/* * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc. * * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo * Moved from arch/x86/kernel/apic/io_apic.c. * Jiang Liu * Enable support of hierarchical irqdomains * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include struct apic_chip_data { struct irq_cfg cfg; cpumask_var_t domain; cpumask_var_t old_domain; u8 move_in_progress : 1; }; struct irq_domain *x86_vector_domain; static DEFINE_RAW_SPINLOCK(vector_lock); static cpumask_var_t vector_cpumask; static struct irq_chip lapic_controller; #ifdef CONFIG_X86_IO_APIC static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY]; #endif void lock_vector_lock(void) { /* Used to the online set of cpus does not change * during assign_irq_vector. */ raw_spin_lock(&vector_lock); } void unlock_vector_lock(void) { raw_spin_unlock(&vector_lock); } static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data) { if (!irq_data) return NULL; while (irq_data->parent_data) irq_data = irq_data->parent_data; return irq_data->chip_data; } struct irq_cfg *irqd_cfg(struct irq_data *irq_data) { struct apic_chip_data *data = apic_chip_data(irq_data); return data ? &data->cfg : NULL; } struct irq_cfg *irq_cfg(unsigned int irq) { return irqd_cfg(irq_get_irq_data(irq)); } static struct apic_chip_data *alloc_apic_chip_data(int node) { struct apic_chip_data *data; data = kzalloc_node(sizeof(*data), GFP_KERNEL, node); if (!data) return NULL; if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node)) goto out_data; if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node)) goto out_domain; return data; out_domain: free_cpumask_var(data->domain); out_data: kfree(data); return NULL; } static void free_apic_chip_data(struct apic_chip_data *data) { if (data) { free_cpumask_var(data->domain); free_cpumask_var(data->old_domain); kfree(data); } } static int __assign_irq_vector(int irq, struct apic_chip_data *d, const struct cpumask *mask) { /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; static int current_offset = VECTOR_OFFSET_START % 16; int cpu, err; if (d->move_in_progress) return -EBUSY; /* Only try and allocate irqs on cpus that are present */ err = -ENOSPC; cpumask_clear(d->old_domain); cpu = cpumask_first_and(mask, cpu_online_mask); while (cpu < nr_cpu_ids) { int new_cpu, vector, offset; apic->vector_allocation_domain(cpu, vector_cpumask, mask); if (cpumask_subset(vector_cpumask, d->domain)) { err = 0; if (cpumask_equal(vector_cpumask, d->domain)) break; /* * New cpumask using the vector is a proper subset of * the current in use mask. So cleanup the vector * allocation for the members that are not used anymore. */ cpumask_andnot(d->old_domain, d->domain, vector_cpumask); d->move_in_progress = cpumask_intersects(d->old_domain, cpu_online_mask); cpumask_and(d->domain, d->domain, vector_cpumask); break; } vector = current_vector; offset = current_offset; next: vector += 16; if (vector >= first_system_vector) { offset = (offset + 1) % 16; vector = FIRST_EXTERNAL_VECTOR + offset; } if (unlikely(current_vector == vector)) { cpumask_or(d->old_domain, d->old_domain, vector_cpumask); cpumask_andnot(vector_cpumask, mask, d->old_domain); cpu = cpumask_first_and(vector_cpumask, cpu_online_mask); continue; } if (test_bit(vector, used_vectors)) goto next; for_each_cpu_and(new_cpu, vector_cpumask, cpu_online_mask) { if (per_cpu(vector_irq, new_cpu)[vector] > VECTOR_UNDEFINED) goto next; } /* Found one! */ current_vector = vector; current_offset = offset; if (d->cfg.vector) { cpumask_copy(d->old_domain, d->domain); d->move_in_progress = cpumask_intersects(d->old_domain, cpu_online_mask); } for_each_cpu_and(new_cpu, vector_cpumask, cpu_online_mask) per_cpu(vector_irq, new_cpu)[vector] = irq; d->cfg.vector = vector; cpumask_copy(d->domain, vector_cpumask); err = 0; break; } if (!err) { /* cache destination APIC IDs into cfg->dest_apicid */ err = apic->cpu_mask_to_apicid_and(mask, d->domain, &d->cfg.dest_apicid); } return err; } static int assign_irq_vector(int irq, struct apic_chip_data *data, const struct cpumask *mask) { int err; unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); err = __assign_irq_vector(irq, data, mask); raw_spin_unlock_irqrestore(&vector_lock, flags); return err; } static int assign_irq_vector_policy(int irq, int node, struct apic_chip_data *data, struct irq_alloc_info *info) { if (info && info->mask) return assign_irq_vector(irq, data, info->mask); if (node != NUMA_NO_NODE && assign_irq_vector(irq, data, cpumask_of_node(node)) == 0) return 0; return assign_irq_vector(irq, data, apic->target_cpus()); } static void clear_irq_vector(int irq, struct apic_chip_data *data) { int cpu, vector; unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); BUG_ON(!data->cfg.vector); vector = data->cfg.vector; for_each_cpu_and(cpu, data->domain, cpu_online_mask) per_cpu(vector_irq, cpu)[vector] = VECTOR_UNDEFINED; data->cfg.vector = 0; cpumask_clear(data->domain); if (likely(!data->move_in_progress)) { raw_spin_unlock_irqrestore(&vector_lock, flags); return; } for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) { for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { if (per_cpu(vector_irq, cpu)[vector] != irq) continue; per_cpu(vector_irq, cpu)[vector] = VECTOR_UNDEFINED; break; } } data->move_in_progress = 0; raw_spin_unlock_irqrestore(&vector_lock, flags); } void init_irq_alloc_info(struct irq_alloc_info *info, const struct cpumask *mask) { memset(info, 0, sizeof(*info)); info->mask = mask; } void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) { if (src) *dst = *src; else memset(dst, 0, sizeof(*dst)); } static void x86_vector_free_irqs(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *irq_data; int i; for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i); if (irq_data && irq_data->chip_data) { clear_irq_vector(virq + i, irq_data->chip_data); free_apic_chip_data(irq_data->chip_data); #ifdef CONFIG_X86_IO_APIC if (virq + i < nr_legacy_irqs()) legacy_irq_data[virq + i] = NULL; #endif irq_domain_reset_irq_data(irq_data); } } } static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_alloc_info *info = arg; struct apic_chip_data *data; struct irq_data *irq_data; int i, err; if (disable_apic) return -ENXIO; /* Currently vector allocator can't guarantee contiguous allocations */ if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) return -ENOSYS; for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(domain, virq + i); BUG_ON(!irq_data); #ifdef CONFIG_X86_IO_APIC if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i]) data = legacy_irq_data[virq + i]; else #endif data = alloc_apic_chip_data(irq_data->node); if (!data) { err = -ENOMEM; goto error; } irq_data->chip = &lapic_controller; irq_data->chip_data = data; irq_data->hwirq = virq + i; err = assign_irq_vector_policy(virq, irq_data->node, data, info); if (err) goto error; } return 0; error: x86_vector_free_irqs(domain, virq, i + 1); return err; } static const struct irq_domain_ops x86_vector_domain_ops = { .alloc = x86_vector_alloc_irqs, .free = x86_vector_free_irqs, }; int __init arch_probe_nr_irqs(void) { int nr; if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) nr_irqs = NR_VECTORS * nr_cpu_ids; nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) /* * for MSI and HT dyn irq */ if (gsi_top <= NR_IRQS_LEGACY) nr += 8 * nr_cpu_ids; else nr += gsi_top * 16; #endif if (nr < nr_irqs) nr_irqs = nr; return nr_legacy_irqs(); } #ifdef CONFIG_X86_IO_APIC static void init_legacy_irqs(void) { int i, node = cpu_to_node(0); struct apic_chip_data *data; /* * For legacy IRQ's, start with assigning irq0 to irq15 to * ISA_IRQ_VECTOR(i) for all cpu's. */ for (i = 0; i < nr_legacy_irqs(); i++) { data = legacy_irq_data[i] = alloc_apic_chip_data(node); BUG_ON(!data); data->cfg.vector = ISA_IRQ_VECTOR(i); cpumask_setall(data->domain); irq_set_chip_data(i, data); } } #else static void init_legacy_irqs(void) { } #endif int __init arch_early_irq_init(void) { init_legacy_irqs(); x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops, NULL); BUG_ON(x86_vector_domain == NULL); irq_set_default_host(x86_vector_domain); arch_init_msi_domain(x86_vector_domain); arch_init_htirq_domain(x86_vector_domain); BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL)); return arch_early_ioapic_init(); } static void __setup_vector_irq(int cpu) { /* Initialize vector_irq on a new cpu */ int irq, vector; struct apic_chip_data *data; /* * vector_lock will make sure that we don't run into irq vector * assignments that might be happening on another cpu in parallel, * while we setup our initial vector to irq mappings. */ raw_spin_lock(&vector_lock); /* Mark the inuse vectors */ for_each_active_irq(irq) { data = apic_chip_data(irq_get_irq_data(irq)); if (!data) continue; if (!cpumask_test_cpu(cpu, data->domain)) continue; vector = data->cfg.vector; per_cpu(vector_irq, cpu)[vector] = irq; } /* Mark the free vectors */ for (vector = 0; vector < NR_VECTORS; ++vector) { irq = per_cpu(vector_irq, cpu)[vector]; if (irq <= VECTOR_UNDEFINED) continue; data = apic_chip_data(irq_get_irq_data(irq)); if (!cpumask_test_cpu(cpu, data->domain)) per_cpu(vector_irq, cpu)[vector] = VECTOR_UNDEFINED; } raw_spin_unlock(&vector_lock); } /* * Setup the vector to irq mappings. */ void setup_vector_irq(int cpu) { int irq; /* * On most of the platforms, legacy PIC delivers the interrupts on the * boot cpu. But there are certain platforms where PIC interrupts are * delivered to multiple cpu's. If the legacy IRQ is handled by the * legacy PIC, for the new cpu that is coming online, setup the static * legacy vector to irq mapping: */ for (irq = 0; irq < nr_legacy_irqs(); irq++) per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq; __setup_vector_irq(cpu); } static int apic_retrigger_irq(struct irq_data *irq_data) { struct apic_chip_data *data = apic_chip_data(irq_data); unsigned long flags; int cpu; raw_spin_lock_irqsave(&vector_lock, flags); cpu = cpumask_first_and(data->domain, cpu_online_mask); apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector); raw_spin_unlock_irqrestore(&vector_lock, flags); return 1; } void apic_ack_edge(struct irq_data *data) { irq_complete_move(irqd_cfg(data)); irq_move_irq(data); ack_APIC_irq(); } static int apic_set_affinity(struct irq_data *irq_data, const struct cpumask *dest, bool force) { struct apic_chip_data *data = irq_data->chip_data; int err, irq = irq_data->irq; if (!config_enabled(CONFIG_SMP)) return -EPERM; if (!cpumask_intersects(dest, cpu_online_mask)) return -EINVAL; err = assign_irq_vector(irq, data, dest); if (err) { struct irq_data *top = irq_get_irq_data(irq); if (assign_irq_vector(irq, data, top->affinity)) pr_err("Failed to recover vector for irq %d\n", irq); return err; } return IRQ_SET_MASK_OK; } static struct irq_chip lapic_controller = { .irq_ack = apic_ack_edge, .irq_set_affinity = apic_set_affinity, .irq_retrigger = apic_retrigger_irq, }; #ifdef CONFIG_SMP static void __send_cleanup_vector(struct apic_chip_data *data) { cpumask_var_t cleanup_mask; if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) { unsigned int i; for_each_cpu_and(i, data->old_domain, cpu_online_mask) apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR); } else { cpumask_and(cleanup_mask, data->old_domain, cpu_online_mask); apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); free_cpumask_var(cleanup_mask); } data->move_in_progress = 0; } void send_cleanup_vector(struct irq_cfg *cfg) { struct apic_chip_data *data; data = container_of(cfg, struct apic_chip_data, cfg); if (data->move_in_progress) __send_cleanup_vector(data); } asmlinkage __visible void smp_irq_move_cleanup_interrupt(void) { unsigned vector, me; entering_ack_irq(); me = smp_processor_id(); for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { int irq; unsigned int irr; struct irq_desc *desc; struct apic_chip_data *data; irq = __this_cpu_read(vector_irq[vector]); if (irq <= VECTOR_UNDEFINED) continue; desc = irq_to_desc(irq); if (!desc) continue; data = apic_chip_data(&desc->irq_data); if (!data) continue; raw_spin_lock(&desc->lock); /* * Check if the irq migration is in progress. If so, we * haven't received the cleanup request yet for this irq. */ if (data->move_in_progress) goto unlock; if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain)) goto unlock; irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); /* * Check if the vector that needs to be cleanedup is * registered at the cpu's IRR. If so, then this is not * the best time to clean it up. Lets clean it up in the * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR * to myself. */ if (irr & (1 << (vector % 32))) { apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); goto unlock; } __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); unlock: raw_spin_unlock(&desc->lock); } exiting_irq(); } static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) { unsigned me; struct apic_chip_data *data; data = container_of(cfg, struct apic_chip_data, cfg); if (likely(!data->move_in_progress)) return; me = smp_processor_id(); if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain)) __send_cleanup_vector(data); } void irq_complete_move(struct irq_cfg *cfg) { __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); } void irq_force_complete_move(int irq) { struct irq_cfg *cfg = irq_cfg(irq); if (cfg) __irq_complete_move(cfg, cfg->vector); } #endif static void __init print_APIC_field(int base) { int i; printk(KERN_DEBUG); for (i = 0; i < 8; i++) pr_cont("%08x", apic_read(base + i*0x10)); pr_cont("\n"); } static void __init print_local_APIC(void *dummy) { unsigned int i, v, ver, maxlvt; u64 icr; pr_debug("printing local APIC contents on CPU#%d/%d:\n", smp_processor_id(), hard_smp_processor_id()); v = apic_read(APIC_ID); pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); v = apic_read(APIC_LVR); pr_info("... APIC VERSION: %08x\n", v); ver = GET_APIC_VERSION(v); maxlvt = lapic_get_maxlvt(); v = apic_read(APIC_TASKPRI); pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); /* !82489DX */ if (APIC_INTEGRATED(ver)) { if (!APIC_XAPIC(ver)) { v = apic_read(APIC_ARBPRI); pr_debug("... APIC ARBPRI: %08x (%02x)\n", v, v & APIC_ARBPRI_MASK); } v = apic_read(APIC_PROCPRI); pr_debug("... APIC PROCPRI: %08x\n", v); } /* * Remote read supported only in the 82489DX and local APIC for * Pentium processors. */ if (!APIC_INTEGRATED(ver) || maxlvt == 3) { v = apic_read(APIC_RRR); pr_debug("... APIC RRR: %08x\n", v); } v = apic_read(APIC_LDR); pr_debug("... APIC LDR: %08x\n", v); if (!x2apic_enabled()) { v = apic_read(APIC_DFR); pr_debug("... APIC DFR: %08x\n", v); } v = apic_read(APIC_SPIV); pr_debug("... APIC SPIV: %08x\n", v); pr_debug("... APIC ISR field:\n"); print_APIC_field(APIC_ISR); pr_debug("... APIC TMR field:\n"); print_APIC_field(APIC_TMR); pr_debug("... APIC IRR field:\n"); print_APIC_field(APIC_IRR); /* !82489DX */ if (APIC_INTEGRATED(ver)) { /* Due to the Pentium erratum 3AP. */ if (maxlvt > 3) apic_write(APIC_ESR, 0); v = apic_read(APIC_ESR); pr_debug("... APIC ESR: %08x\n", v); } icr = apic_icr_read(); pr_debug("... APIC ICR: %08x\n", (u32)icr); pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); v = apic_read(APIC_LVTT); pr_debug("... APIC LVTT: %08x\n", v); if (maxlvt > 3) { /* PC is LVT#4. */ v = apic_read(APIC_LVTPC); pr_debug("... APIC LVTPC: %08x\n", v); } v = apic_read(APIC_LVT0); pr_debug("... APIC LVT0: %08x\n", v); v = apic_read(APIC_LVT1); pr_debug("... APIC LVT1: %08x\n", v); if (maxlvt > 2) { /* ERR is LVT#3. */ v = apic_read(APIC_LVTERR); pr_debug("... APIC LVTERR: %08x\n", v); } v = apic_read(APIC_TMICT); pr_debug("... APIC TMICT: %08x\n", v); v = apic_read(APIC_TMCCT); pr_debug("... APIC TMCCT: %08x\n", v); v = apic_read(APIC_TDCR); pr_debug("... APIC TDCR: %08x\n", v); if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { v = apic_read(APIC_EFEAT); maxlvt = (v >> 16) & 0xff; pr_debug("... APIC EFEAT: %08x\n", v); v = apic_read(APIC_ECTRL); pr_debug("... APIC ECTRL: %08x\n", v); for (i = 0; i < maxlvt; i++) { v = apic_read(APIC_EILVTn(i)); pr_debug("... APIC EILVT%d: %08x\n", i, v); } } pr_cont("\n"); } static void __init print_local_APICs(int maxcpu) { int cpu; if (!maxcpu) return; preempt_disable(); for_each_online_cpu(cpu) { if (cpu >= maxcpu) break; smp_call_function_single(cpu, print_local_APIC, NULL, 1); } preempt_enable(); } static void __init print_PIC(void) { unsigned int v; unsigned long flags; if (!nr_legacy_irqs()) return; pr_debug("\nprinting PIC contents\n"); raw_spin_lock_irqsave(&i8259A_lock, flags); v = inb(0xa1) << 8 | inb(0x21); pr_debug("... PIC IMR: %04x\n", v); v = inb(0xa0) << 8 | inb(0x20); pr_debug("... PIC IRR: %04x\n", v); outb(0x0b, 0xa0); outb(0x0b, 0x20); v = inb(0xa0) << 8 | inb(0x20); outb(0x0a, 0xa0); outb(0x0a, 0x20); raw_spin_unlock_irqrestore(&i8259A_lock, flags); pr_debug("... PIC ISR: %04x\n", v); v = inb(0x4d1) << 8 | inb(0x4d0); pr_debug("... PIC ELCR: %04x\n", v); } static int show_lapic __initdata = 1; static __init int setup_show_lapic(char *arg) { int num = -1; if (strcmp(arg, "all") == 0) { show_lapic = CONFIG_NR_CPUS; } else { get_option(&arg, &num); if (num >= 0) show_lapic = num; } return 1; } __setup("show_lapic=", setup_show_lapic); static int __init print_ICs(void) { if (apic_verbosity == APIC_QUIET) return 0; print_PIC(); /* don't print out if apic is not there */ if (!cpu_has_apic && !apic_from_smp_config()) return 0; print_local_APICs(show_lapic); print_IO_APICs(); return 0; } late_initcall(print_ICs);