/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Synthesize TLB refill handlers at runtime. * * Copyright (C) 2004,2005,2006 by Thiemo Seufer * Copyright (C) 2005 Maciej W. Rozycki * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) * * ... and the days got worse and worse and now you see * I've gone completly out of my mind. * * They're coming to take me a away haha * they're coming to take me a away hoho hihi haha * to the funny farm where code is beautiful all the time ... * * (Condolences to Napoleon XIV) */ #include #include #include #include #include #include #include #include #include #include #include #include #include static __init int __maybe_unused r45k_bvahwbug(void) { /* XXX: We should probe for the presence of this bug, but we don't. */ return 0; } static __init int __maybe_unused r4k_250MHZhwbug(void) { /* XXX: We should probe for the presence of this bug, but we don't. */ return 0; } static __init int __maybe_unused bcm1250_m3_war(void) { return BCM1250_M3_WAR; } static __init int __maybe_unused r10000_llsc_war(void) { return R10000_LLSC_WAR; } /* * Found by experiment: At least some revisions of the 4kc throw under * some circumstances a machine check exception, triggered by invalid * values in the index register. Delaying the tlbp instruction until * after the next branch, plus adding an additional nop in front of * tlbwi/tlbwr avoids the invalid index register values. Nobody knows * why; it's not an issue caused by the core RTL. * */ static __init int __attribute__((unused)) m4kc_tlbp_war(void) { return (current_cpu_data.processor_id & 0xffff00) == (PRID_COMP_MIPS | PRID_IMP_4KC); } /* * A little micro-assembler, intended for TLB refill handler * synthesizing. It is intentionally kept simple, does only support * a subset of instructions, and does not try to hide pipeline effects * like branch delay slots. */ enum fields { RS = 0x001, RT = 0x002, RD = 0x004, RE = 0x008, SIMM = 0x010, UIMM = 0x020, BIMM = 0x040, JIMM = 0x080, FUNC = 0x100, SET = 0x200 }; #define OP_MASK 0x3f #define OP_SH 26 #define RS_MASK 0x1f #define RS_SH 21 #define RT_MASK 0x1f #define RT_SH 16 #define RD_MASK 0x1f #define RD_SH 11 #define RE_MASK 0x1f #define RE_SH 6 #define IMM_MASK 0xffff #define IMM_SH 0 #define JIMM_MASK 0x3ffffff #define JIMM_SH 0 #define FUNC_MASK 0x3f #define FUNC_SH 0 #define SET_MASK 0x7 #define SET_SH 0 enum opcode { insn_invalid, insn_addu, insn_addiu, insn_and, insn_andi, insn_beq, insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl, insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0, insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32, insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld, insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0, insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll, insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi, insn_tlbwr, insn_xor, insn_xori }; struct insn { enum opcode opcode; u32 match; enum fields fields; }; /* This macro sets the non-variable bits of an instruction. */ #define M(a, b, c, d, e, f) \ ((a) << OP_SH \ | (b) << RS_SH \ | (c) << RT_SH \ | (d) << RD_SH \ | (e) << RE_SH \ | (f) << FUNC_SH) static __initdata struct insn insn_table[] = { { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM }, { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD }, { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD }, { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM }, { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM }, { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM }, { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM }, { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM }, { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM }, { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM }, { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM }, { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM }, { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD }, { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET}, { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET}, { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE }, { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE }, { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE }, { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE }, { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE }, { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD }, { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 }, { insn_j, M(j_op,0,0,0,0,0), JIMM }, { insn_jal, M(jal_op,0,0,0,0,0), JIMM }, { insn_jr, M(spec_op,0,0,0,0,jr_op), RS }, { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM }, { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM }, { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM }, { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM }, { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM }, { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET}, { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET}, { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM }, { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 }, { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM }, { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM }, { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM }, { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE }, { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE }, { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE }, { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD }, { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM }, { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 }, { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 }, { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 }, { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD }, { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM }, { insn_invalid, 0, 0 } }; #undef M static __init u32 build_rs(u32 arg) { if (arg & ~RS_MASK) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return (arg & RS_MASK) << RS_SH; } static __init u32 build_rt(u32 arg) { if (arg & ~RT_MASK) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return (arg & RT_MASK) << RT_SH; } static __init u32 build_rd(u32 arg) { if (arg & ~RD_MASK) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return (arg & RD_MASK) << RD_SH; } static __init u32 build_re(u32 arg) { if (arg & ~RE_MASK) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return (arg & RE_MASK) << RE_SH; } static __init u32 build_simm(s32 arg) { if (arg > 0x7fff || arg < -0x8000) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return arg & 0xffff; } static __init u32 build_uimm(u32 arg) { if (arg & ~IMM_MASK) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return arg & IMM_MASK; } static __init u32 build_bimm(s32 arg) { if (arg > 0x1ffff || arg < -0x20000) printk(KERN_WARNING "TLB synthesizer field overflow\n"); if (arg & 0x3) printk(KERN_WARNING "Invalid TLB synthesizer branch target\n"); return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); } static __init u32 build_jimm(u32 arg) { if (arg & ~((JIMM_MASK) << 2)) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return (arg >> 2) & JIMM_MASK; } static __init u32 build_func(u32 arg) { if (arg & ~FUNC_MASK) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return arg & FUNC_MASK; } static __init u32 build_set(u32 arg) { if (arg & ~SET_MASK) printk(KERN_WARNING "TLB synthesizer field overflow\n"); return arg & SET_MASK; } /* * The order of opcode arguments is implicitly left to right, * starting with RS and ending with FUNC or IMM. */ static void __init build_insn(u32 **buf, enum opcode opc, ...) { struct insn *ip = NULL; unsigned int i; va_list ap; u32 op; for (i = 0; insn_table[i].opcode != insn_invalid; i++) if (insn_table[i].opcode == opc) { ip = &insn_table[i]; break; } if (!ip) panic("Unsupported TLB synthesizer instruction %d", opc); op = ip->match; va_start(ap, opc); if (ip->fields & RS) op |= build_rs(va_arg(ap, u32)); if (ip->fields & RT) op |= build_rt(va_arg(ap, u32)); if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); if (ip->fields & SET) op |= build_set(va_arg(ap, u32)); va_end(ap); **buf = op; (*buf)++; } #define I_u1u2u3(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ unsigned int b, unsigned int c) \ { \ build_insn(buf, insn##op, a, b, c); \ } #define I_u2u1u3(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ unsigned int b, unsigned int c) \ { \ build_insn(buf, insn##op, b, a, c); \ } #define I_u3u1u2(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ unsigned int b, unsigned int c) \ { \ build_insn(buf, insn##op, b, c, a); \ } #define I_u1u2s3(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ unsigned int b, signed int c) \ { \ build_insn(buf, insn##op, a, b, c); \ } #define I_u2s3u1(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ signed int b, unsigned int c) \ { \ build_insn(buf, insn##op, c, a, b); \ } #define I_u2u1s3(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ unsigned int b, signed int c) \ { \ build_insn(buf, insn##op, b, a, c); \ } #define I_u1u2(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ unsigned int b) \ { \ build_insn(buf, insn##op, a, b); \ } #define I_u1s2(op) \ static inline void __init i##op(u32 **buf, unsigned int a, \ signed int b) \ { \ build_insn(buf, insn##op, a, b); \ } #define I_u1(op) \ static inline void __init i##op(u32 **buf, unsigned int a) \ { \ build_insn(buf, insn##op, a); \ } #define I_0(op) \ static inline void __init i##op(u32 **buf) \ { \ build_insn(buf, insn##op); \ } I_u2u1s3(_addiu); I_u3u1u2(_addu); I_u2u1u3(_andi); I_u3u1u2(_and); I_u1u2s3(_beq); I_u1u2s3(_beql); I_u1s2(_bgez); I_u1s2(_bgezl); I_u1s2(_bltz); I_u1s2(_bltzl); I_u1u2s3(_bne); I_u1u2u3(_dmfc0); I_u1u2u3(_dmtc0); I_u2u1s3(_daddiu); I_u3u1u2(_daddu); I_u2u1u3(_dsll); I_u2u1u3(_dsll32); I_u2u1u3(_dsra); I_u2u1u3(_dsrl); I_u2u1u3(_dsrl32); I_u3u1u2(_dsubu); I_0(_eret); I_u1(_j); I_u1(_jal); I_u1(_jr); I_u2s3u1(_ld); I_u2s3u1(_ll); I_u2s3u1(_lld); I_u1s2(_lui); I_u2s3u1(_lw); I_u1u2u3(_mfc0); I_u1u2u3(_mtc0); I_u2u1u3(_ori); I_0(_rfe); I_u2s3u1(_sc); I_u2s3u1(_scd); I_u2s3u1(_sd); I_u2u1u3(_sll); I_u2u1u3(_sra); I_u2u1u3(_srl); I_u3u1u2(_subu); I_u2s3u1(_sw); I_0(_tlbp); I_0(_tlbwi); I_0(_tlbwr); I_u3u1u2(_xor) I_u2u1u3(_xori); /* * handling labels */ enum label_id { label_invalid, label_second_part, label_leave, #ifdef MODULE_START label_module_alloc, #endif label_vmalloc, label_vmalloc_done, label_tlbw_hazard, label_split, label_nopage_tlbl, label_nopage_tlbs, label_nopage_tlbm, label_smp_pgtable_change, label_r3000_write_probe_fail, }; struct label { u32 *addr; enum label_id lab; }; static __init void build_label(struct label **lab, u32 *addr, enum label_id l) { (*lab)->addr = addr; (*lab)->lab = l; (*lab)++; } #define L_LA(lb) \ static inline void l##lb(struct label **lab, u32 *addr) \ { \ build_label(lab, addr, label##lb); \ } L_LA(_second_part) L_LA(_leave) #ifdef MODULE_START L_LA(_module_alloc) #endif L_LA(_vmalloc) L_LA(_vmalloc_done) L_LA(_tlbw_hazard) L_LA(_split) L_LA(_nopage_tlbl) L_LA(_nopage_tlbs) L_LA(_nopage_tlbm) L_LA(_smp_pgtable_change) L_LA(_r3000_write_probe_fail) /* convenience macros for instructions */ #ifdef CONFIG_64BIT # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off) # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off) # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh) # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh) # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh) # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd) # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd) # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val) # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd) # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd) # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off) # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off) #else # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off) # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off) # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh) # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh) # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh) # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd) # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd) # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val) # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd) # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd) # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off) # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off) #endif #define i_b(buf, off) i_beq(buf, 0, 0, off) #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off) #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off) #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off) #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off) #define i_move(buf, a, b) i_ADDU(buf, a, 0, b) #define i_nop(buf) i_sll(buf, 0, 0, 0) #define i_ssnop(buf) i_sll(buf, 0, 0, 1) #define i_ehb(buf) i_sll(buf, 0, 0, 3) #ifdef CONFIG_64BIT static __init int __maybe_unused in_compat_space_p(long addr) { /* Is this address in 32bit compat space? */ return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L); } static __init int __maybe_unused rel_highest(long val) { return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000; } static __init int __maybe_unused rel_higher(long val) { return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000; } #endif static __init int rel_hi(long val) { return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000; } static __init int rel_lo(long val) { return ((val & 0xffff) ^ 0x8000) - 0x8000; } static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr) { #ifdef CONFIG_64BIT if (!in_compat_space_p(addr)) { i_lui(buf, rs, rel_highest(addr)); if (rel_higher(addr)) i_daddiu(buf, rs, rs, rel_higher(addr)); if (rel_hi(addr)) { i_dsll(buf, rs, rs, 16); i_daddiu(buf, rs, rs, rel_hi(addr)); i_dsll(buf, rs, rs, 16); } else i_dsll32(buf, rs, rs, 0); } else #endif i_lui(buf, rs, rel_hi(addr)); } static __init void __maybe_unused i_LA(u32 **buf, unsigned int rs, long addr) { i_LA_mostly(buf, rs, addr); if (rel_lo(addr)) i_ADDIU(buf, rs, rs, rel_lo(addr)); } /* * handle relocations */ struct reloc { u32 *addr; unsigned int type; enum label_id lab; }; static __init void r_mips_pc16(struct reloc **rel, u32 *addr, enum label_id l) { (*rel)->addr = addr; (*rel)->type = R_MIPS_PC16; (*rel)->lab = l; (*rel)++; } static inline void __resolve_relocs(struct reloc *rel, struct label *lab) { long laddr = (long)lab->addr; long raddr = (long)rel->addr; switch (rel->type) { case R_MIPS_PC16: *rel->addr |= build_bimm(laddr - (raddr + 4)); break; default: panic("Unsupported TLB synthesizer relocation %d", rel->type); } } static __init void resolve_relocs(struct reloc *rel, struct label *lab) { struct label *l; for (; rel->lab != label_invalid; rel++) for (l = lab; l->lab != label_invalid; l++) if (rel->lab == l->lab) __resolve_relocs(rel, l); } static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end, long off) { for (; rel->lab != label_invalid; rel++) if (rel->addr >= first && rel->addr < end) rel->addr += off; } static __init void move_labels(struct label *lab, u32 *first, u32 *end, long off) { for (; lab->lab != label_invalid; lab++) if (lab->addr >= first && lab->addr < end) lab->addr += off; } static __init void copy_handler(struct reloc *rel, struct label *lab, u32 *first, u32 *end, u32 *target) { long off = (long)(target - first); memcpy(target, first, (end - first) * sizeof(u32)); move_relocs(rel, first, end, off); move_labels(lab, first, end, off); } static __init int __maybe_unused insn_has_bdelay(struct reloc *rel, u32 *addr) { for (; rel->lab != label_invalid; rel++) { if (rel->addr == addr && (rel->type == R_MIPS_PC16 || rel->type == R_MIPS_26)) return 1; } return 0; } /* convenience functions for labeled branches */ static void __init __maybe_unused il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) { r_mips_pc16(r, *p, l); i_bltz(p, reg, 0); } static void __init __maybe_unused il_b(u32 **p, struct reloc **r, enum label_id l) { r_mips_pc16(r, *p, l); i_b(p, 0); } static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) { r_mips_pc16(r, *p, l); i_beqz(p, reg, 0); } static void __init __maybe_unused il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) { r_mips_pc16(r, *p, l); i_beqzl(p, reg, 0); } static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) { r_mips_pc16(r, *p, l); i_bnez(p, reg, 0); } static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) { r_mips_pc16(r, *p, l); i_bgezl(p, reg, 0); } static void __init __maybe_unused il_bgez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) { r_mips_pc16(r, *p, l); i_bgez(p, reg, 0); } /* The only general purpose registers allowed in TLB handlers. */ #define K0 26 #define K1 27 /* Some CP0 registers */ #define C0_INDEX 0, 0 #define C0_ENTRYLO0 2, 0 #define C0_TCBIND 2, 2 #define C0_ENTRYLO1 3, 0 #define C0_CONTEXT 4, 0 #define C0_BADVADDR 8, 0 #define C0_ENTRYHI 10, 0 #define C0_EPC 14, 0 #define C0_XCONTEXT 20, 0 #ifdef CONFIG_64BIT # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT) #else # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT) #endif /* The worst case length of the handler is around 18 instructions for * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. * Maximum space available is 32 instructions for R3000 and 64 * instructions for R4000. * * We deliberately chose a buffer size of 128, so we won't scribble * over anything important on overflow before we panic. */ static __initdata u32 tlb_handler[128]; /* simply assume worst case size for labels and relocs */ static __initdata struct label labels[128]; static __initdata struct reloc relocs[128]; /* * The R3000 TLB handler is simple. */ static void __init build_r3000_tlb_refill_handler(void) { long pgdc = (long)pgd_current; u32 *p; int i; memset(tlb_handler, 0, sizeof(tlb_handler)); p = tlb_handler; i_mfc0(&p, K0, C0_BADVADDR); i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */ i_lw(&p, K1, rel_lo(pgdc), K1); i_srl(&p, K0, K0, 22); /* load delay */ i_sll(&p, K0, K0, 2); i_addu(&p, K1, K1, K0); i_mfc0(&p, K0, C0_CONTEXT); i_lw(&p, K1, 0, K1); /* cp0 delay */ i_andi(&p, K0, K0, 0xffc); /* load delay */ i_addu(&p, K1, K1, K0); i_lw(&p, K0, 0, K1); i_nop(&p); /* load delay */ i_mtc0(&p, K0, C0_ENTRYLO0); i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ i_tlbwr(&p); /* cp0 delay */ i_jr(&p, K1); i_rfe(&p); /* branch delay */ if (p > tlb_handler + 32) panic("TLB refill handler space exceeded"); pr_info("Synthesized TLB refill handler (%u instructions).\n", (unsigned int)(p - tlb_handler)); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < (p - tlb_handler); i++) pr_debug("\t.word 0x%08x\n", tlb_handler[i]); pr_debug("\t.set pop\n"); memcpy((void *)ebase, tlb_handler, 0x80); } /* * The R4000 TLB handler is much more complicated. We have two * consecutive handler areas with 32 instructions space each. * Since they aren't used at the same time, we can overflow in the * other one.To keep things simple, we first assume linear space, * then we relocate it to the final handler layout as needed. */ static __initdata u32 final_handler[64]; /* * Hazards * * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: * 2. A timing hazard exists for the TLBP instruction. * * stalling_instruction * TLBP * * The JTLB is being read for the TLBP throughout the stall generated by the * previous instruction. This is not really correct as the stalling instruction * can modify the address used to access the JTLB. The failure symptom is that * the TLBP instruction will use an address created for the stalling instruction * and not the address held in C0_ENHI and thus report the wrong results. * * The software work-around is to not allow the instruction preceding the TLBP * to stall - make it an NOP or some other instruction guaranteed not to stall. * * Errata 2 will not be fixed. This errata is also on the R5000. * * As if we MIPS hackers wouldn't know how to nop pipelines happy ... */ static __init void __maybe_unused build_tlb_probe_entry(u32 **p) { switch (current_cpu_data.cputype) { /* Found by experiment: R4600 v2.0 needs this, too. */ case CPU_R4600: case CPU_R5000: case CPU_R5000A: case CPU_NEVADA: i_nop(p); i_tlbp(p); break; default: i_tlbp(p); break; } } /* * Write random or indexed TLB entry, and care about the hazards from * the preceeding mtc0 and for the following eret. */ enum tlb_write_entry { tlb_random, tlb_indexed }; static __init void build_tlb_write_entry(u32 **p, struct label **l, struct reloc **r, enum tlb_write_entry wmode) { void(*tlbw)(u32 **) = NULL; switch (wmode) { case tlb_random: tlbw = i_tlbwr; break; case tlb_indexed: tlbw = i_tlbwi; break; } switch (current_cpu_data.cputype) { case CPU_R4000PC: case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400PC: case CPU_R4400SC: case CPU_R4400MC: /* * This branch uses up a mtc0 hazard nop slot and saves * two nops after the tlbw instruction. */ il_bgezl(p, r, 0, label_tlbw_hazard); tlbw(p); l_tlbw_hazard(l, *p); i_nop(p); break; case CPU_R4600: case CPU_R4700: case CPU_R5000: case CPU_R5000A: i_nop(p); tlbw(p); i_nop(p); break; case CPU_R4300: case CPU_5KC: case CPU_TX49XX: case CPU_AU1000: case CPU_AU1100: case CPU_AU1500: case CPU_AU1550: case CPU_AU1200: case CPU_PR4450: i_nop(p); tlbw(p); break; case CPU_R10000: case CPU_R12000: case CPU_R14000: case CPU_4KC: case CPU_SB1: case CPU_SB1A: case CPU_4KSC: case CPU_20KC: case CPU_25KF: case CPU_BCM3302: case CPU_BCM4710: case CPU_LOONGSON2: if (m4kc_tlbp_war()) i_nop(p); tlbw(p); break; case CPU_NEVADA: i_nop(p); /* QED specifies 2 nops hazard */ /* * This branch uses up a mtc0 hazard nop slot and saves * a nop after the tlbw instruction. */ il_bgezl(p, r, 0, label_tlbw_hazard); tlbw(p); l_tlbw_hazard(l, *p); break; case CPU_RM7000: i_nop(p); i_nop(p); i_nop(p); i_nop(p); tlbw(p); break; case CPU_4KEC: case CPU_24K: case CPU_34K: case CPU_74K: i_ehb(p); tlbw(p); break; case CPU_RM9000: /* * When the JTLB is updated by tlbwi or tlbwr, a subsequent * use of the JTLB for instructions should not occur for 4 * cpu cycles and use for data translations should not occur * for 3 cpu cycles. */ i_ssnop(p); i_ssnop(p); i_ssnop(p); i_ssnop(p); tlbw(p); i_ssnop(p); i_ssnop(p); i_ssnop(p); i_ssnop(p); break; case CPU_VR4111: case CPU_VR4121: case CPU_VR4122: case CPU_VR4181: case CPU_VR4181A: i_nop(p); i_nop(p); tlbw(p); i_nop(p); i_nop(p); break; case CPU_VR4131: case CPU_VR4133: case CPU_R5432: i_nop(p); i_nop(p); tlbw(p); break; default: panic("No TLB refill handler yet (CPU type: %d)", current_cpu_data.cputype); break; } } #ifdef CONFIG_64BIT /* * TMP and PTR are scratch. * TMP will be clobbered, PTR will hold the pmd entry. */ static __init void build_get_pmde64(u32 **p, struct label **l, struct reloc **r, unsigned int tmp, unsigned int ptr) { long pgdc = (long)pgd_current; /* * The vmalloc handling is not in the hotpath. */ i_dmfc0(p, tmp, C0_BADVADDR); #ifdef MODULE_START il_bltz(p, r, tmp, label_module_alloc); #else il_bltz(p, r, tmp, label_vmalloc); #endif /* No i_nop needed here, since the next insn doesn't touch TMP. */ #ifdef CONFIG_SMP # ifdef CONFIG_MIPS_MT_SMTC /* * SMTC uses TCBind value as "CPU" index */ i_mfc0(p, ptr, C0_TCBIND); i_dsrl(p, ptr, ptr, 19); # else /* * 64 bit SMP running in XKPHYS has smp_processor_id() << 3 * stored in CONTEXT. */ i_dmfc0(p, ptr, C0_CONTEXT); i_dsrl(p, ptr, ptr, 23); #endif i_LA_mostly(p, tmp, pgdc); i_daddu(p, ptr, ptr, tmp); i_dmfc0(p, tmp, C0_BADVADDR); i_ld(p, ptr, rel_lo(pgdc), ptr); #else i_LA_mostly(p, ptr, pgdc); i_ld(p, ptr, rel_lo(pgdc), ptr); #endif l_vmalloc_done(l, *p); if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */ i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); else i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32); i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ i_ld(p, ptr, 0, ptr); /* get pmd pointer */ i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ } /* * BVADDR is the faulting address, PTR is scratch. * PTR will hold the pgd for vmalloc. */ static __init void build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r, unsigned int bvaddr, unsigned int ptr) { long swpd = (long)swapper_pg_dir; #ifdef MODULE_START long modd = (long)module_pg_dir; l_module_alloc(l, *p); /* * Assumption: * VMALLOC_START >= 0xc000000000000000UL * MODULE_START >= 0xe000000000000000UL */ i_SLL(p, ptr, bvaddr, 2); il_bgez(p, r, ptr, label_vmalloc); if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START)) { i_lui(p, ptr, rel_hi(MODULE_START)); /* delay slot */ } else { /* unlikely configuration */ i_nop(p); /* delay slot */ i_LA(p, ptr, MODULE_START); } i_dsubu(p, bvaddr, bvaddr, ptr); if (in_compat_space_p(modd) && !rel_lo(modd)) { il_b(p, r, label_vmalloc_done); i_lui(p, ptr, rel_hi(modd)); } else { i_LA_mostly(p, ptr, modd); il_b(p, r, label_vmalloc_done); i_daddiu(p, ptr, ptr, rel_lo(modd)); } l_vmalloc(l, *p); if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START) && MODULE_START << 32 == VMALLOC_START) i_dsll32(p, ptr, ptr, 0); /* typical case */ else i_LA(p, ptr, VMALLOC_START); #else l_vmalloc(l, *p); i_LA(p, ptr, VMALLOC_START); #endif i_dsubu(p, bvaddr, bvaddr, ptr); if (in_compat_space_p(swpd) && !rel_lo(swpd)) { il_b(p, r, label_vmalloc_done); i_lui(p, ptr, rel_hi(swpd)); } else { i_LA_mostly(p, ptr, swpd); il_b(p, r, label_vmalloc_done); i_daddiu(p, ptr, ptr, rel_lo(swpd)); } } #else /* !CONFIG_64BIT */ /* * TMP and PTR are scratch. * TMP will be clobbered, PTR will hold the pgd entry. */ static __init void __maybe_unused build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) { long pgdc = (long)pgd_current; /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ #ifdef CONFIG_SMP #ifdef CONFIG_MIPS_MT_SMTC /* * SMTC uses TCBind value as "CPU" index */ i_mfc0(p, ptr, C0_TCBIND); i_LA_mostly(p, tmp, pgdc); i_srl(p, ptr, ptr, 19); #else /* * smp_processor_id() << 3 is stored in CONTEXT. */ i_mfc0(p, ptr, C0_CONTEXT); i_LA_mostly(p, tmp, pgdc); i_srl(p, ptr, ptr, 23); #endif i_addu(p, ptr, tmp, ptr); #else i_LA_mostly(p, ptr, pgdc); #endif i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ i_lw(p, ptr, rel_lo(pgdc), ptr); i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ i_sll(p, tmp, tmp, PGD_T_LOG2); i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ } #endif /* !CONFIG_64BIT */ static __init void build_adjust_context(u32 **p, unsigned int ctx) { unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); switch (current_cpu_data.cputype) { case CPU_VR41XX: case CPU_VR4111: case CPU_VR4121: case CPU_VR4122: case CPU_VR4131: case CPU_VR4181: case CPU_VR4181A: case CPU_VR4133: shift += 2; break; default: break; } if (shift) i_SRL(p, ctx, ctx, shift); i_andi(p, ctx, ctx, mask); } static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) { /* * Bug workaround for the Nevada. It seems as if under certain * circumstances the move from cp0_context might produce a * bogus result when the mfc0 instruction and its consumer are * in a different cacheline or a load instruction, probably any * memory reference, is between them. */ switch (current_cpu_data.cputype) { case CPU_NEVADA: i_LW(p, ptr, 0, ptr); GET_CONTEXT(p, tmp); /* get context reg */ break; default: GET_CONTEXT(p, tmp); /* get context reg */ i_LW(p, ptr, 0, ptr); break; } build_adjust_context(p, tmp); i_ADDU(p, ptr, ptr, tmp); /* add in offset */ } static __init void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) { /* * 64bit address support (36bit on a 32bit CPU) in a 32bit * Kernel is a special case. Only a few CPUs use it. */ #ifdef CONFIG_64BIT_PHYS_ADDR if (cpu_has_64bits) { i_ld(p, tmp, 0, ptep); /* get even pte */ i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */ i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */ i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ } else { int pte_off_even = sizeof(pte_t) / 2; int pte_off_odd = pte_off_even + sizeof(pte_t); /* The pte entries are pre-shifted */ i_lw(p, tmp, pte_off_even, ptep); /* get even pte */ i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */ i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ } #else i_LW(p, tmp, 0, ptep); /* get even pte */ i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ if (r45k_bvahwbug()) build_tlb_probe_entry(p); i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */ if (r4k_250MHZhwbug()) i_mtc0(p, 0, C0_ENTRYLO0); i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */ if (r45k_bvahwbug()) i_mfc0(p, tmp, C0_INDEX); if (r4k_250MHZhwbug()) i_mtc0(p, 0, C0_ENTRYLO1); i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ #endif } static void __init build_r4000_tlb_refill_handler(void) { u32 *p = tlb_handler; struct label *l = labels; struct reloc *r = relocs; u32 *f; unsigned int final_len; int i; memset(tlb_handler, 0, sizeof(tlb_handler)); memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); memset(final_handler, 0, sizeof(final_handler)); /* * create the plain linear handler */ if (bcm1250_m3_war()) { i_MFC0(&p, K0, C0_BADVADDR); i_MFC0(&p, K1, C0_ENTRYHI); i_xor(&p, K0, K0, K1); i_SRL(&p, K0, K0, PAGE_SHIFT + 1); il_bnez(&p, &r, K0, label_leave); /* No need for i_nop */ } #ifdef CONFIG_64BIT build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ #else build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ #endif build_get_ptep(&p, K0, K1); build_update_entries(&p, K0, K1); build_tlb_write_entry(&p, &l, &r, tlb_random); l_leave(&l, p); i_eret(&p); /* return from trap */ #ifdef CONFIG_64BIT build_get_pgd_vmalloc64(&p, &l, &r, K0, K1); #endif /* * Overflow check: For the 64bit handler, we need at least one * free instruction slot for the wrap-around branch. In worst * case, if the intended insertion point is a delay slot, we * need three, with the second nop'ed and the third being * unused. */ /* Loongson2 ebase is different than r4k, we have more space */ #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2) if ((p - tlb_handler) > 64) panic("TLB refill handler space exceeded"); #else if (((p - tlb_handler) > 63) || (((p - tlb_handler) > 61) && insn_has_bdelay(relocs, tlb_handler + 29))) panic("TLB refill handler space exceeded"); #endif /* * Now fold the handler in the TLB refill handler space. */ #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2) f = final_handler; /* Simplest case, just copy the handler. */ copy_handler(relocs, labels, tlb_handler, p, f); final_len = p - tlb_handler; #else /* CONFIG_64BIT */ f = final_handler + 32; if ((p - tlb_handler) <= 32) { /* Just copy the handler. */ copy_handler(relocs, labels, tlb_handler, p, f); final_len = p - tlb_handler; } else { u32 *split = tlb_handler + 30; /* * Find the split point. */ if (insn_has_bdelay(relocs, split - 1)) split--; /* Copy first part of the handler. */ copy_handler(relocs, labels, tlb_handler, split, f); f += split - tlb_handler; /* Insert branch. */ l_split(&l, final_handler); il_b(&f, &r, label_split); if (insn_has_bdelay(relocs, split)) i_nop(&f); else { copy_handler(relocs, labels, split, split + 1, f); move_labels(labels, f, f + 1, -1); f++; split++; } /* Copy the rest of the handler. */ copy_handler(relocs, labels, split, p, final_handler); final_len = (f - (final_handler + 32)) + (p - split); } #endif /* CONFIG_64BIT */ resolve_relocs(relocs, labels); pr_info("Synthesized TLB refill handler (%u instructions).\n", final_len); f = final_handler; #if defined(CONFIG_64BIT) && !defined(CONFIG_CPU_LOONGSON2) if (final_len > 32) final_len = 64; else f = final_handler + 32; #endif /* CONFIG_64BIT */ pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < final_len; i++) pr_debug("\t.word 0x%08x\n", f[i]); pr_debug("\t.set pop\n"); memcpy((void *)ebase, final_handler, 0x100); } /* * TLB load/store/modify handlers. * * Only the fastpath gets synthesized at runtime, the slowpath for * do_page_fault remains normal asm. */ extern void tlb_do_page_fault_0(void); extern void tlb_do_page_fault_1(void); #define __tlb_handler_align \ __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT))) /* * 128 instructions for the fastpath handler is generous and should * never be exceeded. */ #define FASTPATH_SIZE 128 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE]; u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE]; u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE]; static void __init iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr) { #ifdef CONFIG_SMP # ifdef CONFIG_64BIT_PHYS_ADDR if (cpu_has_64bits) i_lld(p, pte, 0, ptr); else # endif i_LL(p, pte, 0, ptr); #else # ifdef CONFIG_64BIT_PHYS_ADDR if (cpu_has_64bits) i_ld(p, pte, 0, ptr); else # endif i_LW(p, pte, 0, ptr); #endif } static void __init iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr, unsigned int mode) { #ifdef CONFIG_64BIT_PHYS_ADDR unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); #endif i_ori(p, pte, pte, mode); #ifdef CONFIG_SMP # ifdef CONFIG_64BIT_PHYS_ADDR if (cpu_has_64bits) i_scd(p, pte, 0, ptr); else # endif i_SC(p, pte, 0, ptr); if (r10000_llsc_war()) il_beqzl(p, r, pte, label_smp_pgtable_change); else il_beqz(p, r, pte, label_smp_pgtable_change); # ifdef CONFIG_64BIT_PHYS_ADDR if (!cpu_has_64bits) { /* no i_nop needed */ i_ll(p, pte, sizeof(pte_t) / 2, ptr); i_ori(p, pte, pte, hwmode); i_sc(p, pte, sizeof(pte_t) / 2, ptr); il_beqz(p, r, pte, label_smp_pgtable_change); /* no i_nop needed */ i_lw(p, pte, 0, ptr); } else i_nop(p); # else i_nop(p); # endif #else # ifdef CONFIG_64BIT_PHYS_ADDR if (cpu_has_64bits) i_sd(p, pte, 0, ptr); else # endif i_SW(p, pte, 0, ptr); # ifdef CONFIG_64BIT_PHYS_ADDR if (!cpu_has_64bits) { i_lw(p, pte, sizeof(pte_t) / 2, ptr); i_ori(p, pte, pte, hwmode); i_sw(p, pte, sizeof(pte_t) / 2, ptr); i_lw(p, pte, 0, ptr); } # endif #endif } /* * Check if PTE is present, if not then jump to LABEL. PTR points to * the page table where this PTE is located, PTE will be re-loaded * with it's original value. */ static void __init build_pte_present(u32 **p, struct label **l, struct reloc **r, unsigned int pte, unsigned int ptr, enum label_id lid) { i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); il_bnez(p, r, pte, lid); iPTE_LW(p, l, pte, ptr); } /* Make PTE valid, store result in PTR. */ static void __init build_make_valid(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr) { unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; iPTE_SW(p, r, pte, ptr, mode); } /* * Check if PTE can be written to, if not branch to LABEL. Regardless * restore PTE with value from PTR when done. */ static void __init build_pte_writable(u32 **p, struct label **l, struct reloc **r, unsigned int pte, unsigned int ptr, enum label_id lid) { i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); il_bnez(p, r, pte, lid); iPTE_LW(p, l, pte, ptr); } /* Make PTE writable, update software status bits as well, then store * at PTR. */ static void __init build_make_write(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr) { unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); iPTE_SW(p, r, pte, ptr, mode); } /* * Check if PTE can be modified, if not branch to LABEL. Regardless * restore PTE with value from PTR when done. */ static void __init build_pte_modifiable(u32 **p, struct label **l, struct reloc **r, unsigned int pte, unsigned int ptr, enum label_id lid) { i_andi(p, pte, pte, _PAGE_WRITE); il_beqz(p, r, pte, lid); iPTE_LW(p, l, pte, ptr); } /* * R3000 style TLB load/store/modify handlers. */ /* * This places the pte into ENTRYLO0 and writes it with tlbwi. * Then it returns. */ static void __init build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) { i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ i_tlbwi(p); i_jr(p, tmp); i_rfe(p); /* branch delay */ } /* * This places the pte into ENTRYLO0 and writes it with tlbwi * or tlbwr as appropriate. This is because the index register * may have the probe fail bit set as a result of a trap on a * kseg2 access, i.e. without refill. Then it returns. */ static void __init build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r, unsigned int pte, unsigned int tmp) { i_mfc0(p, tmp, C0_INDEX); i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ i_mfc0(p, tmp, C0_EPC); /* branch delay */ i_tlbwi(p); /* cp0 delay */ i_jr(p, tmp); i_rfe(p); /* branch delay */ l_r3000_write_probe_fail(l, *p); i_tlbwr(p); /* cp0 delay */ i_jr(p, tmp); i_rfe(p); /* branch delay */ } static void __init build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, unsigned int ptr) { long pgdc = (long)pgd_current; i_mfc0(p, pte, C0_BADVADDR); i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */ i_lw(p, ptr, rel_lo(pgdc), ptr); i_srl(p, pte, pte, 22); /* load delay */ i_sll(p, pte, pte, 2); i_addu(p, ptr, ptr, pte); i_mfc0(p, pte, C0_CONTEXT); i_lw(p, ptr, 0, ptr); /* cp0 delay */ i_andi(p, pte, pte, 0xffc); /* load delay */ i_addu(p, ptr, ptr, pte); i_lw(p, pte, 0, ptr); i_tlbp(p); /* load delay */ } static void __init build_r3000_tlb_load_handler(void) { u32 *p = handle_tlbl; struct label *l = labels; struct reloc *r = relocs; int i; memset(handle_tlbl, 0, sizeof(handle_tlbl)); memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); build_r3000_tlbchange_handler_head(&p, K0, K1); build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl); i_nop(&p); /* load delay */ build_make_valid(&p, &r, K0, K1); build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); l_nopage_tlbl(&l, p); i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); i_nop(&p); if ((p - handle_tlbl) > FASTPATH_SIZE) panic("TLB load handler fastpath space exceeded"); resolve_relocs(relocs, labels); pr_info("Synthesized TLB load handler fastpath (%u instructions).\n", (unsigned int)(p - handle_tlbl)); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < (p - handle_tlbl); i++) pr_debug("\t.word 0x%08x\n", handle_tlbl[i]); pr_debug("\t.set pop\n"); } static void __init build_r3000_tlb_store_handler(void) { u32 *p = handle_tlbs; struct label *l = labels; struct reloc *r = relocs; int i; memset(handle_tlbs, 0, sizeof(handle_tlbs)); memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); build_r3000_tlbchange_handler_head(&p, K0, K1); build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs); i_nop(&p); /* load delay */ build_make_write(&p, &r, K0, K1); build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); l_nopage_tlbs(&l, p); i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); i_nop(&p); if ((p - handle_tlbs) > FASTPATH_SIZE) panic("TLB store handler fastpath space exceeded"); resolve_relocs(relocs, labels); pr_info("Synthesized TLB store handler fastpath (%u instructions).\n", (unsigned int)(p - handle_tlbs)); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < (p - handle_tlbs); i++) pr_debug("\t.word 0x%08x\n", handle_tlbs[i]); pr_debug("\t.set pop\n"); } static void __init build_r3000_tlb_modify_handler(void) { u32 *p = handle_tlbm; struct label *l = labels; struct reloc *r = relocs; int i; memset(handle_tlbm, 0, sizeof(handle_tlbm)); memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); build_r3000_tlbchange_handler_head(&p, K0, K1); build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm); i_nop(&p); /* load delay */ build_make_write(&p, &r, K0, K1); build_r3000_pte_reload_tlbwi(&p, K0, K1); l_nopage_tlbm(&l, p); i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); i_nop(&p); if ((p - handle_tlbm) > FASTPATH_SIZE) panic("TLB modify handler fastpath space exceeded"); resolve_relocs(relocs, labels); pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n", (unsigned int)(p - handle_tlbm)); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < (p - handle_tlbm); i++) pr_debug("\t.word 0x%08x\n", handle_tlbm[i]); pr_debug("\t.set pop\n"); } /* * R4000 style TLB load/store/modify handlers. */ static void __init build_r4000_tlbchange_handler_head(u32 **p, struct label **l, struct reloc **r, unsigned int pte, unsigned int ptr) { #ifdef CONFIG_64BIT build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */ #else build_get_pgde32(p, pte, ptr); /* get pgd in ptr */ #endif i_MFC0(p, pte, C0_BADVADDR); i_LW(p, ptr, 0, ptr); i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2); i_ADDU(p, ptr, ptr, pte); #ifdef CONFIG_SMP l_smp_pgtable_change(l, *p); # endif iPTE_LW(p, l, pte, ptr); /* get even pte */ if (!m4kc_tlbp_war()) build_tlb_probe_entry(p); } static void __init build_r4000_tlbchange_handler_tail(u32 **p, struct label **l, struct reloc **r, unsigned int tmp, unsigned int ptr) { i_ori(p, ptr, ptr, sizeof(pte_t)); i_xori(p, ptr, ptr, sizeof(pte_t)); build_update_entries(p, tmp, ptr); build_tlb_write_entry(p, l, r, tlb_indexed); l_leave(l, *p); i_eret(p); /* return from trap */ #ifdef CONFIG_64BIT build_get_pgd_vmalloc64(p, l, r, tmp, ptr); #endif } static void __init build_r4000_tlb_load_handler(void) { u32 *p = handle_tlbl; struct label *l = labels; struct reloc *r = relocs; int i; memset(handle_tlbl, 0, sizeof(handle_tlbl)); memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); if (bcm1250_m3_war()) { i_MFC0(&p, K0, C0_BADVADDR); i_MFC0(&p, K1, C0_ENTRYHI); i_xor(&p, K0, K0, K1); i_SRL(&p, K0, K0, PAGE_SHIFT + 1); il_bnez(&p, &r, K0, label_leave); /* No need for i_nop */ } build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl); if (m4kc_tlbp_war()) build_tlb_probe_entry(&p); build_make_valid(&p, &r, K0, K1); build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); l_nopage_tlbl(&l, p); i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); i_nop(&p); if ((p - handle_tlbl) > FASTPATH_SIZE) panic("TLB load handler fastpath space exceeded"); resolve_relocs(relocs, labels); pr_info("Synthesized TLB load handler fastpath (%u instructions).\n", (unsigned int)(p - handle_tlbl)); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < (p - handle_tlbl); i++) pr_debug("\t.word 0x%08x\n", handle_tlbl[i]); pr_debug("\t.set pop\n"); } static void __init build_r4000_tlb_store_handler(void) { u32 *p = handle_tlbs; struct label *l = labels; struct reloc *r = relocs; int i; memset(handle_tlbs, 0, sizeof(handle_tlbs)); memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs); if (m4kc_tlbp_war()) build_tlb_probe_entry(&p); build_make_write(&p, &r, K0, K1); build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); l_nopage_tlbs(&l, p); i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); i_nop(&p); if ((p - handle_tlbs) > FASTPATH_SIZE) panic("TLB store handler fastpath space exceeded"); resolve_relocs(relocs, labels); pr_info("Synthesized TLB store handler fastpath (%u instructions).\n", (unsigned int)(p - handle_tlbs)); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < (p - handle_tlbs); i++) pr_debug("\t.word 0x%08x\n", handle_tlbs[i]); pr_debug("\t.set pop\n"); } static void __init build_r4000_tlb_modify_handler(void) { u32 *p = handle_tlbm; struct label *l = labels; struct reloc *r = relocs; int i; memset(handle_tlbm, 0, sizeof(handle_tlbm)); memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm); if (m4kc_tlbp_war()) build_tlb_probe_entry(&p); /* Present and writable bits set, set accessed and dirty bits. */ build_make_write(&p, &r, K0, K1); build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); l_nopage_tlbm(&l, p); i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); i_nop(&p); if ((p - handle_tlbm) > FASTPATH_SIZE) panic("TLB modify handler fastpath space exceeded"); resolve_relocs(relocs, labels); pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n", (unsigned int)(p - handle_tlbm)); pr_debug("\t.set push\n"); pr_debug("\t.set noreorder\n"); for (i = 0; i < (p - handle_tlbm); i++) pr_debug("\t.word 0x%08x\n", handle_tlbm[i]); pr_debug("\t.set pop\n"); } void __init build_tlb_refill_handler(void) { /* * The refill handler is generated per-CPU, multi-node systems * may have local storage for it. The other handlers are only * needed once. */ static int run_once = 0; switch (current_cpu_data.cputype) { case CPU_R2000: case CPU_R3000: case CPU_R3000A: case CPU_R3081E: case CPU_TX3912: case CPU_TX3922: case CPU_TX3927: build_r3000_tlb_refill_handler(); if (!run_once) { build_r3000_tlb_load_handler(); build_r3000_tlb_store_handler(); build_r3000_tlb_modify_handler(); run_once++; } break; case CPU_R6000: case CPU_R6000A: panic("No R6000 TLB refill handler yet"); break; case CPU_R8000: panic("No R8000 TLB refill handler yet"); break; default: build_r4000_tlb_refill_handler(); if (!run_once) { build_r4000_tlb_load_handler(); build_r4000_tlb_store_handler(); build_r4000_tlb_modify_handler(); run_once++; } } } void __init flush_tlb_handlers(void) { flush_icache_range((unsigned long)handle_tlbl, (unsigned long)handle_tlbl + sizeof(handle_tlbl)); flush_icache_range((unsigned long)handle_tlbs, (unsigned long)handle_tlbs + sizeof(handle_tlbs)); flush_icache_range((unsigned long)handle_tlbm, (unsigned long)handle_tlbm + sizeof(handle_tlbm)); }