// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; EXPORT_SYMBOL(physical_mask); #endif #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) #ifdef CONFIG_HIGHPTE #define PGALLOC_USER_GFP __GFP_HIGHMEM #else #define PGALLOC_USER_GFP 0 #endif gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) { return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT); } pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) { struct page *pte; pte = alloc_pages(__userpte_alloc_gfp, 0); if (!pte) return NULL; if (!pgtable_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } static int __init setup_userpte(char *arg) { if (!arg) return -EINVAL; /* * "userpte=nohigh" disables allocation of user pagetables in * high memory. */ if (strcmp(arg, "nohigh") == 0) __userpte_alloc_gfp &= ~__GFP_HIGHMEM; else return -EINVAL; return 0; } early_param("userpte", setup_userpte); void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) { pgtable_page_dtor(pte); paravirt_release_pte(page_to_pfn(pte)); tlb_remove_table(tlb, pte); } #if CONFIG_PGTABLE_LEVELS > 2 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) { struct page *page = virt_to_page(pmd); paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); /* * NOTE! For PAE, any changes to the top page-directory-pointer-table * entries need a full cr3 reload to flush. */ #ifdef CONFIG_X86_PAE tlb->need_flush_all = 1; #endif pgtable_pmd_page_dtor(page); tlb_remove_table(tlb, page); } #if CONFIG_PGTABLE_LEVELS > 3 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) { paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); tlb_remove_table(tlb, virt_to_page(pud)); } #if CONFIG_PGTABLE_LEVELS > 4 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) { paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); tlb_remove_table(tlb, virt_to_page(p4d)); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #endif /* CONFIG_PGTABLE_LEVELS > 2 */ static inline void pgd_list_add(pgd_t *pgd) { struct page *page = virt_to_page(pgd); list_add(&page->lru, &pgd_list); } static inline void pgd_list_del(pgd_t *pgd) { struct page *page = virt_to_page(pgd); list_del(&page->lru); } #define UNSHARED_PTRS_PER_PGD \ (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) { virt_to_page(pgd)->pt_mm = mm; } struct mm_struct *pgd_page_get_mm(struct page *page) { return page->pt_mm; } static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) { /* If the pgd points to a shared pagetable level (either the ptes in non-PAE, or shared PMD in PAE), then just copy the references from swapper_pg_dir. */ if (CONFIG_PGTABLE_LEVELS == 2 || (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || CONFIG_PGTABLE_LEVELS >= 4) { clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, swapper_pg_dir + KERNEL_PGD_BOUNDARY, KERNEL_PGD_PTRS); } /* list required to sync kernel mapping updates */ if (!SHARED_KERNEL_PMD) { pgd_set_mm(pgd, mm); pgd_list_add(pgd); } } static void pgd_dtor(pgd_t *pgd) { if (SHARED_KERNEL_PMD) return; spin_lock(&pgd_lock); pgd_list_del(pgd); spin_unlock(&pgd_lock); } /* * List of all pgd's needed for non-PAE so it can invalidate entries * in both cached and uncached pgd's; not needed for PAE since the * kernel pmd is shared. If PAE were not to share the pmd a similar * tactic would be needed. This is essentially codepath-based locking * against pageattr.c; it is the unique case in which a valid change * of kernel pagetables can't be lazily synchronized by vmalloc faults. * vmalloc faults work because attached pagetables are never freed. * -- nyc */ #ifdef CONFIG_X86_PAE /* * In PAE mode, we need to do a cr3 reload (=tlb flush) when * updating the top-level pagetable entries to guarantee the * processor notices the update. Since this is expensive, and * all 4 top-level entries are used almost immediately in a * new process's life, we just pre-populate them here. * * Also, if we're in a paravirt environment where the kernel pmd is * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate * and initialize the kernel pmds here. */ #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD /* * We allocate separate PMDs for the kernel part of the user page-table * when PTI is enabled. We need them to map the per-process LDT into the * user-space page-table. */ #define PREALLOCATED_USER_PMDS (static_cpu_has(X86_FEATURE_PTI) ? \ KERNEL_PGD_PTRS : 0) void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) { paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); /* Note: almost everything apart from _PAGE_PRESENT is reserved at the pmd (PDPT) level. */ set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); /* * According to Intel App note "TLBs, Paging-Structure Caches, * and Their Invalidation", April 2007, document 317080-001, * section 8.1: in PAE mode we explicitly have to flush the * TLB via cr3 if the top-level pgd is changed... */ flush_tlb_mm(mm); } #else /* !CONFIG_X86_PAE */ /* No need to prepopulate any pagetable entries in non-PAE modes. */ #define PREALLOCATED_PMDS 0 #define PREALLOCATED_USER_PMDS 0 #endif /* CONFIG_X86_PAE */ static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) { int i; for (i = 0; i < count; i++) if (pmds[i]) { pgtable_pmd_page_dtor(virt_to_page(pmds[i])); free_page((unsigned long)pmds[i]); mm_dec_nr_pmds(mm); } } static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) { int i; bool failed = false; gfp_t gfp = PGALLOC_GFP; if (mm == &init_mm) gfp &= ~__GFP_ACCOUNT; for (i = 0; i < count; i++) { pmd_t *pmd = (pmd_t *)__get_free_page(gfp); if (!pmd) failed = true; if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { free_page((unsigned long)pmd); pmd = NULL; failed = true; } if (pmd) mm_inc_nr_pmds(mm); pmds[i] = pmd; } if (failed) { free_pmds(mm, pmds, count); return -ENOMEM; } return 0; } /* * Mop up any pmd pages which may still be attached to the pgd. * Normally they will be freed by munmap/exit_mmap, but any pmd we * preallocate which never got a corresponding vma will need to be * freed manually. */ static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp) { pgd_t pgd = *pgdp; if (pgd_val(pgd) != 0) { pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); *pgdp = native_make_pgd(0); paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); pmd_free(mm, pmd); mm_dec_nr_pmds(mm); } } static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) { int i; for (i = 0; i < PREALLOCATED_PMDS; i++) mop_up_one_pmd(mm, &pgdp[i]); #ifdef CONFIG_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; pgdp = kernel_to_user_pgdp(pgdp); for (i = 0; i < PREALLOCATED_USER_PMDS; i++) mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]); #endif } static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) { p4d_t *p4d; pud_t *pud; int i; if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ return; p4d = p4d_offset(pgd, 0); pud = pud_offset(p4d, 0); for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { pmd_t *pmd = pmds[i]; if (i >= KERNEL_PGD_BOUNDARY) memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), sizeof(pmd_t) * PTRS_PER_PMD); pud_populate(mm, pud, pmd); } } #ifdef CONFIG_PAGE_TABLE_ISOLATION static void pgd_prepopulate_user_pmd(struct mm_struct *mm, pgd_t *k_pgd, pmd_t *pmds[]) { pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir); pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); p4d_t *u_p4d; pud_t *u_pud; int i; u_p4d = p4d_offset(u_pgd, 0); u_pud = pud_offset(u_p4d, 0); s_pgd += KERNEL_PGD_BOUNDARY; u_pud += KERNEL_PGD_BOUNDARY; for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) { pmd_t *pmd = pmds[i]; memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd), sizeof(pmd_t) * PTRS_PER_PMD); pud_populate(mm, u_pud, pmd); } } #else static void pgd_prepopulate_user_pmd(struct mm_struct *mm, pgd_t *k_pgd, pmd_t *pmds[]) { } #endif /* * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also * assumes that pgd should be in one page. * * But kernel with PAE paging that is not running as a Xen domain * only needs to allocate 32 bytes for pgd instead of one page. */ #ifdef CONFIG_X86_PAE #include #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) #define PGD_ALIGN 32 static struct kmem_cache *pgd_cache; static int __init pgd_cache_init(void) { /* * When PAE kernel is running as a Xen domain, it does not use * shared kernel pmd. And this requires a whole page for pgd. */ if (!SHARED_KERNEL_PMD) return 0; /* * when PAE kernel is not running as a Xen domain, it uses * shared kernel pmd. Shared kernel pmd does not require a whole * page for pgd. We are able to just allocate a 32-byte for pgd. * During boot time, we create a 32-byte slab for pgd table allocation. */ pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, SLAB_PANIC, NULL); return 0; } core_initcall(pgd_cache_init); static inline pgd_t *_pgd_alloc(void) { /* * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. * We allocate one page for pgd. */ if (!SHARED_KERNEL_PMD) return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER); /* * Now PAE kernel is not running as a Xen domain. We can allocate * a 32-byte slab for pgd to save memory space. */ return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); } static inline void _pgd_free(pgd_t *pgd) { if (!SHARED_KERNEL_PMD) free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); else kmem_cache_free(pgd_cache, pgd); } #else static inline pgd_t *_pgd_alloc(void) { return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER); } static inline void _pgd_free(pgd_t *pgd) { free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); } #endif /* CONFIG_X86_PAE */ pgd_t *pgd_alloc(struct mm_struct *mm) { pgd_t *pgd; pmd_t *u_pmds[PREALLOCATED_USER_PMDS]; pmd_t *pmds[PREALLOCATED_PMDS]; pgd = _pgd_alloc(); if (pgd == NULL) goto out; mm->pgd = pgd; if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0) goto out_free_pgd; if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0) goto out_free_pmds; if (paravirt_pgd_alloc(mm) != 0) goto out_free_user_pmds; /* * Make sure that pre-populating the pmds is atomic with * respect to anything walking the pgd_list, so that they * never see a partially populated pgd. */ spin_lock(&pgd_lock); pgd_ctor(mm, pgd); pgd_prepopulate_pmd(mm, pgd, pmds); pgd_prepopulate_user_pmd(mm, pgd, u_pmds); spin_unlock(&pgd_lock); return pgd; out_free_user_pmds: free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS); out_free_pmds: free_pmds(mm, pmds, PREALLOCATED_PMDS); out_free_pgd: _pgd_free(pgd); out: return NULL; } void pgd_free(struct mm_struct *mm, pgd_t *pgd) { pgd_mop_up_pmds(mm, pgd); pgd_dtor(pgd); paravirt_pgd_free(mm, pgd); _pgd_free(pgd); } /* * Used to set accessed or dirty bits in the page table entries * on other architectures. On x86, the accessed and dirty bits * are tracked by hardware. However, do_wp_page calls this function * to also make the pte writeable at the same time the dirty bit is * set. In that case we do actually need to write the PTE. */ int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { int changed = !pte_same(*ptep, entry); if (changed && dirty) *ptep = entry; return changed; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { int changed = !pmd_same(*pmdp, entry); VM_BUG_ON(address & ~HPAGE_PMD_MASK); if (changed && dirty) { *pmdp = entry; /* * We had a write-protection fault here and changed the pmd * to to more permissive. No need to flush the TLB for that, * #PF is architecturally guaranteed to do that and in the * worst-case we'll generate a spurious fault. */ } return changed; } int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty) { int changed = !pud_same(*pudp, entry); VM_BUG_ON(address & ~HPAGE_PUD_MASK); if (changed && dirty) { *pudp = entry; /* * We had a write-protection fault here and changed the pud * to to more permissive. No need to flush the TLB for that, * #PF is architecturally guaranteed to do that and in the * worst-case we'll generate a spurious fault. */ } return changed; } #endif int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { int ret = 0; if (pte_young(*ptep)) ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, (unsigned long *) &ptep->pte); return ret; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { int ret = 0; if (pmd_young(*pmdp)) ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, (unsigned long *)pmdp); return ret; } int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp) { int ret = 0; if (pud_young(*pudp)) ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, (unsigned long *)pudp); return ret; } #endif int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* * On x86 CPUs, clearing the accessed bit without a TLB flush * doesn't cause data corruption. [ It could cause incorrect * page aging and the (mistaken) reclaim of hot pages, but the * chance of that should be relatively low. ] * * So as a performance optimization don't flush the TLB when * clearing the accessed bit, it will eventually be flushed by * a context switch or a VM operation anyway. [ In the rare * event of it not getting flushed for a long time the delay * shouldn't really matter because there's no real memory * pressure for swapout to react to. ] */ return ptep_test_and_clear_young(vma, address, ptep); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { int young; VM_BUG_ON(address & ~HPAGE_PMD_MASK); young = pmdp_test_and_clear_young(vma, address, pmdp); if (young) flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); return young; } #endif /** * reserve_top_address - reserves a hole in the top of kernel address space * @reserve - size of hole to reserve * * Can be used to relocate the fixmap area and poke a hole in the top * of kernel address space to make room for a hypervisor. */ void __init reserve_top_address(unsigned long reserve) { #ifdef CONFIG_X86_32 BUG_ON(fixmaps_set > 0); __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", -reserve, __FIXADDR_TOP + PAGE_SIZE); #endif } int fixmaps_set; void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) { unsigned long address = __fix_to_virt(idx); if (idx >= __end_of_fixed_addresses) { BUG(); return; } set_pte_vaddr(address, pte); fixmaps_set++; } void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t flags) { /* Sanitize 'prot' against any unsupported bits: */ pgprot_val(flags) &= __default_kernel_pte_mask; __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); } #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP #ifdef CONFIG_X86_5LEVEL /** * p4d_set_huge - setup kernel P4D mapping * * No 512GB pages yet -- always return 0 */ int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } /** * p4d_clear_huge - clear kernel P4D mapping when it is set * * No 512GB pages yet -- always return 0 */ int p4d_clear_huge(p4d_t *p4d) { return 0; } #endif /** * pud_set_huge - setup kernel PUD mapping * * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this * function sets up a huge page only if any of the following conditions are met: * * - MTRRs are disabled, or * * - MTRRs are enabled and the range is completely covered by a single MTRR, or * * - MTRRs are enabled and the corresponding MTRR memory type is WB, which * has no effect on the requested PAT memory type. * * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger * page mapping attempt fails. * * Returns 1 on success and 0 on failure. */ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) { u8 mtrr, uniform; mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && (mtrr != MTRR_TYPE_WRBACK)) return 0; /* Bail out if we are we on a populated non-leaf entry: */ if (pud_present(*pud) && !pud_huge(*pud)) return 0; prot = pgprot_4k_2_large(prot); set_pte((pte_t *)pud, pfn_pte( (u64)addr >> PAGE_SHIFT, __pgprot(pgprot_val(prot) | _PAGE_PSE))); return 1; } /** * pmd_set_huge - setup kernel PMD mapping * * See text over pud_set_huge() above. * * Returns 1 on success and 0 on failure. */ int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { u8 mtrr, uniform; mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && (mtrr != MTRR_TYPE_WRBACK)) { pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", __func__, addr, addr + PMD_SIZE); return 0; } /* Bail out if we are we on a populated non-leaf entry: */ if (pmd_present(*pmd) && !pmd_huge(*pmd)) return 0; prot = pgprot_4k_2_large(prot); set_pte((pte_t *)pmd, pfn_pte( (u64)addr >> PAGE_SHIFT, __pgprot(pgprot_val(prot) | _PAGE_PSE))); return 1; } /** * pud_clear_huge - clear kernel PUD mapping when it is set * * Returns 1 on success and 0 on failure (no PUD map is found). */ int pud_clear_huge(pud_t *pud) { if (pud_large(*pud)) { pud_clear(pud); return 1; } return 0; } /** * pmd_clear_huge - clear kernel PMD mapping when it is set * * Returns 1 on success and 0 on failure (no PMD map is found). */ int pmd_clear_huge(pmd_t *pmd) { if (pmd_large(*pmd)) { pmd_clear(pmd); return 1; } return 0; } #ifdef CONFIG_X86_64 /** * pud_free_pmd_page - Clear pud entry and free pmd page. * @pud: Pointer to a PUD. * @addr: Virtual address associated with pud. * * Context: The pud range has been unmapped and TLB purged. * Return: 1 if clearing the entry succeeded. 0 otherwise. * * NOTE: Callers must allow a single page allocation. */ int pud_free_pmd_page(pud_t *pud, unsigned long addr) { pmd_t *pmd, *pmd_sv; pte_t *pte; int i; if (pud_none(*pud)) return 1; pmd = (pmd_t *)pud_page_vaddr(*pud); pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL); if (!pmd_sv) return 0; for (i = 0; i < PTRS_PER_PMD; i++) { pmd_sv[i] = pmd[i]; if (!pmd_none(pmd[i])) pmd_clear(&pmd[i]); } pud_clear(pud); /* INVLPG to clear all paging-structure caches */ flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); for (i = 0; i < PTRS_PER_PMD; i++) { if (!pmd_none(pmd_sv[i])) { pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]); free_page((unsigned long)pte); } } free_page((unsigned long)pmd_sv); free_page((unsigned long)pmd); return 1; } /** * pmd_free_pte_page - Clear pmd entry and free pte page. * @pmd: Pointer to a PMD. * @addr: Virtual address associated with pmd. * * Context: The pmd range has been unmapped and TLB purged. * Return: 1 if clearing the entry succeeded. 0 otherwise. */ int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { pte_t *pte; if (pmd_none(*pmd)) return 1; pte = (pte_t *)pmd_page_vaddr(*pmd); pmd_clear(pmd); /* INVLPG to clear all paging-structure caches */ flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); free_page((unsigned long)pte); return 1; } #else /* !CONFIG_X86_64 */ int pud_free_pmd_page(pud_t *pud, unsigned long addr) { return pud_none(*pud); } /* * Disable free page handling on x86-PAE. This assures that ioremap() * does not update sync'd pmd entries. See vmalloc_sync_one(). */ int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { return pmd_none(*pmd); } #endif /* CONFIG_X86_64 */ #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */