is_dead(&inst->alg)) return; inst->alg.cra_flags |= CRYPTO_ALG_DEAD; if (!tmpl || !crypto_tmpl_get(tmpl)) return; list_move(&inst->alg.cra_list, list); hlist_del(&inst->list); inst->alg.cra_destroy = crypto_destroy_instance; BUG_ON(!list_empty(&inst->alg.cra_users)); } /* * Given an algorithm alg, remove all algorithms that depend on it * through spawns. If nalg is not null, then exempt any algorithms * that is depended on by nalg. This is useful when nalg itself * depends on alg. */ void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list, struct crypto_alg *nalg) { u32 new_type = (nalg ?: alg)->cra_flags; struct crypto_spawn *spawn, *n; LIST_HEAD(secondary_spawns); struct list_head *spawns; LIST_HEAD(stack); LIST_HEAD(top); spawns = &alg->cra_users; list_for_each_entry_safe(spawn, n, spawns, list) { if ((spawn->alg->cra_flags ^ new_type) & spawn->mask) continue; list_move(&spawn->list, &top); } /* * Perform a depth-first walk starting from alg through * the cra_users tree. The list stack records the path * from alg to the current spawn. */ spawns = ⊤ do { while (!list_empty(spawns)) { struct crypto_instance *inst; spawn = list_first_entry(spawns, struct crypto_spawn, list); inst = spawn->inst; list_move(&spawn->list, &stack); spawn->dead = !spawn->registered || &inst->alg != nalg; if (!spawn->registered) break; BUG_ON(&inst->alg == alg); if (&inst->alg == nalg) break; spawns = &inst->alg.cra_users; /* * Even if spawn->registered is true, the * instance itself may still be unregistered. * This is because it may have failed during * registration. Therefore we still need to * make the following test. * * We may encounter an unregistered instance here, since * an instance's spawns are set up prior to the instance * being registered. An unregistered instance will have * NULL ->cra_users.next, since ->cra_users isn't * properly initialized until registration. But an * unregistered instance cannot have any users, so treat * it the same as ->cra_users being empty. */ if (spawns->next == NULL) break; } } while ((spawns = crypto_more_spawns(alg, &stack, &top, &secondary_spawns))); /* * Remove all instances that are marked as dead. Also * complete the resurrection of the others by moving them * back to the cra_users list. */ list_for_each_entry_safe(spawn, n, &secondary_spawns, list) { if (!spawn->dead) list_move(&spawn->list, &spawn->alg->cra_users); else if (spawn->registered) crypto_remove_instance(spawn->inst, list); } } EXPORT_SYMBOL_GPL(crypto_remove_spawns); static struct crypto_larval *__crypto_register_alg(struct crypto_alg *alg) { struct crypto_alg *q; struct crypto_larval *larval; int ret = -EAGAIN; if (crypto_is_dead(alg)) goto err; INIT_LIST_HEAD(&alg->cra_users); /* No cheating! */ alg->cra_flags &= ~CRYPTO_ALG_TESTED; ret = -EEXIST; list_for_each_entry(q, &crypto_alg_list, cra_list) { if (q == alg) goto err; if (crypto_is_moribund(q)) continue; if (crypto_is_larval(q)) { if (!strcmp(alg->cra_driver_name, q->cra_driver_name)) goto err; continue; } if (!strcmp(q->cra_driver_name, alg->cra_name) || !strcmp(q->cra_name, alg->cra_driver_name)) goto err; } larval = crypto_larval_alloc(alg->cra_name, alg->cra_flags | CRYPTO_ALG_TESTED, 0); if (IS_ERR(larval)) goto out; ret = -ENOENT; larval->adult = crypto_mod_get(alg); if (!larval->adult) goto free_larval; refcount_set(&larval->alg.cra_refcnt, 1); memcpy(larval->alg.cra_driver_name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME); larval->alg.cra_priority = alg->cra_priority; list_add(&alg->cra_list, &crypto_alg_list); list_add(&larval->alg.cra_list, &crypto_alg_list); crypto_stats_init(alg); out: return larval; free_larval: kfree(larval); err: larval = ERR_PTR(ret); goto out; } void crypto_alg_tested(const char *name, int err) { struct crypto_larval *test; struct crypto_alg *alg; struct crypto_alg *q; LIST_HEAD(list); bool best; down_write(&crypto_alg_sem); list_for_each_entry(q, &crypto_alg_list, cra_list) { if (crypto_is_moribund(q) || !crypto_is_larval(q)) continue; test = (struct crypto_larval *)q; if (!strcmp(q->cra_driver_name, name)) goto found; } pr_err("alg: Unexpected test result for %s: %d\n", name, err); goto unlock; found: q->cra_flags |= CRYPTO_ALG_DEAD; alg = test->adult; if (err || list_empty(&alg->cra_list)) goto complete; alg->cra_flags |= CRYPTO_ALG_TESTED; /* Only satisfy larval waiters if we are the best. */ best = true; list_for_each_entry(q, &crypto_alg_list, cra_list) { if (crypto_is_moribund(q) || !crypto_is_larval(q)) continue; if (strcmp(alg->cra_name, q->cra_name)) continue; if (q->cra_priority > alg->cra_priority) { best = false; break; } } list_for_each_entry(q, &crypto_alg_list, cra_list) { if (q == alg) continue; if (crypto_is_moribund(q)) continue; if (crypto_is_larval(q)) { struct crypto_larval *larval = (void *)q; /* * Check to see if either our generic name or * specific name can satisfy the name requested * by the larval entry q. */ if (strcmp(alg->cra_name, q->cra_name) && strcmp(alg->cra_driver_name, q->cra_name)) continue; if (larval->adult) continue; if ((q->cra_flags ^ alg->cra_flags) & larval->mask) continue; if (best && crypto_mod_get(alg)) larval->adult = alg; else larval->adult = ERR_PTR(-EAGAIN); continue; } if (strcmp(alg->cra_name, q->cra_name)) continue; if (strcmp(alg->cra_driver_name, q->cra_driver_name) && q->cra_priority > alg->cra_priority) continue; crypto_remove_spawns(q, &list, alg); } complete: complete_all(&test->completion); unlock: up_write(&crypto_alg_sem); crypto_remove_final(&list); } EXPORT_SYMBOL_GPL(crypto_alg_tested); void crypto_remove_final(struct list_head *list) { struct crypto_alg *alg; struct crypto_alg *n; list_for_each_entry_safe(alg, n, list, cra_list) { list_del_init(&alg->cra_list); crypto_alg_put(alg); } } EXPORT_SYMBOL_GPL(crypto_remove_final); static void crypto_wait_for_test(struct crypto_larval *larval) { int err; err = crypto_probing_notify(CRYPTO_MSG_ALG_REGISTER, larval->adult); if (err != NOTIFY_STOP) { if (WARN_ON(err != NOTIFY_DONE)) goto out; crypto_alg_tested(larval->alg.cra_driver_name, 0); } err = wait_for_completion_killable(&larval->completion); WARN_ON(err); if (!err) crypto_notify(CRYPTO_MSG_ALG_LOADED, larval); out: crypto_larval_kill(&larval->alg); } int crypto_register_alg(struct crypto_alg *alg) { struct crypto_larval *larval; int err; alg->cra_flags &= ~CRYPTO_ALG_DEAD; err = crypto_check_alg(alg); if (err) return err; down_write(&crypto_alg_sem); larval = __crypto_register_alg(alg); up_write(&crypto_alg_sem); if (IS_ERR(larval)) return PTR_ERR(larval); crypto_wait_for_test(larval); return 0; } EXPORT_SYMBOL_GPL(crypto_register_alg); static int crypto_remove_alg(struct crypto_alg *alg, struct list_head *list) { if (unlikely(list_empty(&alg->cra_list))) return -ENOENT; alg->cra_flags |= CRYPTO_ALG_DEAD; list_del_init(&alg->cra_list); crypto_remove_spawns(alg, list, NULL); return 0; } void crypto_unregister_alg(struct crypto_alg *alg) { int ret; LIST_HEAD(list); down_write(&crypto_alg_sem); ret = crypto_remove_alg(alg, &list); up_write(&crypto_alg_sem); if (WARN(ret, "Algorithm %s is not registered", alg->cra_driver_name)) return; BUG_ON(refcount_read(&alg->cra_refcnt) != 1); if (alg->cra_destroy) alg->cra_destroy(alg); crypto_remove_final(&list); } EXPORT_SYMBOL_GPL(crypto_unregister_alg); int crypto_register_algs(struct crypto_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_alg(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_alg(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_algs); void crypto_unregister_algs(struct crypto_alg *algs, int count) { int i; for (i = 0; i < count; i++) crypto_unregister_alg(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_algs); int crypto_register_template(struct crypto_template *tmpl) { struct crypto_template *q; int err = -EEXIST; down_write(&crypto_alg_sem); crypto_check_module_sig(tmpl->module); list_for_each_entry(q, &crypto_template_list, list) { if (q == tmpl) goto out; } list_add(&tmpl->list, &crypto_template_list); err = 0; out: up_write(&crypto_alg_sem); return err; } EXPORT_SYMBOL_GPL(crypto_register_template); int crypto_register_templates(struct crypto_template *tmpls, int count) { int i, err; for (i = 0; i < count; i++) { err = crypto_register_template(&tmpls[i]); if (err) goto out; } return 0; out: for (--i; i >= 0; --i) crypto_unregister_template(&tmpls[i]); return err; } EXPORT_SYMBOL_GPL(crypto_register_templates); void crypto_unregister_template(struct crypto_template *tmpl) { struct crypto_instance *inst; struct hlist_node *n; struct hlist_head *list; LIST_HEAD(users); down_write(&crypto_alg_sem); BUG_ON(list_empty(&tmpl->list)); list_del_init(&tmpl->list); list = &tmpl->instances; hlist_for_each_entry(inst, list, list) { int err = crypto_remove_alg(&inst->alg, &users); BUG_ON(err); } up_write(&crypto_alg_sem); hlist_for_each_entry_safe(inst, n, list, list) { BUG_ON(refcount_read(&inst->alg.cra_refcnt) != 1); crypto_free_instance(inst); } crypto_remove_final(&users); } EXPORT_SYMBOL_GPL(crypto_unregister_template); void crypto_unregister_templates(struct crypto_template *tmpls, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_template(&tmpls[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_templates); static struct crypto_template *__crypto_lookup_template(const char *name) { struct crypto_template *q, *tmpl = NULL; down_read(&crypto_alg_sem); list_for_each_entry(q, &crypto_template_list, list) { if (strcmp(q->name, name)) continue; if (unlikely(!crypto_tmpl_get(q))) continue; tmpl = q; break; } up_read(&crypto_alg_sem); return tmpl; } struct crypto_template *crypto_lookup_template(const char *name) { return try_then_request_module(__crypto_lookup_template(name), "crypto-%s", name); } EXPORT_SYMBOL_GPL(crypto_lookup_template); int crypto_register_instance(struct crypto_template *tmpl, struct crypto_instance *inst) { struct crypto_larval *larval; struct crypto_spawn *spawn; int err; err = crypto_check_alg(&inst->alg); if (err) return err; inst->alg.cra_module = tmpl->module; inst->alg.cra_flags |= CRYPTO_ALG_INSTANCE; down_write(&crypto_alg_sem); larval = ERR_PTR(-EAGAIN); for (spawn = inst->spawns; spawn;) { struct crypto_spawn *next; if (spawn->dead) goto unlock; next = spawn->next; spawn->inst = inst; spawn->registered = true; crypto_mod_put(spawn->alg); spawn = next; } larval = __crypto_register_alg(&inst->alg); if (IS_ERR(larval)) goto unlock; hlist_add_head(&inst->list, &tmpl->instances); inst->tmpl = tmpl; unlock: up_write(&crypto_alg_sem); err = PTR_ERR(larval); if (IS_ERR(larval)) goto err; crypto_wait_for_test(larval); err = 0; err: return err; } EXPORT_SYMBOL_GPL(crypto_register_instance); void crypto_unregister_instance(struct crypto_instance *inst) { LIST_HEAD(list); down_write(&crypto_alg_sem); crypto_remove_spawns(&inst->alg, &list, NULL); crypto_remove_instance(inst, &list); up_write(&crypto_alg_sem); crypto_remove_final(&list); } EXPORT_SYMBOL_GPL(crypto_unregister_instance); int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { struct crypto_alg *alg; int err = -EAGAIN; if (WARN_ON_ONCE(inst == NULL)) return -EINVAL; /* Allow the result of crypto_attr_alg_name() to be passed directly */ if (IS_ERR(name)) return PTR_ERR(name); alg = crypto_find_alg(name, spawn->frontend, type, mask); if (IS_ERR(alg)) return PTR_ERR(alg); down_write(&crypto_alg_sem); if (!crypto_is_moribund(alg)) { list_add(&spawn->list, &alg->cra_users); spawn->alg = alg; spawn->mask = mask; spawn->next = inst->spawns; inst->spawns = spawn; inst->alg.cra_flags |= (alg->cra_flags & CRYPTO_ALG_INHERITED_FLAGS); err = 0; } up_write(&crypto_alg_sem); if (err) crypto_mod_put(alg); return err; } EXPORT_SYMBOL_GPL(crypto_grab_spawn); void crypto_drop_spawn(struct crypto_spawn *spawn) { if (!spawn->alg) /* not yet initialized? */ return; down_write(&crypto_alg_sem); if (!spawn->dead) list_del(&spawn->list); up_write(&crypto_alg_sem); if (!spawn->registered) crypto_mod_put(spawn->alg); } EXPORT_SYMBOL_GPL(crypto_drop_spawn); static struct crypto_alg *crypto_spawn_alg(struct crypto_spawn *spawn) { struct crypto_alg *alg = ERR_PTR(-EAGAIN); struct crypto_alg *target; bool shoot = false; down_read(&crypto_alg_sem); if (!spawn->dead) { alg = spawn->alg; if (!crypto_mod_get(alg)) { target = crypto_alg_get(alg); shoot = true; alg = ERR_PTR(-EAGAIN); } } up_read(&crypto_alg_sem); if (shoot) { crypto_shoot_alg(target); crypto_alg_put(target); } return alg; } struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, u32 mask) { struct crypto_alg *alg; struct crypto_tfm *tfm; alg = crypto_spawn_alg(spawn); if (IS_ERR(alg)) return ERR_CAST(alg); tfm = ERR_PTR(-EINVAL); if (unlikely((alg->cra_flags ^ type) & mask)) goto out_put_alg; tfm = __crypto_alloc_tfm(alg, type, mask); if (IS_ERR(tfm)) goto out_put_alg; return tfm; out_put_alg: crypto_mod_put(alg); return tfm; } EXPORT_SYMBOL_GPL(crypto_spawn_tfm); void *crypto_spawn_tfm2(struct crypto_spawn *spawn) { struct crypto_alg *alg; struct crypto_tfm *tfm; alg = crypto_spawn_alg(spawn); if (IS_ERR(alg)) return ERR_CAST(alg); tfm = crypto_create_tfm(alg, spawn->frontend); if (IS_ERR(tfm)) goto out_put_alg; return tfm; out_put_alg: crypto_mod_put(alg); return tfm; } EXPORT_SYMBOL_GPL(crypto_spawn_tfm2); int crypto_register_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&crypto_chain, nb); } EXPORT_SYMBOL_GPL(crypto_register_notifier); int crypto_unregister_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&crypto_chain, nb); } EXPORT_SYMBOL_GPL(crypto_unregister_notifier); struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb) { struct rtattr *rta = tb[0]; struct crypto_attr_type *algt; if (!rta) return ERR_PTR(-ENOENT); if (RTA_PAYLOAD(rta) < sizeof(*algt)) return ERR_PTR(-EINVAL); if (rta->rta_type != CRYPTOA_TYPE) return ERR_PTR(-EINVAL); algt = RTA_DATA(rta); return algt; } EXPORT_SYMBOL_GPL(crypto_get_attr_type); /** * crypto_check_attr_type() - check algorithm type and compute inherited mask * @tb: the template parameters * @type: the algorithm type the template would be instantiated as * @mask_ret: (output) the mask that should be passed to crypto_grab_*() * to restrict the flags of any inner algorithms * * Validate that the algorithm type the user requested is compatible with the * one the template would actually be instantiated as. E.g., if the user is * doing crypto_alloc_shash("cbc(aes)", ...), this would return an error because * the "cbc" template creates an "skcipher" algorithm, not an "shash" algorithm. * * Also compute the mask to use to restrict the flags of any inner algorithms. * * Return: 0 on success; -errno on failure */ int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return PTR_ERR(algt); if ((algt->type ^ type) & algt->mask) return -EINVAL; *mask_ret = crypto_algt_inherited_mask(algt); return 0; } EXPORT_SYMBOL_GPL(crypto_check_attr_type); const char *crypto_attr_alg_name(struct rtattr *rta) { struct crypto_attr_alg *alga; if (!rta) return ERR_PTR(-ENOENT); if (RTA_PAYLOAD(rta) < sizeof(*alga)) return ERR_PTR(-EINVAL); if (rta->rta_type != CRYPTOA_ALG) return ERR_PTR(-EINVAL); alga = RTA_DATA(rta); alga->name[CRYPTO_MAX_ALG_NAME - 1] = 0; return alga->name; } EXPORT_SYMBOL_GPL(crypto_attr_alg_name); int crypto_attr_u32(struct rtattr *rta, u32 *num) { struct crypto_attr_u32 *nu32; if (!rta) return -ENOENT; if (RTA_PAYLOAD(rta) < sizeof(*nu32)) return -EINVAL; if (rta->rta_type != CRYPTOA_U32) return -EINVAL; nu32 = RTA_DATA(rta); *num = nu32->num; return 0; } EXPORT_SYMBOL_GPL(crypto_attr_u32); int crypto_inst_setname(struct crypto_instance *inst, const char *name, struct crypto_alg *alg) { if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", name, alg->cra_name) >= CRYPTO_MAX_ALG_NAME) return -ENAMETOOLONG; if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", name, alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) return -ENAMETOOLONG; return 0; } EXPORT_SYMBOL_GPL(crypto_inst_setname); void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen) { INIT_LIST_HEAD(&queue->list); queue->backlog = &queue->list; queue->qlen = 0; queue->max_qlen = max_qlen; } EXPORT_SYMBOL_GPL(crypto_init_queue); int crypto_enqueue_request(struct crypto_queue *queue, struct crypto_async_request *request) { int err = -EINPROGRESS; if (unlikely(queue->qlen >= queue->max_qlen)) { if (!(request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { err = -ENOSPC; goto out; } err = -EBUSY; if (queue->backlog == &queue->list) queue->backlog = &request->list; } queue->qlen++; list_add_tail(&request->list, &queue->list); out: return err; } EXPORT_SYMBOL_GPL(crypto_enqueue_request); void crypto_enqueue_request_head(struct crypto_queue *queue, struct crypto_async_request *request) { queue->qlen++; list_add(&request->list, &queue->list); } EXPORT_SYMBOL_GPL(crypto_enqueue_request_head); struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue) { struct list_head *request; if (unlikely(!queue->qlen)) return NULL; queue->qlen--; if (queue->backlog != &queue->list) queue->backlog = queue->backlog->next; request = queue->list.next; list_del(request); return list_entry(request, struct crypto_async_request, list); } EXPORT_SYMBOL_GPL(crypto_dequeue_request); static inline void crypto_inc_byte(u8 *a, unsigned int size) { u8 *b = (a + size); u8 c; for (; size; size--) { c = *--b + 1; *b = c; if (c) break; } } void crypto_inc(u8 *a, unsigned int size) { __be32 *b = (__be32 *)(a + size); u32 c; if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || IS_ALIGNED((unsigned long)b, __alignof__(*b))) for (; size >= 4; size -= 4) { c = be32_to_cpu(*--b) + 1; *b = cpu_to_be32(c); if (likely(c)) return; } crypto_inc_byte(a, size); } EXPORT_SYMBOL_GPL(crypto_inc); void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len) { int relalign = 0; if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) { int size = sizeof(unsigned long); int d = (((unsigned long)dst ^ (unsigned long)src1) | ((unsigned long)dst ^ (unsigned long)src2)) & (size - 1); relalign = d ? 1 << __ffs(d) : size; /* * If we care about alignment, process as many bytes as * needed to advance dst and src to values whose alignments * equal their relative alignment. This will allow us to * process the remainder of the input using optimal strides. */ while (((unsigned long)dst & (relalign - 1)) && len > 0) { *dst++ = *src1++ ^ *src2++; len--; } } while (IS_ENABLED(CONFIG_64BIT) && len >= 8 && !(relalign & 7)) { *(u64 *)dst = *(u64 *)src1 ^ *(u64 *)src2; dst += 8; src1 += 8; src2 += 8; len -= 8; } while (len >= 4 && !(relalign & 3)) { *(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2; dst += 4; src1 += 4; src2 += 4; len -= 4; } while (len >= 2 && !(relalign & 1)) { *(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2; dst += 2; src1 += 2; src2 += 2; len -= 2; } while (len--) *dst++ = *src1++ ^ *src2++; } EXPORT_SYMBOL_GPL(__crypto_xor); unsigned int crypto_alg_extsize(struct crypto_alg *alg) { return alg->cra_ctxsize + (alg->cra_alignmask & ~(crypto_tfm_ctx_alignment() - 1)); } EXPORT_SYMBOL_GPL(crypto_alg_extsize); int crypto_type_has_alg(const char *name, const struct crypto_type *frontend, u32 type, u32 mask) { int ret = 0; struct crypto_alg *alg = crypto_find_alg(name, frontend, type, mask); if (!IS_ERR(alg)) { crypto_mod_put(alg); ret = 1; } return ret; } EXPORT_SYMBOL_GPL(crypto_type_has_alg); #ifdef CONFIG_CRYPTO_STATS void crypto_stats_init(struct crypto_alg *alg) { memset(&alg->stats, 0, sizeof(alg->stats)); } EXPORT_SYMBOL_GPL(crypto_stats_init); void crypto_stats_get(struct crypto_alg *alg) { crypto_alg_get(alg); } EXPORT_SYMBOL_GPL(crypto_stats_get); void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.aead.err_cnt); } else { atomic64_inc(&alg->stats.aead.encrypt_cnt); atomic64_add(cryptlen, &alg->stats.aead.encrypt_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_aead_encrypt); void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.aead.err_cnt); } else { atomic64_inc(&alg->stats.aead.decrypt_cnt); atomic64_add(cryptlen, &alg->stats.aead.decrypt_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_aead_decrypt); void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.akcipher.err_cnt); } else { atomic64_inc(&alg->stats.akcipher.encrypt_cnt); atomic64_add(src_len, &alg->stats.akcipher.encrypt_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_akcipher_encrypt); void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.akcipher.err_cnt); } else { atomic64_inc(&alg->stats.akcipher.decrypt_cnt); atomic64_add(src_len, &alg->stats.akcipher.decrypt_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_akcipher_decrypt); void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) atomic64_inc(&alg->stats.akcipher.err_cnt); else atomic64_inc(&alg->stats.akcipher.sign_cnt); crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_akcipher_sign); void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) atomic64_inc(&alg->stats.akcipher.err_cnt); else atomic64_inc(&alg->stats.akcipher.verify_cnt); crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_akcipher_verify); void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.compress.err_cnt); } else { atomic64_inc(&alg->stats.compress.compress_cnt); atomic64_add(slen, &alg->stats.compress.compress_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_compress); void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.compress.err_cnt); } else { atomic64_inc(&alg->stats.compress.decompress_cnt); atomic64_add(slen, &alg->stats.compress.decompress_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_decompress); void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) atomic64_inc(&alg->stats.hash.err_cnt); else atomic64_add(nbytes, &alg->stats.hash.hash_tlen); crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_ahash_update); void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.hash.err_cnt); } else { atomic64_inc(&alg->stats.hash.hash_cnt); atomic64_add(nbytes, &alg->stats.hash.hash_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_ahash_final); void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) { if (ret) atomic64_inc(&alg->stats.kpp.err_cnt); else atomic64_inc(&alg->stats.kpp.setsecret_cnt); crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_kpp_set_secret); void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) { if (ret) atomic64_inc(&alg->stats.kpp.err_cnt); else atomic64_inc(&alg->stats.kpp.generate_public_key_cnt); crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_kpp_generate_public_key); void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) { if (ret) atomic64_inc(&alg->stats.kpp.err_cnt); else atomic64_inc(&alg->stats.kpp.compute_shared_secret_cnt); crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_kpp_compute_shared_secret); void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) atomic64_inc(&alg->stats.rng.err_cnt); else atomic64_inc(&alg->stats.rng.seed_cnt); crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_rng_seed); void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.rng.err_cnt); } else { atomic64_inc(&alg->stats.rng.generate_cnt); atomic64_add(dlen, &alg->stats.rng.generate_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_rng_generate); void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.cipher.err_cnt); } else { atomic64_inc(&alg->stats.cipher.encrypt_cnt); atomic64_add(cryptlen, &alg->stats.cipher.encrypt_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_skcipher_encrypt); void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) { if (ret && ret != -EINPROGRESS && ret != -EBUSY) { atomic64_inc(&alg->stats.cipher.err_cnt); } else { atomic64_inc(&alg->stats.cipher.decrypt_cnt); atomic64_add(cryptlen, &alg->stats.cipher.decrypt_tlen); } crypto_alg_put(alg); } EXPORT_SYMBOL_GPL(crypto_stats_skcipher_decrypt); #endif static int __init crypto_algapi_init(void) { crypto_init_proc(); return 0; } static void __exit crypto_algapi_exit(void) { crypto_exit_proc(); } module_init(crypto_algapi_init); module_exit(crypto_algapi_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Cryptographic algorithms API");