/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS TLB handling, this file is part of the Linux host kernel so that * TLB handlers run from KSEG0 * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Sanjay Lal */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef CONFIG_MIPS_MT #include #define CONFIG_MIPS_MT #define KVM_GUEST_PC_TLB 0 #define KVM_GUEST_SP_TLB 1 #ifdef CONFIG_KVM_MIPS_VZ unsigned long GUESTID_MASK; EXPORT_SYMBOL_GPL(GUESTID_MASK); unsigned long GUESTID_FIRST_VERSION; EXPORT_SYMBOL_GPL(GUESTID_FIRST_VERSION); unsigned long GUESTID_VERSION_MASK; EXPORT_SYMBOL_GPL(GUESTID_VERSION_MASK); static u32 kvm_mips_get_root_asid(struct kvm_vcpu *vcpu) { struct mm_struct *gpa_mm = &vcpu->kvm->arch.gpa_mm; if (cpu_has_guestid) return 0; else return cpu_asid(smp_processor_id(), gpa_mm); } #endif static u32 kvm_mips_get_kernel_asid(struct kvm_vcpu *vcpu) { struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; int cpu = smp_processor_id(); return cpu_asid(cpu, kern_mm); } static u32 kvm_mips_get_user_asid(struct kvm_vcpu *vcpu) { struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; int cpu = smp_processor_id(); return cpu_asid(cpu, user_mm); } /* Structure defining an tlb entry data set. */ void kvm_mips_dump_host_tlbs(void) { unsigned long flags; local_irq_save(flags); kvm_info("HOST TLBs:\n"); dump_tlb_regs(); pr_info("\n"); dump_tlb_all(); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(kvm_mips_dump_host_tlbs); void kvm_mips_dump_guest_tlbs(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct kvm_mips_tlb tlb; int i; kvm_info("Guest TLBs:\n"); kvm_info("Guest EntryHi: %#lx\n", kvm_read_c0_guest_entryhi(cop0)); for (i = 0; i < KVM_MIPS_GUEST_TLB_SIZE; i++) { tlb = vcpu->arch.guest_tlb[i]; kvm_info("TLB%c%3d Hi 0x%08lx ", (tlb.tlb_lo[0] | tlb.tlb_lo[1]) & ENTRYLO_V ? ' ' : '*', i, tlb.tlb_hi); kvm_info("Lo0=0x%09llx %c%c attr %lx ", (u64) mips3_tlbpfn_to_paddr(tlb.tlb_lo[0]), (tlb.tlb_lo[0] & ENTRYLO_D) ? 'D' : ' ', (tlb.tlb_lo[0] & ENTRYLO_G) ? 'G' : ' ', (tlb.tlb_lo[0] & ENTRYLO_C) >> ENTRYLO_C_SHIFT); kvm_info("Lo1=0x%09llx %c%c attr %lx sz=%lx\n", (u64) mips3_tlbpfn_to_paddr(tlb.tlb_lo[1]), (tlb.tlb_lo[1] & ENTRYLO_D) ? 'D' : ' ', (tlb.tlb_lo[1] & ENTRYLO_G) ? 'G' : ' ', (tlb.tlb_lo[1] & ENTRYLO_C) >> ENTRYLO_C_SHIFT, tlb.tlb_mask); } } EXPORT_SYMBOL_GPL(kvm_mips_dump_guest_tlbs); int kvm_mips_guest_tlb_lookup(struct kvm_vcpu *vcpu, unsigned long entryhi) { int i; int index = -1; struct kvm_mips_tlb *tlb = vcpu->arch.guest_tlb; for (i = 0; i < KVM_MIPS_GUEST_TLB_SIZE; i++) { if (TLB_HI_VPN2_HIT(tlb[i], entryhi) && TLB_HI_ASID_HIT(tlb[i], entryhi)) { index = i; break; } } kvm_debug("%s: entryhi: %#lx, index: %d lo0: %#lx, lo1: %#lx\n", __func__, entryhi, index, tlb[i].tlb_lo[0], tlb[i].tlb_lo[1]); return index; } EXPORT_SYMBOL_GPL(kvm_mips_guest_tlb_lookup); static int _kvm_mips_host_tlb_inv(unsigned long entryhi) { int idx; write_c0_entryhi(entryhi); mtc0_tlbw_hazard(); tlb_probe(); tlb_probe_hazard(); idx = read_c0_index(); if (idx >= current_cpu_data.tlbsize) BUG(); if (idx >= 0) { write_c0_entryhi(UNIQUE_ENTRYHI(idx)); write_c0_entrylo0(0); write_c0_entrylo1(0); mtc0_tlbw_hazard(); tlb_write_indexed(); tlbw_use_hazard(); } return idx; } int kvm_mips_host_tlb_inv(struct kvm_vcpu *vcpu, unsigned long va, bool user, bool kernel) { int idx_user, idx_kernel; unsigned long flags, old_entryhi; local_irq_save(flags); old_entryhi = read_c0_entryhi(); if (user) idx_user = _kvm_mips_host_tlb_inv((va & VPN2_MASK) | kvm_mips_get_user_asid(vcpu)); if (kernel) idx_kernel = _kvm_mips_host_tlb_inv((va & VPN2_MASK) | kvm_mips_get_kernel_asid(vcpu)); write_c0_entryhi(old_entryhi); mtc0_tlbw_hazard(); local_irq_restore(flags); /* * We don't want to get reserved instruction exceptions for missing tlb * entries. */ if (cpu_has_vtag_icache) flush_icache_all(); if (user && idx_user >= 0) kvm_debug("%s: Invalidated guest user entryhi %#lx @ idx %d\n", __func__, (va & VPN2_MASK) | kvm_mips_get_user_asid(vcpu), idx_user); if (kernel && idx_kernel >= 0) kvm_debug("%s: Invalidated guest kernel entryhi %#lx @ idx %d\n", __func__, (va & VPN2_MASK) | kvm_mips_get_kernel_asid(vcpu), idx_kernel); return 0; } EXPORT_SYMBOL_GPL(kvm_mips_host_tlb_inv); #ifdef CONFIG_KVM_MIPS_VZ /* GuestID management */ /** * clear_root_gid() - Set GuestCtl1.RID for normal root operation. */ static inline void clear_root_gid(void) { if (cpu_has_guestid) { clear_c0_guestctl1(MIPS_GCTL1_RID); mtc0_tlbw_hazard(); } } /** * set_root_gid_to_guest_gid() - Set GuestCtl1.RID to match GuestCtl1.ID. * * Sets the root GuestID to match the current guest GuestID, for TLB operation * on the GPA->RPA mappings in the root TLB. * * The caller must be sure to disable HTW while the root GID is set, and * possibly longer if TLB registers are modified. */ static inline void set_root_gid_to_guest_gid(void) { unsigned int guestctl1; if (cpu_has_guestid) { back_to_back_c0_hazard(); guestctl1 = read_c0_guestctl1(); guestctl1 = (guestctl1 & ~MIPS_GCTL1_RID) | ((guestctl1 & MIPS_GCTL1_ID) >> MIPS_GCTL1_ID_SHIFT) << MIPS_GCTL1_RID_SHIFT; write_c0_guestctl1(guestctl1); mtc0_tlbw_hazard(); } } int kvm_vz_host_tlb_inv(struct kvm_vcpu *vcpu, unsigned long va) { int idx; unsigned long flags, old_entryhi; local_irq_save(flags); htw_stop(); /* Set root GuestID for root probe and write of guest TLB entry */ set_root_gid_to_guest_gid(); old_entryhi = read_c0_entryhi(); idx = _kvm_mips_host_tlb_inv((va & VPN2_MASK) | kvm_mips_get_root_asid(vcpu)); write_c0_entryhi(old_entryhi); clear_root_gid(); mtc0_tlbw_hazard(); htw_start(); local_irq_restore(flags); /* * We don't want to get reserved instruction exceptions for missing tlb * entries. */ if (cpu_has_vtag_icache) flush_icache_all(); if (idx > 0) kvm_debug("%s: Invalidated root entryhi %#lx @ idx %d\n", __func__, (va & VPN2_MASK) | kvm_mips_get_root_asid(vcpu), idx); return 0; } EXPORT_SYMBOL_GPL(kvm_vz_host_tlb_inv); /** * kvm_vz_guest_tlb_lookup() - Lookup a guest VZ TLB mapping. * @vcpu: KVM VCPU pointer. * @gpa: Guest virtual address in a TLB mapped guest segment. * @gpa: Ponter to output guest physical address it maps to. * * Converts a guest virtual address in a guest TLB mapped segment to a guest * physical address, by probing the guest TLB. * * Returns: 0 if guest TLB mapping exists for @gva. *@gpa will have been * written. * -EFAULT if no guest TLB mapping exists for @gva. *@gpa may not * have been written. */ int kvm_vz_guest_tlb_lookup(struct kvm_vcpu *vcpu, unsigned long gva, unsigned long *gpa) { unsigned long o_entryhi, o_entrylo[2], o_pagemask; unsigned int o_index; unsigned long entrylo[2], pagemask, pagemaskbit, pa; unsigned long flags; int index; /* Probe the guest TLB for a mapping */ local_irq_save(flags); /* Set root GuestID for root probe of guest TLB entry */ htw_stop(); set_root_gid_to_guest_gid(); o_entryhi = read_gc0_entryhi(); o_index = read_gc0_index(); write_gc0_entryhi((o_entryhi & 0x3ff) | (gva & ~0xfffl)); mtc0_tlbw_hazard(); guest_tlb_probe(); tlb_probe_hazard(); index = read_gc0_index(); if (index < 0) { /* No match, fail */ write_gc0_entryhi(o_entryhi); write_gc0_index(o_index); clear_root_gid(); htw_start(); local_irq_restore(flags); return -EFAULT; } /* Match! read the TLB entry */ o_entrylo[0] = read_gc0_entrylo0(); o_entrylo[1] = read_gc0_entrylo1(); o_pagemask = read_gc0_pagemask(); mtc0_tlbr_hazard(); guest_tlb_read(); tlb_read_hazard(); entrylo[0] = read_gc0_entrylo0(); entrylo[1] = read_gc0_entrylo1(); pagemask = ~read_gc0_pagemask() & ~0x1fffl; write_gc0_entryhi(o_entryhi); write_gc0_index(o_index); write_gc0_entrylo0(o_entrylo[0]); write_gc0_entrylo1(o_entrylo[1]); write_gc0_pagemask(o_pagemask); clear_root_gid(); htw_start(); local_irq_restore(flags); /* Select one of the EntryLo values and interpret the GPA */ pagemaskbit = (pagemask ^ (pagemask & (pagemask - 1))) >> 1; pa = entrylo[!!(gva & pagemaskbit)]; /* * TLB entry may have become invalid since TLB probe if physical FTLB * entries are shared between threads (e.g. I6400). */ if (!(pa & ENTRYLO_V)) return -EFAULT; /* * Note, this doesn't take guest MIPS32 XPA into account, where PFN is * split with XI/RI in the middle. */ pa = (pa << 6) & ~0xfffl; pa |= gva & ~(pagemask | pagemaskbit); *gpa = pa; return 0; } EXPORT_SYMBOL_GPL(kvm_vz_guest_tlb_lookup); /** * kvm_vz_local_flush_roottlb_all_guests() - Flush all root TLB entries for * guests. * * Invalidate all entries in root tlb which are GPA mappings. */ void kvm_vz_local_flush_roottlb_all_guests(void) { unsigned long flags; unsigned long old_entryhi, old_pagemask, old_guestctl1; int entry; if (WARN_ON(!cpu_has_guestid)) return; local_irq_save(flags); htw_stop(); /* TLBR may clobber EntryHi.ASID, PageMask, and GuestCtl1.RID */ old_entryhi = read_c0_entryhi(); old_pagemask = read_c0_pagemask(); old_guestctl1 = read_c0_guestctl1(); /* * Invalidate guest entries in root TLB while leaving root entries * intact when possible. */ for (entry = 0; entry < current_cpu_data.tlbsize; entry++) { write_c0_index(entry); mtc0_tlbw_hazard(); tlb_read(); tlb_read_hazard(); /* Don't invalidate non-guest (RVA) mappings in the root TLB */ if (!(read_c0_guestctl1() & MIPS_GCTL1_RID)) continue; /* Make sure all entries differ. */ write_c0_entryhi(UNIQUE_ENTRYHI(entry)); write_c0_entrylo0(0); write_c0_entrylo1(0); write_c0_guestctl1(0); mtc0_tlbw_hazard(); tlb_write_indexed(); } write_c0_entryhi(old_entryhi); write_c0_pagemask(old_pagemask); write_c0_guestctl1(old_guestctl1); tlbw_use_hazard(); htw_start(); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(kvm_vz_local_flush_roottlb_all_guests); /** * kvm_vz_local_flush_guesttlb_all() - Flush all guest TLB entries. * * Invalidate all entries in guest tlb irrespective of guestid. */ void kvm_vz_local_flush_guesttlb_all(void) { unsigned long flags; unsigned long old_index; unsigned long old_entryhi; unsigned long old_entrylo[2]; unsigned long old_pagemask; int entry; local_irq_save(flags); /* Preserve all clobbered guest registers */ old_index = read_gc0_index(); old_entryhi = read_gc0_entryhi(); old_entrylo[0] = read_gc0_entrylo0(); old_entrylo[1] = read_gc0_entrylo1(); old_pagemask = read_gc0_pagemask(); /* Invalidate guest entries in guest TLB */ write_gc0_entrylo0(0); write_gc0_entrylo1(0); write_gc0_pagemask(0); for (entry = 0; entry < current_cpu_data.guest.tlbsize; entry++) { /* Make sure all entries differ. */ write_gc0_index(entry); write_gc0_entryhi(UNIQUE_GUEST_ENTRYHI(entry)); mtc0_tlbw_hazard(); guest_tlb_write_indexed(); } write_gc0_index(old_index); write_gc0_entryhi(old_entryhi); write_gc0_entrylo0(old_entrylo[0]); write_gc0_entrylo1(old_entrylo[1]); write_gc0_pagemask(old_pagemask); tlbw_use_hazard(); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(kvm_vz_local_flush_guesttlb_all); /** * kvm_vz_save_guesttlb() - Save a range of guest TLB entries. * @buf: Buffer to write TLB entries into. * @index: Start index. * @count: Number of entries to save. * * Save a range of guest TLB entries. The caller must ensure interrupts are * disabled. */ void kvm_vz_save_guesttlb(struct kvm_mips_tlb *buf, unsigned int index, unsigned int count) { unsigned int end = index + count; unsigned long old_entryhi, old_entrylo0, old_entrylo1, old_pagemask; unsigned int guestctl1 = 0; int old_index, i; /* Save registers we're about to clobber */ old_index = read_gc0_index(); old_entryhi = read_gc0_entryhi(); old_entrylo0 = read_gc0_entrylo0(); old_entrylo1 = read_gc0_entrylo1(); old_pagemask = read_gc0_pagemask(); /* Set root GuestID for root probe */ htw_stop(); set_root_gid_to_guest_gid(); if (cpu_has_guestid) guestctl1 = read_c0_guestctl1(); /* Read each entry from guest TLB */ for (i = index; i < end; ++i, ++buf) { write_gc0_index(i); mtc0_tlbr_hazard(); guest_tlb_read(); tlb_read_hazard(); if (cpu_has_guestid && (read_c0_guestctl1() ^ guestctl1) & MIPS_GCTL1_RID) { /* Entry invalid or belongs to another guest */ buf->tlb_hi = UNIQUE_GUEST_ENTRYHI(i); buf->tlb_lo[0] = 0; buf->tlb_lo[1] = 0; buf->tlb_mask = 0; } else { /* Entry belongs to the right guest */ buf->tlb_hi = read_gc0_entryhi(); buf->tlb_lo[0] = read_gc0_entrylo0(); buf->tlb_lo[1] = read_gc0_entrylo1(); buf->tlb_mask = read_gc0_pagemask(); } } /* Clear root GuestID again */ clear_root_gid(); htw_start(); /* Restore clobbered registers */ write_gc0_index(old_index); write_gc0_entryhi(old_entryhi); write_gc0_entrylo0(old_entrylo0); write_gc0_entrylo1(old_entrylo1); write_gc0_pagemask(old_pagemask); tlbw_use_hazard(); } EXPORT_SYMBOL_GPL(kvm_vz_save_guesttlb); /** * kvm_vz_load_guesttlb() - Save a range of guest TLB entries. * @buf: Buffer to read TLB entries from. * @index: Start index. * @count: Number of entries to load. * * Load a range of guest TLB entries. The caller must ensure interrupts are * disabled. */ void kvm_vz_load_guesttlb(const struct kvm_mips_tlb *buf, unsigned int index, unsigned int count) { unsigned int end = index + count; unsigned long old_entryhi, old_entrylo0, old_entrylo1, old_pagemask; int old_index, i; /* Save registers we're about to clobber */ old_index = read_gc0_index(); old_entryhi = read_gc0_entryhi(); old_entrylo0 = read_gc0_entrylo0(); old_entrylo1 = read_gc0_entrylo1(); old_pagemask = read_gc0_pagemask(); /* Set root GuestID for root probe */ htw_stop(); set_root_gid_to_guest_gid(); /* Write each entry to guest TLB */ for (i = index; i < end; ++i, ++buf) { write_gc0_index(i); write_gc0_entryhi(buf->tlb_hi); write_gc0_entrylo0(buf->tlb_lo[0]); write_gc0_entrylo1(buf->tlb_lo[1]); write_gc0_pagemask(buf->tlb_mask); mtc0_tlbw_hazard(); guest_tlb_write_indexed(); } /* Clear root GuestID again */ clear_root_gid(); htw_start(); /* Restore clobbered registers */ write_gc0_index(old_index); write_gc0_entryhi(old_entryhi); write_gc0_entrylo0(old_entrylo0); write_gc0_entrylo1(old_entrylo1); write_gc0_pagemask(old_pagemask); tlbw_use_hazard(); } EXPORT_SYMBOL_GPL(kvm_vz_load_guesttlb); #endif /** * kvm_mips_suspend_mm() - Suspend the active mm. * @cpu The CPU we're running on. * * Suspend the active_mm, ready for a switch to a KVM guest virtual address * space. This is left active for the duration of guest context, including time * with interrupts enabled, so we need to be careful not to confuse e.g. cache * management IPIs. * * kvm_mips_resume_mm() should be called before context switching to a different * process so we don't need to worry about reference counting. * * This needs to be in static kernel code to avoid exporting init_mm. */ void kvm_mips_suspend_mm(int cpu) { cpumask_clear_cpu(cpu, mm_cpumask(current->active_mm)); current->active_mm = &init_mm; } EXPORT_SYMBOL_GPL(kvm_mips_suspend_mm); /** * kvm_mips_resume_mm() - Resume the current process mm. * @cpu The CPU we're running on. * * Resume the mm of the current process, after a switch back from a KVM guest * virtual address space (see kvm_mips_suspend_mm()). */ void kvm_mips_resume_mm(int cpu) { cpumask_set_cpu(cpu, mm_cpumask(current->mm)); current->active_mm = current->mm; } EXPORT_SYMBOL_GPL(kvm_mips_resume_mm);