// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2016,2017 IBM Corporation. */ #define pr_fmt(fmt) "xive: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xive-internal.h" #undef DEBUG_FLUSH #undef DEBUG_ALL #ifdef DEBUG_ALL #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ smp_processor_id(), ## __VA_ARGS__) #else #define DBG_VERBOSE(fmt...) do { } while(0) #endif bool __xive_enabled; EXPORT_SYMBOL_GPL(__xive_enabled); bool xive_cmdline_disabled; /* We use only one priority for now */ static u8 xive_irq_priority; /* TIMA exported to KVM */ void __iomem *xive_tima; EXPORT_SYMBOL_GPL(xive_tima); u32 xive_tima_offset; /* Backend ops */ static const struct xive_ops *xive_ops; /* Our global interrupt domain */ static struct irq_domain *xive_irq_domain; #ifdef CONFIG_SMP /* The IPIs all use the same logical irq number */ static u32 xive_ipi_irq; #endif /* Xive state for each CPU */ static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); /* An invalid CPU target */ #define XIVE_INVALID_TARGET (-1) /* * Read the next entry in a queue, return its content if it's valid * or 0 if there is no new entry. * * The queue pointer is moved forward unless "just_peek" is set */ static u32 xive_read_eq(struct xive_q *q, bool just_peek) { u32 cur; if (!q->qpage) return 0; cur = be32_to_cpup(q->qpage + q->idx); /* Check valid bit (31) vs current toggle polarity */ if ((cur >> 31) == q->toggle) return 0; /* If consuming from the queue ... */ if (!just_peek) { /* Next entry */ q->idx = (q->idx + 1) & q->msk; /* Wrap around: flip valid toggle */ if (q->idx == 0) q->toggle ^= 1; } /* Mask out the valid bit (31) */ return cur & 0x7fffffff; } /* * Scans all the queue that may have interrupts in them * (based on "pending_prio") in priority order until an * interrupt is found or all the queues are empty. * * Then updates the CPPR (Current Processor Priority * Register) based on the most favored interrupt found * (0xff if none) and return what was found (0 if none). * * If just_peek is set, return the most favored pending * interrupt if any but don't update the queue pointers. * * Note: This function can operate generically on any number * of queues (up to 8). The current implementation of the XIVE * driver only uses a single queue however. * * Note2: This will also "flush" "the pending_count" of a queue * into the "count" when that queue is observed to be empty. * This is used to keep track of the amount of interrupts * targetting a queue. When an interrupt is moved away from * a queue, we only decrement that queue count once the queue * has been observed empty to avoid races. */ static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) { u32 irq = 0; u8 prio = 0; /* Find highest pending priority */ while (xc->pending_prio != 0) { struct xive_q *q; prio = ffs(xc->pending_prio) - 1; DBG_VERBOSE("scan_irq: trying prio %d\n", prio); /* Try to fetch */ irq = xive_read_eq(&xc->queue[prio], just_peek); /* Found something ? That's it */ if (irq) { if (just_peek || irq_to_desc(irq)) break; /* * We should never get here; if we do then we must * have failed to synchronize the interrupt properly * when shutting it down. */ pr_crit("xive: got interrupt %d without descriptor, dropping\n", irq); WARN_ON(1); continue; } /* Clear pending bits */ xc->pending_prio &= ~(1 << prio); /* * Check if the queue count needs adjusting due to * interrupts being moved away. See description of * xive_dec_target_count() */ q = &xc->queue[prio]; if (atomic_read(&q->pending_count)) { int p = atomic_xchg(&q->pending_count, 0); if (p) { WARN_ON(p > atomic_read(&q->count)); atomic_sub(p, &q->count); } } } /* If nothing was found, set CPPR to 0xff */ if (irq == 0) prio = 0xff; /* Update HW CPPR to match if necessary */ if (prio != xc->cppr) { DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); xc->cppr = prio; out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); } return irq; } /* * This is used to perform the magic loads from an ESB * described in xive-regs.h */ static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) { u64 val; if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) offset |= XIVE_ESB_LD_ST_MO; /* Handle HW errata */ if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) offset |= offset << 4; if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); else val = in_be64(xd->eoi_mmio + offset); return (u8)val; } static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) { /* Handle HW errata */ if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) offset |= offset << 4; if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) xive_ops->esb_rw(xd->hw_irq, offset, data, 1); else out_be64(xd->eoi_mmio + offset, data); } #ifdef CONFIG_XMON static notrace void xive_dump_eq(const char *name, struct xive_q *q) { u32 i0, i1, idx; if (!q->qpage) return; idx = q->idx; i0 = be32_to_cpup(q->qpage + idx); idx = (idx + 1) & q->msk; i1 = be32_to_cpup(q->qpage + idx); xmon_printf("%s idx=%d T=%d %08x %08x ...", name, q->idx, q->toggle, i0, i1); } notrace void xmon_xive_do_dump(int cpu) { struct xive_cpu *xc = per_cpu(xive_cpu, cpu); xmon_printf("CPU %d:", cpu); if (xc) { xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); #ifdef CONFIG_SMP { u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi, val & XIVE_ESB_VAL_P ? 'P' : '-', val & XIVE_ESB_VAL_Q ? 'Q' : '-'); } #endif xive_dump_eq("EQ", &xc->queue[xive_irq_priority]); } xmon_printf("\n"); } int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d) { struct irq_chip *chip = irq_data_get_irq_chip(d); int rc; u32 target; u8 prio; u32 lirq; if (!is_xive_irq(chip)) return -EINVAL; rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); if (rc) { xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); return rc; } xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", hw_irq, target, prio, lirq); if (d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); u64 val = xive_esb_read(xd, XIVE_ESB_GET); xmon_printf("flags=%c%c%c PQ=%c%c", xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', val & XIVE_ESB_VAL_P ? 'P' : '-', val & XIVE_ESB_VAL_Q ? 'Q' : '-'); } xmon_printf("\n"); return 0; } #endif /* CONFIG_XMON */ static unsigned int xive_get_irq(void) { struct xive_cpu *xc = __this_cpu_read(xive_cpu); u32 irq; /* * This can be called either as a result of a HW interrupt or * as a "replay" because EOI decided there was still something * in one of the queues. * * First we perform an ACK cycle in order to update our mask * of pending priorities. This will also have the effect of * updating the CPPR to the most favored pending interrupts. * * In the future, if we have a way to differentiate a first * entry (on HW interrupt) from a replay triggered by EOI, * we could skip this on replays unless we soft-mask tells us * that a new HW interrupt occurred. */ xive_ops->update_pending(xc); DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); /* Scan our queue(s) for interrupts */ irq = xive_scan_interrupts(xc, false); DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", irq, xc->pending_prio); /* Return pending interrupt if any */ if (irq == XIVE_BAD_IRQ) return 0; return irq; } /* * After EOI'ing an interrupt, we need to re-check the queue * to see if another interrupt is pending since multiple * interrupts can coalesce into a single notification to the * CPU. * * If we find that there is indeed more in there, we call * force_external_irq_replay() to make Linux synthetize an * external interrupt on the next call to local_irq_restore(). */ static void xive_do_queue_eoi(struct xive_cpu *xc) { if (xive_scan_interrupts(xc, true) != 0) { DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); force_external_irq_replay(); } } /* * EOI an interrupt at the source. There are several methods * to do this depending on the HW version and source type */ static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) { xd->stale_p = false; /* If the XIVE supports the new "store EOI facility, use it */ if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { /* * The FW told us to call it. This happens for some * interrupt sources that need additional HW whacking * beyond the ESB manipulation. For example LPC interrupts * on P9 DD1.0 needed a latch to be clared in the LPC bridge * itself. The Firmware will take care of it. */ if (WARN_ON_ONCE(!xive_ops->eoi)) return; xive_ops->eoi(hw_irq); } else { u8 eoi_val; /* * Otherwise for EOI, we use the special MMIO that does * a clear of both P and Q and returns the old Q, * except for LSIs where we use the "EOI cycle" special * load. * * This allows us to then do a re-trigger if Q was set * rather than synthesizing an interrupt in software * * For LSIs the HW EOI cycle is used rather than PQ bits, * as they are automatically re-triggred in HW when still * pending. */ if (xd->flags & XIVE_IRQ_FLAG_LSI) xive_esb_read(xd, XIVE_ESB_LOAD_EOI); else { eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); DBG_VERBOSE("eoi_val=%x\n", eoi_val); /* Re-trigger if needed */ if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) out_be64(xd->trig_mmio, 0); } } } /* irq_chip eoi callback, called with irq descriptor lock held */ static void xive_irq_eoi(struct irq_data *d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); struct xive_cpu *xc = __this_cpu_read(xive_cpu); DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", d->irq, irqd_to_hwirq(d), xc->pending_prio); /* * EOI the source if it hasn't been disabled and hasn't * been passed-through to a KVM guest */ if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && !(xd->flags & XIVE_IRQ_NO_EOI)) xive_do_source_eoi(irqd_to_hwirq(d), xd); else xd->stale_p = true; /* * Clear saved_p to indicate that it's no longer occupying * a queue slot on the target queue */ xd->saved_p = false; /* Check for more work in the queue */ xive_do_queue_eoi(xc); } /* * Helper used to mask and unmask an interrupt source. This * is only called for normal interrupts that do not require * masking/unmasking via firmware. */ static void xive_do_source_set_mask(struct xive_irq_data *xd, bool mask) { u64 val; /* * If the interrupt had P set, it may be in a queue. * * We need to make sure we don't re-enable it until it * has been fetched from that queue and EOId. We keep * a copy of that P state and use it to restore the * ESB accordingly on unmask. */ if (mask) { val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) xd->saved_p = true; xd->stale_p = false; } else if (xd->saved_p) { xive_esb_read(xd, XIVE_ESB_SET_PQ_10); xd->saved_p = false; } else { xive_esb_read(xd, XIVE_ESB_SET_PQ_00); xd->stale_p = false; } } /* * Try to chose "cpu" as a new interrupt target. Increments * the queue accounting for that target if it's not already * full. */ static bool xive_try_pick_target(int cpu) { struct xive_cpu *xc = per_cpu(xive_cpu, cpu); struct xive_q *q = &xc->queue[xive_irq_priority]; int max; /* * Calculate max number of interrupts in that queue. * * We leave a gap of 1 just in case... */ max = (q->msk + 1) - 1; return !!atomic_add_unless(&q->count, 1, max); } /* * Un-account an interrupt for a target CPU. We don't directly * decrement q->count since the interrupt might still be present * in the queue. * * Instead increment a separate counter "pending_count" which * will be substracted from "count" later when that CPU observes * the queue to be empty. */ static void xive_dec_target_count(int cpu) { struct xive_cpu *xc = per_cpu(xive_cpu, cpu); struct xive_q *q = &xc->queue[xive_irq_priority]; if (WARN_ON(cpu < 0 || !xc)) { pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); return; } /* * We increment the "pending count" which will be used * to decrement the target queue count whenever it's next * processed and found empty. This ensure that we don't * decrement while we still have the interrupt there * occupying a slot. */ atomic_inc(&q->pending_count); } /* Find a tentative CPU target in a CPU mask */ static int xive_find_target_in_mask(const struct cpumask *mask, unsigned int fuzz) { int cpu, first, num, i; /* Pick up a starting point CPU in the mask based on fuzz */ num = min_t(int, cpumask_weight(mask), nr_cpu_ids); first = fuzz % num; /* Locate it */ cpu = cpumask_first(mask); for (i = 0; i < first && cpu < nr_cpu_ids; i++) cpu = cpumask_next(cpu, mask); /* Sanity check */ if (WARN_ON(cpu >= nr_cpu_ids)) cpu = cpumask_first(cpu_online_mask); /* Remember first one to handle wrap-around */ first = cpu; /* * Now go through the entire mask until we find a valid * target. */ do { /* * We re-check online as the fallback case passes us * an untested affinity mask */ if (cpu_online(cpu) && xive_try_pick_target(cpu)) return cpu; cpu = cpumask_next(cpu, mask); /* Wrap around */ if (cpu >= nr_cpu_ids) cpu = cpumask_first(mask); } while (cpu != first); return -1; } /* * Pick a target CPU for an interrupt. This is done at * startup or if the affinity is changed in a way that * invalidates the current target. */ static int xive_pick_irq_target(struct irq_data *d, const struct cpumask *affinity) { static unsigned int fuzz; struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); cpumask_var_t mask; int cpu = -1; /* * If we have chip IDs, first we try to build a mask of * CPUs matching the CPU and find a target in there */ if (xd->src_chip != XIVE_INVALID_CHIP_ID && zalloc_cpumask_var(&mask, GFP_ATOMIC)) { /* Build a mask of matching chip IDs */ for_each_cpu_and(cpu, affinity, cpu_online_mask) { struct xive_cpu *xc = per_cpu(xive_cpu, cpu); if (xc->chip_id == xd->src_chip) cpumask_set_cpu(cpu, mask); } /* Try to find a target */ if (cpumask_empty(mask)) cpu = -1; else cpu = xive_find_target_in_mask(mask, fuzz++); free_cpumask_var(mask); if (cpu >= 0) return cpu; fuzz--; } /* No chip IDs, fallback to using the affinity mask */ return xive_find_target_in_mask(affinity, fuzz++); } static unsigned int xive_irq_startup(struct irq_data *d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); int target, rc; xd->saved_p = false; xd->stale_p = false; pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", d->irq, hw_irq, d); #ifdef CONFIG_PCI_MSI /* * The generic MSI code returns with the interrupt disabled on the * card, using the MSI mask bits. Firmware doesn't appear to unmask * at that level, so we do it here by hand. */ if (irq_data_get_msi_desc(d)) pci_msi_unmask_irq(d); #endif /* Pick a target */ target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); if (target == XIVE_INVALID_TARGET) { /* Try again breaking affinity */ target = xive_pick_irq_target(d, cpu_online_mask); if (target == XIVE_INVALID_TARGET) return -ENXIO; pr_warn("irq %d started with broken affinity\n", d->irq); } /* Sanity check */ if (WARN_ON(target == XIVE_INVALID_TARGET || target >= nr_cpu_ids)) target = smp_processor_id(); xd->target = target; /* * Configure the logical number to be the Linux IRQ number * and set the target queue */ rc = xive_ops->configure_irq(hw_irq, get_hard_smp_processor_id(target), xive_irq_priority, d->irq); if (rc) return rc; /* Unmask the ESB */ xive_do_source_set_mask(xd, false); return 0; } /* called with irq descriptor lock held */ static void xive_irq_shutdown(struct irq_data *d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", d->irq, hw_irq, d); if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) return; /* Mask the interrupt at the source */ xive_do_source_set_mask(xd, true); /* * Mask the interrupt in HW in the IVT/EAS and set the number * to be the "bad" IRQ number */ xive_ops->configure_irq(hw_irq, get_hard_smp_processor_id(xd->target), 0xff, XIVE_BAD_IRQ); xive_dec_target_count(xd->target); xd->target = XIVE_INVALID_TARGET; } static void xive_irq_unmask(struct irq_data *d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); /* * This is a workaround for PCI LSI problems on P9, for * these, we call FW to set the mask. The problems might * be fixed by P9 DD2.0, if that is the case, firmware * will no longer set that flag. */ if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); xive_ops->configure_irq(hw_irq, get_hard_smp_processor_id(xd->target), xive_irq_priority, d->irq); return; } xive_do_source_set_mask(xd, false); } static void xive_irq_mask(struct irq_data *d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); /* * This is a workaround for PCI LSI problems on P9, for * these, we call OPAL to set the mask. The problems might * be fixed by P9 DD2.0, if that is the case, firmware * will no longer set that flag. */ if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); xive_ops->configure_irq(hw_irq, get_hard_smp_processor_id(xd->target), 0xff, d->irq); return; } xive_do_source_set_mask(xd, true); } static int xive_irq_set_affinity(struct irq_data *d, const struct cpumask *cpumask, bool force) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); u32 target, old_target; int rc = 0; pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); /* Is this valid ? */ if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) return -EINVAL; /* Don't do anything if the interrupt isn't started */ if (!irqd_is_started(d)) return IRQ_SET_MASK_OK; /* * If existing target is already in the new mask, and is * online then do nothing. */ if (xd->target != XIVE_INVALID_TARGET && cpu_online(xd->target) && cpumask_test_cpu(xd->target, cpumask)) return IRQ_SET_MASK_OK; /* Pick a new target */ target = xive_pick_irq_target(d, cpumask); /* No target found */ if (target == XIVE_INVALID_TARGET) return -ENXIO; /* Sanity check */ if (WARN_ON(target >= nr_cpu_ids)) target = smp_processor_id(); old_target = xd->target; /* * Only configure the irq if it's not currently passed-through to * a KVM guest */ if (!irqd_is_forwarded_to_vcpu(d)) rc = xive_ops->configure_irq(hw_irq, get_hard_smp_processor_id(target), xive_irq_priority, d->irq); if (rc < 0) { pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); return rc; } pr_devel(" target: 0x%x\n", target); xd->target = target; /* Give up previous target */ if (old_target != XIVE_INVALID_TARGET) xive_dec_target_count(old_target); return IRQ_SET_MASK_OK; } static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); /* * We only support these. This has really no effect other than setting * the corresponding descriptor bits mind you but those will in turn * affect the resend function when re-enabling an edge interrupt. * * Set set the default to edge as explained in map(). */ if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) flow_type = IRQ_TYPE_EDGE_RISING; if (flow_type != IRQ_TYPE_EDGE_RISING && flow_type != IRQ_TYPE_LEVEL_LOW) return -EINVAL; irqd_set_trigger_type(d, flow_type); /* * Double check it matches what the FW thinks * * NOTE: We don't know yet if the PAPR interface will provide * the LSI vs MSI information apart from the device-tree so * this check might have to move into an optional backend call * that is specific to the native backend */ if ((flow_type == IRQ_TYPE_LEVEL_LOW) != !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", d->irq, (u32)irqd_to_hwirq(d), (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); } return IRQ_SET_MASK_OK_NOCOPY; } static int xive_irq_retrigger(struct irq_data *d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); /* This should be only for MSIs */ if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) return 0; /* * To perform a retrigger, we first set the PQ bits to * 11, then perform an EOI. */ xive_esb_read(xd, XIVE_ESB_SET_PQ_11); /* * Note: We pass "0" to the hw_irq argument in order to * avoid calling into the backend EOI code which we don't * want to do in the case of a re-trigger. Backends typically * only do EOI for LSIs anyway. */ xive_do_source_eoi(0, xd); return 1; } /* * Caller holds the irq descriptor lock, so this won't be called * concurrently with xive_get_irqchip_state on the same interrupt. */ static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); int rc; u8 pq; /* * We only support this on interrupts that do not require * firmware calls for masking and unmasking */ if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) return -EIO; /* * This is called by KVM with state non-NULL for enabling * pass-through or NULL for disabling it */ if (state) { irqd_set_forwarded_to_vcpu(d); /* Set it to PQ=10 state to prevent further sends */ pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); if (!xd->stale_p) { xd->saved_p = !!(pq & XIVE_ESB_VAL_P); xd->stale_p = !xd->saved_p; } /* No target ? nothing to do */ if (xd->target == XIVE_INVALID_TARGET) { /* * An untargetted interrupt should have been * also masked at the source */ WARN_ON(xd->saved_p); return 0; } /* * If P was set, adjust state to PQ=11 to indicate * that a resend is needed for the interrupt to reach * the guest. Also remember the value of P. * * This also tells us that it's in flight to a host queue * or has already been fetched but hasn't been EOIed yet * by the host. This it's potentially using up a host * queue slot. This is important to know because as long * as this is the case, we must not hard-unmask it when * "returning" that interrupt to the host. * * This saved_p is cleared by the host EOI, when we know * for sure the queue slot is no longer in use. */ if (xd->saved_p) { xive_esb_read(xd, XIVE_ESB_SET_PQ_11); /* * Sync the XIVE source HW to ensure the interrupt * has gone through the EAS before we change its * target to the guest. That should guarantee us * that we *will* eventually get an EOI for it on * the host. Otherwise there would be a small window * for P to be seen here but the interrupt going * to the guest queue. */ if (xive_ops->sync_source) xive_ops->sync_source(hw_irq); } } else { irqd_clr_forwarded_to_vcpu(d); /* No host target ? hard mask and return */ if (xd->target == XIVE_INVALID_TARGET) { xive_do_source_set_mask(xd, true); return 0; } /* * Sync the XIVE source HW to ensure the interrupt * has gone through the EAS before we change its * target to the host. */ if (xive_ops->sync_source) xive_ops->sync_source(hw_irq); /* * By convention we are called with the interrupt in * a PQ=10 or PQ=11 state, ie, it won't fire and will * have latched in Q whether there's a pending HW * interrupt or not. * * First reconfigure the target. */ rc = xive_ops->configure_irq(hw_irq, get_hard_smp_processor_id(xd->target), xive_irq_priority, d->irq); if (rc) return rc; /* * Then if saved_p is not set, effectively re-enable the * interrupt with an EOI. If it is set, we know there is * still a message in a host queue somewhere that will be * EOId eventually. * * Note: We don't check irqd_irq_disabled(). Effectively, * we *will* let the irq get through even if masked if the * HW is still firing it in order to deal with the whole * saved_p business properly. If the interrupt triggers * while masked, the generic code will re-mask it anyway. */ if (!xd->saved_p) xive_do_source_eoi(hw_irq, xd); } return 0; } /* Called with irq descriptor lock held. */ static int xive_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); u8 pq; switch (which) { case IRQCHIP_STATE_ACTIVE: pq = xive_esb_read(xd, XIVE_ESB_GET); /* * The esb value being all 1's means we couldn't get * the PQ state of the interrupt through mmio. It may * happen, for example when querying a PHB interrupt * while the PHB is in an error state. We consider the * interrupt to be inactive in that case. */ *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p && (xd->saved_p || !!(pq & XIVE_ESB_VAL_P)); return 0; default: return -EINVAL; } } static struct irq_chip xive_irq_chip = { .name = "XIVE-IRQ", .irq_startup = xive_irq_startup, .irq_shutdown = xive_irq_shutdown, .irq_eoi = xive_irq_eoi, .irq_mask = xive_irq_mask, .irq_unmask = xive_irq_unmask, .irq_set_affinity = xive_irq_set_affinity, .irq_set_type = xive_irq_set_type, .irq_retrigger = xive_irq_retrigger, .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, .irq_get_irqchip_state = xive_get_irqchip_state, }; bool is_xive_irq(struct irq_chip *chip) { return chip == &xive_irq_chip; } EXPORT_SYMBOL_GPL(is_xive_irq); void xive_cleanup_irq_data(struct xive_irq_data *xd) { if (xd->eoi_mmio) { unmap_kernel_range((unsigned long)xd->eoi_mmio, 1u << xd->esb_shift); iounmap(xd->eoi_mmio); if (xd->eoi_mmio == xd->trig_mmio) xd->trig_mmio = NULL; xd->eoi_mmio = NULL; } if (xd->trig_mmio) { unmap_kernel_range((unsigned long)xd->trig_mmio, 1u << xd->esb_shift); iounmap(xd->trig_mmio); xd->trig_mmio = NULL; } } EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) { struct xive_irq_data *xd; int rc; xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); if (!xd) return -ENOMEM; rc = xive_ops->populate_irq_data(hw, xd); if (rc) { kfree(xd); return rc; } xd->target = XIVE_INVALID_TARGET; irq_set_handler_data(virq, xd); /* * Turn OFF by default the interrupt being mapped. A side * effect of this check is the mapping the ESB page of the * interrupt in the Linux address space. This prevents page * fault issues in the crash handler which masks all * interrupts. */ xive_esb_read(xd, XIVE_ESB_SET_PQ_01); return 0; } static void xive_irq_free_data(unsigned int virq) { struct xive_irq_data *xd = irq_get_handler_data(virq); if (!xd) return; irq_set_handler_data(virq, NULL); xive_cleanup_irq_data(xd); kfree(xd); } #ifdef CONFIG_SMP static void xive_cause_ipi(int cpu) { struct xive_cpu *xc; struct xive_irq_data *xd; xc = per_cpu(xive_cpu, cpu); DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", smp_processor_id(), cpu, xc->hw_ipi); xd = &xc->ipi_data; if (WARN_ON(!xd->trig_mmio)) return; out_be64(xd->trig_mmio, 0); } static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) { return smp_ipi_demux(); } static void xive_ipi_eoi(struct irq_data *d) { struct xive_cpu *xc = __this_cpu_read(xive_cpu); /* Handle possible race with unplug and drop stale IPIs */ if (!xc) return; DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); xive_do_queue_eoi(xc); } static void xive_ipi_do_nothing(struct irq_data *d) { /* * Nothing to do, we never mask/unmask IPIs, but the callback * has to exist for the struct irq_chip. */ } static struct irq_chip xive_ipi_chip = { .name = "XIVE-IPI", .irq_eoi = xive_ipi_eoi, .irq_mask = xive_ipi_do_nothing, .irq_unmask = xive_ipi_do_nothing, }; static void __init xive_request_ipi(void) { unsigned int virq; /* * Initialization failed, move on, we might manage to * reach the point where we display our errors before * the system falls appart */ if (!xive_irq_domain) return; /* Initialize it */ virq = irq_create_mapping(xive_irq_domain, 0); xive_ipi_irq = virq; WARN_ON(request_irq(virq, xive_muxed_ipi_action, IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); } static int xive_setup_cpu_ipi(unsigned int cpu) { struct xive_cpu *xc; int rc; pr_debug("Setting up IPI for CPU %d\n", cpu); xc = per_cpu(xive_cpu, cpu); /* Check if we are already setup */ if (xc->hw_ipi != XIVE_BAD_IRQ) return 0; /* Grab an IPI from the backend, this will populate xc->hw_ipi */ if (xive_ops->get_ipi(cpu, xc)) return -EIO; /* * Populate the IRQ data in the xive_cpu structure and * configure the HW / enable the IPIs. */ rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); if (rc) { pr_err("Failed to populate IPI data on CPU %d\n", cpu); return -EIO; } rc = xive_ops->configure_irq(xc->hw_ipi, get_hard_smp_processor_id(cpu), xive_irq_priority, xive_ipi_irq); if (rc) { pr_err("Failed to map IPI CPU %d\n", cpu); return -EIO; } pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); /* Unmask it */ xive_do_source_set_mask(&xc->ipi_data, false); return 0; } static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) { /* Disable the IPI and free the IRQ data */ /* Already cleaned up ? */ if (xc->hw_ipi == XIVE_BAD_IRQ) return; /* Mask the IPI */ xive_do_source_set_mask(&xc->ipi_data, true); /* * Note: We don't call xive_cleanup_irq_data() to free * the mappings as this is called from an IPI on kexec * which is not a safe environment to call iounmap() */ /* Deconfigure/mask in the backend */ xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 0xff, xive_ipi_irq); /* Free the IPIs in the backend */ xive_ops->put_ipi(cpu, xc); } void __init xive_smp_probe(void) { smp_ops->cause_ipi = xive_cause_ipi; /* Register the IPI */ xive_request_ipi(); /* Allocate and setup IPI for the boot CPU */ xive_setup_cpu_ipi(smp_processor_id()); } #endif /* CONFIG_SMP */ static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hw) { int rc; /* * Mark interrupts as edge sensitive by default so that resend * actually works. Will fix that up below if needed. */ irq_clear_status_flags(virq, IRQ_LEVEL); #ifdef CONFIG_SMP /* IPIs are special and come up with HW number 0 */ if (hw == 0) { /* * IPIs are marked per-cpu. We use separate HW interrupts under * the hood but associated with the same "linux" interrupt */ irq_set_chip_and_handler(virq, &xive_ipi_chip, handle_percpu_irq); return 0; } #endif rc = xive_irq_alloc_data(virq, hw); if (rc) return rc; irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); return 0; } static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) { struct irq_data *data = irq_get_irq_data(virq); unsigned int hw_irq; /* XXX Assign BAD number */ if (!data) return; hw_irq = (unsigned int)irqd_to_hwirq(data); if (hw_irq) xive_irq_free_data(virq); } static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, const u32 *intspec, unsigned int intsize, irq_hw_number_t *out_hwirq, unsigned int *out_flags) { *out_hwirq = intspec[0]; /* * If intsize is at least 2, we look for the type in the second cell, * we assume the LSB indicates a level interrupt. */ if (intsize > 1) { if (intspec[1] & 1) *out_flags = IRQ_TYPE_LEVEL_LOW; else *out_flags = IRQ_TYPE_EDGE_RISING; } else *out_flags = IRQ_TYPE_LEVEL_LOW; return 0; } static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, enum irq_domain_bus_token bus_token) { return xive_ops->match(node); } static const struct irq_domain_ops xive_irq_domain_ops = { .match = xive_irq_domain_match, .map = xive_irq_domain_map, .unmap = xive_irq_domain_unmap, .xlate = xive_irq_domain_xlate, }; static void __init xive_init_host(void) { xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, &xive_irq_domain_ops, NULL); if (WARN_ON(xive_irq_domain == NULL)) return; irq_set_default_host(xive_irq_domain); } static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) { if (xc->queue[xive_irq_priority].qpage) xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); } static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) { int rc = 0; /* We setup 1 queues for now with a 64k page */ if (!xc->queue[xive_irq_priority].qpage) rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); return rc; } static int xive_prepare_cpu(unsigned int cpu) { struct xive_cpu *xc; xc = per_cpu(xive_cpu, cpu); if (!xc) { struct device_node *np; xc = kzalloc_node(sizeof(struct xive_cpu), GFP_KERNEL, cpu_to_node(cpu)); if (!xc) return -ENOMEM; np = of_get_cpu_node(cpu, NULL); if (np) xc->chip_id = of_get_ibm_chip_id(np); of_node_put(np); xc->hw_ipi = XIVE_BAD_IRQ; per_cpu(xive_cpu, cpu) = xc; } /* Setup EQs if not already */ return xive_setup_cpu_queues(cpu, xc); } static void xive_setup_cpu(void) { struct xive_cpu *xc = __this_cpu_read(xive_cpu); /* The backend might have additional things to do */ if (xive_ops->setup_cpu) xive_ops->setup_cpu(smp_processor_id(), xc); /* Set CPPR to 0xff to enable flow of interrupts */ xc->cppr = 0xff; out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); } #ifdef CONFIG_SMP void xive_smp_setup_cpu(void) { pr_devel("SMP setup CPU %d\n", smp_processor_id()); /* This will have already been done on the boot CPU */ if (smp_processor_id() != boot_cpuid) xive_setup_cpu(); } int xive_smp_prepare_cpu(unsigned int cpu) { int rc; /* Allocate per-CPU data and queues */ rc = xive_prepare_cpu(cpu); if (rc) return rc; /* Allocate and setup IPI for the new CPU */ return xive_setup_cpu_ipi(cpu); } #ifdef CONFIG_HOTPLUG_CPU static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) { u32 irq; /* We assume local irqs are disabled */ WARN_ON(!irqs_disabled()); /* Check what's already in the CPU queue */ while ((irq = xive_scan_interrupts(xc, false)) != 0) { /* * We need to re-route that interrupt to its new destination. * First get and lock the descriptor */ struct irq_desc *desc = irq_to_desc(irq); struct irq_data *d = irq_desc_get_irq_data(desc); struct xive_irq_data *xd; unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); /* * Ignore anything that isn't a XIVE irq and ignore * IPIs, so can just be dropped. */ if (d->domain != xive_irq_domain || hw_irq == 0) continue; /* * The IRQ should have already been re-routed, it's just a * stale in the old queue, so re-trigger it in order to make * it reach is new destination. */ #ifdef DEBUG_FLUSH pr_info("CPU %d: Got irq %d while offline, re-sending...\n", cpu, irq); #endif raw_spin_lock(&desc->lock); xd = irq_desc_get_handler_data(desc); /* * Clear saved_p to indicate that it's no longer pending */ xd->saved_p = false; /* * For LSIs, we EOI, this will cause a resend if it's * still asserted. Otherwise do an MSI retrigger. */ if (xd->flags & XIVE_IRQ_FLAG_LSI) xive_do_source_eoi(irqd_to_hwirq(d), xd); else xive_irq_retrigger(d); raw_spin_unlock(&desc->lock); } } void xive_smp_disable_cpu(void) { struct xive_cpu *xc = __this_cpu_read(xive_cpu); unsigned int cpu = smp_processor_id(); /* Migrate interrupts away from the CPU */ irq_migrate_all_off_this_cpu(); /* Set CPPR to 0 to disable flow of interrupts */ xc->cppr = 0; out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); /* Flush everything still in the queue */ xive_flush_cpu_queue(cpu, xc); /* Re-enable CPPR */ xc->cppr = 0xff; out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); } void xive_flush_interrupt(void) { struct xive_cpu *xc = __this_cpu_read(xive_cpu); unsigned int cpu = smp_processor_id(); /* Called if an interrupt occurs while the CPU is hot unplugged */ xive_flush_cpu_queue(cpu, xc); } #endif /* CONFIG_HOTPLUG_CPU */ #endif /* CONFIG_SMP */ void xive_teardown_cpu(void) { struct xive_cpu *xc = __this_cpu_read(xive_cpu); unsigned int cpu = smp_processor_id(); /* Set CPPR to 0 to disable flow of interrupts */ xc->cppr = 0; out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); if (xive_ops->teardown_cpu) xive_ops->teardown_cpu(cpu, xc); #ifdef CONFIG_SMP /* Get rid of IPI */ xive_cleanup_cpu_ipi(cpu, xc); #endif /* Disable and free the queues */ xive_cleanup_cpu_queues(cpu, xc); } void xive_shutdown(void) { xive_ops->shutdown(); } bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, u8 max_prio) { xive_tima = area; xive_tima_offset = offset; xive_ops = ops; xive_irq_priority = max_prio; ppc_md.get_irq = xive_get_irq; __xive_enabled = true; pr_devel("Initializing host..\n"); xive_init_host(); pr_devel("Initializing boot CPU..\n"); /* Allocate per-CPU data and queues */ xive_prepare_cpu(smp_processor_id()); /* Get ready for interrupts */ xive_setup_cpu(); pr_info("Interrupt handling initialized with %s backend\n", xive_ops->name); pr_info("Using priority %d for all interrupts\n", max_prio); return true; } __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) { unsigned int alloc_order; struct page *pages; __be32 *qpage; alloc_order = xive_alloc_order(queue_shift); pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); if (!pages) return ERR_PTR(-ENOMEM); qpage = (__be32 *)page_address(pages); memset(qpage, 0, 1 << queue_shift); return qpage; } static int __init xive_off(char *arg) { xive_cmdline_disabled = true; return 0; } __setup("xive=off", xive_off); void xive_debug_show_cpu(struct seq_file *m, int cpu) { struct xive_cpu *xc = per_cpu(xive_cpu, cpu); seq_printf(m, "CPU %d:", cpu); if (xc) { seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); #ifdef CONFIG_SMP { u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi, val & XIVE_ESB_VAL_P ? 'P' : '-', val & XIVE_ESB_VAL_Q ? 'Q' : '-'); } #endif { struct xive_q *q = &xc->queue[xive_irq_priority]; u32 i0, i1, idx; if (q->qpage) { idx = q->idx; i0 = be32_to_cpup(q->qpage + idx); idx = (idx + 1) & q->msk; i1 = be32_to_cpup(q->qpage + idx); seq_printf(m, "EQ idx=%d T=%d %08x %08x ...", q->idx, q->toggle, i0, i1); } } } seq_puts(m, "\n"); } void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d) { struct irq_chip *chip = irq_data_get_irq_chip(d); int rc; u32 target; u8 prio; u32 lirq; if (!is_xive_irq(chip)) return; rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); if (rc) { seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); return; } seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", hw_irq, target, prio, lirq); if (d) { struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); u64 val = xive_esb_read(xd, XIVE_ESB_GET); seq_printf(m, "flags=%c%c%c PQ=%c%c", xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ', xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ', xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ', val & XIVE_ESB_VAL_P ? 'P' : '-', val & XIVE_ESB_VAL_Q ? 'Q' : '-'); } seq_puts(m, "\n"); } static int xive_core_debug_show(struct seq_file *m, void *private) { unsigned int i; struct irq_desc *desc; int cpu; if (xive_ops->debug_show) xive_ops->debug_show(m, private); for_each_possible_cpu(cpu) xive_debug_show_cpu(m, cpu); for_each_irq_desc(i, desc) { struct irq_data *d = irq_desc_get_irq_data(desc); unsigned int hw_irq; if (!d) continue; hw_irq = (unsigned int)irqd_to_hwirq(d); /* IPIs are special (HW number 0) */ if (hw_irq) xive_debug_show_irq(m, hw_irq, d); } return 0; } DEFINE_SHOW_ATTRIBUTE(xive_core_debug); int xive_core_debug_init(void) { if (xive_enabled()) debugfs_create_file("xive", 0400, powerpc_debugfs_root, NULL, &xive_core_debug_fops); return 0; }