/* * X86 specific Hyper-V initialization code. * * Copyright (C) 2016, Microsoft, Inc. * * Author : K. Y. Srinivasan * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HYPERV_TSCPAGE static struct ms_hyperv_tsc_page *tsc_pg; struct ms_hyperv_tsc_page *hv_get_tsc_page(void) { return tsc_pg; } EXPORT_SYMBOL_GPL(hv_get_tsc_page); static u64 read_hv_clock_tsc(struct clocksource *arg) { u64 current_tick = hv_read_tsc_page(tsc_pg); if (current_tick == U64_MAX) rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick); return current_tick; } static struct clocksource hyperv_cs_tsc = { .name = "hyperv_clocksource_tsc_page", .rating = 400, .read = read_hv_clock_tsc, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #endif static u64 read_hv_clock_msr(struct clocksource *arg) { u64 current_tick; /* * Read the partition counter to get the current tick count. This count * is set to 0 when the partition is created and is incremented in * 100 nanosecond units. */ rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick); return current_tick; } static struct clocksource hyperv_cs_msr = { .name = "hyperv_clocksource_msr", .rating = 400, .read = read_hv_clock_msr, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; void *hv_hypercall_pg; EXPORT_SYMBOL_GPL(hv_hypercall_pg); struct clocksource *hyperv_cs; EXPORT_SYMBOL_GPL(hyperv_cs); u32 *hv_vp_index; EXPORT_SYMBOL_GPL(hv_vp_index); struct hv_vp_assist_page **hv_vp_assist_page; EXPORT_SYMBOL_GPL(hv_vp_assist_page); void __percpu **hyperv_pcpu_input_arg; EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg); u32 hv_max_vp_index; EXPORT_SYMBOL_GPL(hv_max_vp_index); static int hv_cpu_init(unsigned int cpu) { u64 msr_vp_index; struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()]; void **input_arg; input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); *input_arg = page_address(alloc_page(GFP_KERNEL)); hv_get_vp_index(msr_vp_index); hv_vp_index[smp_processor_id()] = msr_vp_index; if (msr_vp_index > hv_max_vp_index) hv_max_vp_index = msr_vp_index; if (!hv_vp_assist_page) return 0; if (!*hvp) *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL); if (*hvp) { u64 val; val = vmalloc_to_pfn(*hvp); val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) | HV_X64_MSR_VP_ASSIST_PAGE_ENABLE; wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val); } return 0; } static void (*hv_reenlightenment_cb)(void); static void hv_reenlightenment_notify(struct work_struct *dummy) { struct hv_tsc_emulation_status emu_status; rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); /* Don't issue the callback if TSC accesses are not emulated */ if (hv_reenlightenment_cb && emu_status.inprogress) hv_reenlightenment_cb(); } static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); void hyperv_stop_tsc_emulation(void) { u64 freq; struct hv_tsc_emulation_status emu_status; rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); emu_status.inprogress = 0; wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); tsc_khz = div64_u64(freq, 1000); } EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); static inline bool hv_reenlightenment_available(void) { /* * Check for required features and priviliges to make TSC frequency * change notifications work. */ return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS && ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT; } __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs) { entering_ack_irq(); inc_irq_stat(irq_hv_reenlightenment_count); schedule_delayed_work(&hv_reenlightenment_work, HZ/10); exiting_irq(); } void set_hv_tscchange_cb(void (*cb)(void)) { struct hv_reenlightenment_control re_ctrl = { .vector = HYPERV_REENLIGHTENMENT_VECTOR, .enabled = 1, .target_vp = hv_vp_index[smp_processor_id()] }; struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; if (!hv_reenlightenment_available()) { pr_warn("Hyper-V: reenlightenment support is unavailable\n"); return; } hv_reenlightenment_cb = cb; /* Make sure callback is registered before we write to MSRs */ wmb(); wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); } EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); void clear_hv_tscchange_cb(void) { struct hv_reenlightenment_control re_ctrl; if (!hv_reenlightenment_available()) return; rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); re_ctrl.enabled = 0; wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); hv_reenlightenment_cb = NULL; } EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); static int hv_cpu_die(unsigned int cpu) { struct hv_reenlightenment_control re_ctrl; unsigned int new_cpu; unsigned long flags; void **input_arg; void *input_pg = NULL; local_irq_save(flags); input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); input_pg = *input_arg; *input_arg = NULL; local_irq_restore(flags); free_page((unsigned long)input_pg); if (hv_vp_assist_page && hv_vp_assist_page[cpu]) wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0); if (hv_reenlightenment_cb == NULL) return 0; rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); if (re_ctrl.target_vp == hv_vp_index[cpu]) { /* Reassign to some other online CPU */ new_cpu = cpumask_any_but(cpu_online_mask, cpu); re_ctrl.target_vp = hv_vp_index[new_cpu]; wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); } return 0; } static int __init hv_pci_init(void) { int gen2vm = efi_enabled(EFI_BOOT); /* * For Generation-2 VM, we exit from pci_arch_init() by returning 0. * The purpose is to suppress the harmless warning: * "PCI: Fatal: No config space access function found" */ if (gen2vm) return 0; /* For Generation-1 VM, we'll proceed in pci_arch_init(). */ return 1; } /* * This function is to be invoked early in the boot sequence after the * hypervisor has been detected. * * 1. Setup the hypercall page. * 2. Register Hyper-V specific clocksource. * 3. Setup Hyper-V specific APIC entry points. */ void __init hyperv_init(void) { u64 guest_id, required_msrs; union hv_x64_msr_hypercall_contents hypercall_msr; int cpuhp, i; if (x86_hyper_type != X86_HYPER_MS_HYPERV) return; /* Absolutely required MSRs */ required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE | HV_X64_MSR_VP_INDEX_AVAILABLE; if ((ms_hyperv.features & required_msrs) != required_msrs) return; /* * Allocate the per-CPU state for the hypercall input arg. * If this allocation fails, we will not be able to setup * (per-CPU) hypercall input page and thus this failure is * fatal on Hyper-V. */ hyperv_pcpu_input_arg = alloc_percpu(void *); BUG_ON(hyperv_pcpu_input_arg == NULL); /* Allocate percpu VP index */ hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), GFP_KERNEL); if (!hv_vp_index) return; for (i = 0; i < num_possible_cpus(); i++) hv_vp_index[i] = VP_INVAL; hv_vp_assist_page = kcalloc(num_possible_cpus(), sizeof(*hv_vp_assist_page), GFP_KERNEL); if (!hv_vp_assist_page) { ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; goto free_vp_index; } cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online", hv_cpu_init, hv_cpu_die); if (cpuhp < 0) goto free_vp_assist_page; /* * Setup the hypercall page and enable hypercalls. * 1. Register the guest ID * 2. Enable the hypercall and register the hypercall page */ guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0); wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX); if (hv_hypercall_pg == NULL) { wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); goto remove_cpuhp_state; } rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); hypercall_msr.enable = 1; hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); hv_apic_init(); x86_init.pci.arch_init = hv_pci_init; /* * Register Hyper-V specific clocksource. */ #ifdef CONFIG_HYPERV_TSCPAGE if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) { union hv_x64_msr_hypercall_contents tsc_msr; tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL); if (!tsc_pg) goto register_msr_cs; hyperv_cs = &hyperv_cs_tsc; rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); tsc_msr.enable = 1; tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg); wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK; clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); return; } register_msr_cs: #endif /* * For 32 bit guests just use the MSR based mechanism for reading * the partition counter. */ hyperv_cs = &hyperv_cs_msr; if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE) clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100); return; remove_cpuhp_state: cpuhp_remove_state(cpuhp); free_vp_assist_page: kfree(hv_vp_assist_page); hv_vp_assist_page = NULL; free_vp_index: kfree(hv_vp_index); hv_vp_index = NULL; } /* * This routine is called before kexec/kdump, it does the required cleanup. */ void hyperv_cleanup(void) { union hv_x64_msr_hypercall_contents hypercall_msr; /* Reset our OS id */ wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); /* Reset the hypercall page */ hypercall_msr.as_uint64 = 0; wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); /* Reset the TSC page */ hypercall_msr.as_uint64 = 0; wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64); } EXPORT_SYMBOL_GPL(hyperv_cleanup); void hyperv_report_panic(struct pt_regs *regs, long err) { static bool panic_reported; u64 guest_id; /* * We prefer to report panic on 'die' chain as we have proper * registers to report, but if we miss it (e.g. on BUG()) we need * to report it on 'panic'. */ if (panic_reported) return; panic_reported = true; rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); wrmsrl(HV_X64_MSR_CRASH_P0, err); wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); /* * Let Hyper-V know there is crash data available */ wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); } EXPORT_SYMBOL_GPL(hyperv_report_panic); /** * hyperv_report_panic_msg - report panic message to Hyper-V * @pa: physical address of the panic page containing the message * @size: size of the message in the page */ void hyperv_report_panic_msg(phys_addr_t pa, size_t size) { /* * P3 to contain the physical address of the panic page & P4 to * contain the size of the panic data in that page. Rest of the * registers are no-op when the NOTIFY_MSG flag is set. */ wrmsrl(HV_X64_MSR_CRASH_P0, 0); wrmsrl(HV_X64_MSR_CRASH_P1, 0); wrmsrl(HV_X64_MSR_CRASH_P2, 0); wrmsrl(HV_X64_MSR_CRASH_P3, pa); wrmsrl(HV_X64_MSR_CRASH_P4, size); /* * Let Hyper-V know there is crash data available along with * the panic message. */ wrmsrl(HV_X64_MSR_CRASH_CTL, (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); } EXPORT_SYMBOL_GPL(hyperv_report_panic_msg); bool hv_is_hyperv_initialized(void) { union hv_x64_msr_hypercall_contents hypercall_msr; /* * Ensure that we're really on Hyper-V, and not a KVM or Xen * emulation of Hyper-V */ if (x86_hyper_type != X86_HYPER_MS_HYPERV) return false; /* * Verify that earlier initialization succeeded by checking * that the hypercall page is setup */ hypercall_msr.as_uint64 = 0; rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); return hypercall_msr.enable; } EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);