// SPDX-License-Identifier: GPL-2.0 #define DISABLE_BRANCH_PROFILING #define pr_fmt(fmt) "kasan: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include extern struct range pfn_mapped[E820_MAX_ENTRIES]; static p4d_t tmp_p4d_table[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); static __init void *early_alloc(size_t size, int nid) { return memblock_virt_alloc_try_nid_nopanic(size, size, __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid); } static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, int nid) { pte_t *pte; if (pmd_none(*pmd)) { void *p; if (boot_cpu_has(X86_FEATURE_PSE) && ((end - addr) == PMD_SIZE) && IS_ALIGNED(addr, PMD_SIZE)) { p = early_alloc(PMD_SIZE, nid); if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL)) return; else if (p) memblock_free(__pa(p), PMD_SIZE); } p = early_alloc(PAGE_SIZE, nid); pmd_populate_kernel(&init_mm, pmd, p); } pte = pte_offset_kernel(pmd, addr); do { pte_t entry; void *p; if (!pte_none(*pte)) continue; p = early_alloc(PAGE_SIZE, nid); entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL); set_pte_at(&init_mm, addr, pte, entry); } while (pte++, addr += PAGE_SIZE, addr != end); } static void __init kasan_populate_pud(pud_t *pud, unsigned long addr, unsigned long end, int nid) { pmd_t *pmd; unsigned long next; if (pud_none(*pud)) { void *p; if (boot_cpu_has(X86_FEATURE_GBPAGES) && ((end - addr) == PUD_SIZE) && IS_ALIGNED(addr, PUD_SIZE)) { p = early_alloc(PUD_SIZE, nid); if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL)) return; else if (p) memblock_free(__pa(p), PUD_SIZE); } p = early_alloc(PAGE_SIZE, nid); pud_populate(&init_mm, pud, p); } pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (!pmd_large(*pmd)) kasan_populate_pmd(pmd, addr, next, nid); } while (pmd++, addr = next, addr != end); } static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, int nid) { pud_t *pud; unsigned long next; if (p4d_none(*p4d)) { void *p = early_alloc(PAGE_SIZE, nid); p4d_populate(&init_mm, p4d, p); } pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (!pud_large(*pud)) kasan_populate_pud(pud, addr, next, nid); } while (pud++, addr = next, addr != end); } static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, int nid) { void *p; p4d_t *p4d; unsigned long next; if (pgd_none(*pgd)) { p = early_alloc(PAGE_SIZE, nid); pgd_populate(&init_mm, pgd, p); } p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); kasan_populate_p4d(p4d, addr, next, nid); } while (p4d++, addr = next, addr != end); } static void __init kasan_populate_shadow(unsigned long addr, unsigned long end, int nid) { pgd_t *pgd; unsigned long next; addr = addr & PAGE_MASK; end = round_up(end, PAGE_SIZE); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); kasan_populate_pgd(pgd, addr, next, nid); } while (pgd++, addr = next, addr != end); } static void __init map_range(struct range *range) { unsigned long start; unsigned long end; start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start)); end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end)); kasan_populate_shadow(start, end, early_pfn_to_nid(range->start)); } static void __init clear_pgds(unsigned long start, unsigned long end) { pgd_t *pgd; /* See comment in kasan_init() */ unsigned long pgd_end = end & PGDIR_MASK; for (; start < pgd_end; start += PGDIR_SIZE) { pgd = pgd_offset_k(start); /* * With folded p4d, pgd_clear() is nop, use p4d_clear() * instead. */ if (CONFIG_PGTABLE_LEVELS < 5) p4d_clear(p4d_offset(pgd, start)); else pgd_clear(pgd); } pgd = pgd_offset_k(start); for (; start < end; start += P4D_SIZE) p4d_clear(p4d_offset(pgd, start)); } static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr) { unsigned long p4d; if (!IS_ENABLED(CONFIG_X86_5LEVEL)) return (p4d_t *)pgd; p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK; p4d += __START_KERNEL_map - phys_base; return (p4d_t *)p4d + p4d_index(addr); } static void __init kasan_early_p4d_populate(pgd_t *pgd, unsigned long addr, unsigned long end) { pgd_t pgd_entry; p4d_t *p4d, p4d_entry; unsigned long next; if (pgd_none(*pgd)) { pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d)); set_pgd(pgd, pgd_entry); } p4d = early_p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (!p4d_none(*p4d)) continue; p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud)); set_p4d(p4d, p4d_entry); } while (p4d++, addr = next, addr != end && p4d_none(*p4d)); } static void __init kasan_map_early_shadow(pgd_t *pgd) { /* See comment in kasan_init() */ unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK; unsigned long end = KASAN_SHADOW_END; unsigned long next; pgd += pgd_index(addr); do { next = pgd_addr_end(addr, end); kasan_early_p4d_populate(pgd, addr, next); } while (pgd++, addr = next, addr != end); } #ifdef CONFIG_KASAN_INLINE static int kasan_die_handler(struct notifier_block *self, unsigned long val, void *data) { if (val == DIE_GPF) { pr_emerg("CONFIG_KASAN_INLINE enabled\n"); pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n"); } return NOTIFY_OK; } static struct notifier_block kasan_die_notifier = { .notifier_call = kasan_die_handler, }; #endif void __init kasan_early_init(void) { int i; pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC; pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE; pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE; p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE; for (i = 0; i < PTRS_PER_PTE; i++) kasan_zero_pte[i] = __pte(pte_val); for (i = 0; i < PTRS_PER_PMD; i++) kasan_zero_pmd[i] = __pmd(pmd_val); for (i = 0; i < PTRS_PER_PUD; i++) kasan_zero_pud[i] = __pud(pud_val); for (i = 0; IS_ENABLED(CONFIG_X86_5LEVEL) && i < PTRS_PER_P4D; i++) kasan_zero_p4d[i] = __p4d(p4d_val); kasan_map_early_shadow(early_top_pgt); kasan_map_early_shadow(init_top_pgt); } void __init kasan_init(void) { int i; void *shadow_cpu_entry_begin, *shadow_cpu_entry_end; #ifdef CONFIG_KASAN_INLINE register_die_notifier(&kasan_die_notifier); #endif memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt)); /* * We use the same shadow offset for 4- and 5-level paging to * facilitate boot-time switching between paging modes. * As result in 5-level paging mode KASAN_SHADOW_START and * KASAN_SHADOW_END are not aligned to PGD boundary. * * KASAN_SHADOW_START doesn't share PGD with anything else. * We claim whole PGD entry to make things easier. * * KASAN_SHADOW_END lands in the last PGD entry and it collides with * bunch of things like kernel code, modules, EFI mapping, etc. * We need to take extra steps to not overwrite them. */ if (IS_ENABLED(CONFIG_X86_5LEVEL)) { void *ptr; ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END)); memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table)); set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)], __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE)); } load_cr3(early_top_pgt); __flush_tlb_all(); clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END); kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK), kasan_mem_to_shadow((void *)PAGE_OFFSET)); for (i = 0; i < E820_MAX_ENTRIES; i++) { if (pfn_mapped[i].end == 0) break; map_range(&pfn_mapped[i]); } kasan_populate_zero_shadow( kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM), kasan_mem_to_shadow((void *)__START_KERNEL_map)); kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext), (unsigned long)kasan_mem_to_shadow(_end), early_pfn_to_nid(__pa(_stext))); shadow_cpu_entry_begin = (void *)__fix_to_virt(FIX_CPU_ENTRY_AREA_BOTTOM); shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin); shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin, PAGE_SIZE); shadow_cpu_entry_end = (void *)(__fix_to_virt(FIX_CPU_ENTRY_AREA_TOP) + PAGE_SIZE); shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end); shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end, PAGE_SIZE); kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END), shadow_cpu_entry_begin); kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin, (unsigned long)shadow_cpu_entry_end, 0); kasan_populate_zero_shadow(shadow_cpu_entry_end, (void *)KASAN_SHADOW_END); load_cr3(init_top_pgt); __flush_tlb_all(); /* * kasan_zero_page has been used as early shadow memory, thus it may * contain some garbage. Now we can clear and write protect it, since * after the TLB flush no one should write to it. */ memset(kasan_zero_page, 0, PAGE_SIZE); for (i = 0; i < PTRS_PER_PTE; i++) { pte_t pte = __pte(__pa(kasan_zero_page) | __PAGE_KERNEL_RO | _PAGE_ENC); set_pte(&kasan_zero_pte[i], pte); } /* Flush TLBs again to be sure that write protection applied. */ __flush_tlb_all(); init_task.kasan_depth = 0; pr_info("KernelAddressSanitizer initialized\n"); }