/* * Copyright (C) 2004-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int root_mountflags; /* * Initialize loops_per_jiffy as 5000000 (500MIPS). * Better make it too large than too small... */ struct avr32_cpuinfo boot_cpu_data = { .loops_per_jiffy = 5000000 }; EXPORT_SYMBOL(boot_cpu_data); static char __initdata command_line[COMMAND_LINE_SIZE]; /* * Standard memory resources */ static struct resource __initdata kernel_data = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_MEM, }; static struct resource __initdata kernel_code = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_MEM, .sibling = &kernel_data, }; /* * Available system RAM and reserved regions as singly linked * lists. These lists are traversed using the sibling pointer in * struct resource and are kept sorted at all times. */ static struct resource *__initdata system_ram; static struct resource *__initdata reserved = &kernel_code; /* * We need to allocate these before the bootmem allocator is up and * running, so we need this "cache". 32 entries are probably enough * for all but the most insanely complex systems. */ static struct resource __initdata res_cache[32]; static unsigned int __initdata res_cache_next_free; static void __init resource_init(void) { struct resource *mem, *res; struct resource *new; kernel_code.start = __pa(init_mm.start_code); for (mem = system_ram; mem; mem = mem->sibling) { new = alloc_bootmem_low(sizeof(struct resource)); memcpy(new, mem, sizeof(struct resource)); new->sibling = NULL; if (request_resource(&iomem_resource, new)) printk(KERN_WARNING "Bad RAM resource %08x-%08x\n", mem->start, mem->end); } for (res = reserved; res; res = res->sibling) { new = alloc_bootmem_low(sizeof(struct resource)); memcpy(new, res, sizeof(struct resource)); new->sibling = NULL; if (insert_resource(&iomem_resource, new)) printk(KERN_WARNING "Bad reserved resource %s (%08x-%08x)\n", res->name, res->start, res->end); } } static void __init add_physical_memory(resource_size_t start, resource_size_t end) { struct resource *new, *next, **pprev; for (pprev = &system_ram, next = system_ram; next; pprev = &next->sibling, next = next->sibling) { if (end < next->start) break; if (start <= next->end) { printk(KERN_WARNING "Warning: Physical memory map is broken\n"); printk(KERN_WARNING "Warning: %08x-%08x overlaps %08x-%08x\n", start, end, next->start, next->end); return; } } if (res_cache_next_free >= ARRAY_SIZE(res_cache)) { printk(KERN_WARNING "Warning: Failed to add physical memory %08x-%08x\n", start, end); return; } new = &res_cache[res_cache_next_free++]; new->start = start; new->end = end; new->name = "System RAM"; new->flags = IORESOURCE_MEM; *pprev = new; } static int __init add_reserved_region(resource_size_t start, resource_size_t end, const char *name) { struct resource *new, *next, **pprev; if (end < start) return -EINVAL; if (res_cache_next_free >= ARRAY_SIZE(res_cache)) return -ENOMEM; for (pprev = &reserved, next = reserved; next; pprev = &next->sibling, next = next->sibling) { if (end < next->start) break; if (start <= next->end) return -EBUSY; } new = &res_cache[res_cache_next_free++]; new->start = start; new->end = end; new->name = name; new->flags = IORESOURCE_MEM; *pprev = new; return 0; } static unsigned long __init find_free_region(const struct resource *mem, resource_size_t size, resource_size_t align) { struct resource *res; unsigned long target; target = ALIGN(mem->start, align); for (res = reserved; res; res = res->sibling) { if ((target + size) <= res->start) break; if (target <= res->end) target = ALIGN(res->end + 1, align); } if ((target + size) > (mem->end + 1)) return mem->end + 1; return target; } static int __init alloc_reserved_region(resource_size_t *start, resource_size_t size, resource_size_t align, const char *name) { struct resource *mem; resource_size_t target; int ret; for (mem = system_ram; mem; mem = mem->sibling) { target = find_free_region(mem, size, align); if (target <= mem->end) { ret = add_reserved_region(target, target + size - 1, name); if (!ret) *start = target; return ret; } } return -ENOMEM; } /* * Early framebuffer allocation. Works as follows: * - If fbmem_size is zero, nothing will be allocated or reserved. * - If fbmem_start is zero when setup_bootmem() is called, * a block of fbmem_size bytes will be reserved before bootmem * initialization. It will be aligned to the largest page size * that fbmem_size is a multiple of. * - If fbmem_start is nonzero, an area of size fbmem_size will be * reserved at the physical address fbmem_start if possible. If * it collides with other reserved memory, a different block of * same size will be allocated, just as if fbmem_start was zero. * * Board-specific code may use these variables to set up platform data * for the framebuffer driver if fbmem_size is nonzero. */ resource_size_t __initdata fbmem_start; resource_size_t __initdata fbmem_size; /* * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for * use as framebuffer. * * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and * starting at yyy to be reserved for use as framebuffer. * * The kernel won't verify that the memory region starting at yyy * actually contains usable RAM. */ static int __init early_parse_fbmem(char *p) { int ret; unsigned long align; fbmem_size = memparse(p, &p); if (*p == '@') { fbmem_start = memparse(p, &p); ret = add_reserved_region(fbmem_start, fbmem_start + fbmem_size - 1, "Framebuffer"); if (ret) { printk(KERN_WARNING "Failed to reserve framebuffer memory\n"); fbmem_start = 0; } } if (!fbmem_start) { if ((fbmem_size & 0x000fffffUL) == 0) align = 0x100000; /* 1 MiB */ else if ((fbmem_size & 0x0000ffffUL) == 0) align = 0x10000; /* 64 KiB */ else align = 0x1000; /* 4 KiB */ ret = alloc_reserved_region(&fbmem_start, fbmem_size, align, "Framebuffer"); if (ret) { printk(KERN_WARNING "Failed to allocate framebuffer memory\n"); fbmem_size = 0; } } return 0; } early_param("fbmem", early_parse_fbmem); static int __init parse_tag_core(struct tag *tag) { if (tag->hdr.size > 2) { if ((tag->u.core.flags & 1) == 0) root_mountflags &= ~MS_RDONLY; ROOT_DEV = new_decode_dev(tag->u.core.rootdev); } return 0; } __tagtable(ATAG_CORE, parse_tag_core); static int __init parse_tag_mem(struct tag *tag) { unsigned long start, end; /* * Ignore zero-sized entries. If we're running standalone, the * SDRAM code may emit such entries if something goes * wrong... */ if (tag->u.mem_range.size == 0) return 0; start = tag->u.mem_range.addr; end = tag->u.mem_range.addr + tag->u.mem_range.size - 1; add_physical_memory(start, end); return 0; } __tagtable(ATAG_MEM, parse_tag_mem); static int __init parse_tag_rdimg(struct tag *tag) { #ifdef CONFIG_INITRD struct tag_mem_range *mem = &tag->u.mem_range; int ret; if (initrd_start) { printk(KERN_WARNING "Warning: Only the first initrd image will be used\n"); return 0; } ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1, "initrd"); if (ret) { printk(KERN_WARNING "Warning: Failed to reserve initrd memory\n"); return ret; } initrd_start = (unsigned long)__va(mem->addr); initrd_end = initrd_start + mem->size; #else printk(KERN_WARNING "RAM disk image present, but " "no initrd support in kernel, ignoring\n"); #endif return 0; } __tagtable(ATAG_RDIMG, parse_tag_rdimg); static int __init parse_tag_rsvd_mem(struct tag *tag) { struct tag_mem_range *mem = &tag->u.mem_range; return add_reserved_region(mem->addr, mem->addr + mem->size - 1, "Reserved"); } __tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem); static int __init parse_tag_cmdline(struct tag *tag) { strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE); return 0; } __tagtable(ATAG_CMDLINE, parse_tag_cmdline); static int __init parse_tag_clock(struct tag *tag) { /* * We'll figure out the clocks by peeking at the system * manager regs directly. */ return 0; } __tagtable(ATAG_CLOCK, parse_tag_clock); /* * Scan the tag table for this tag, and call its parse function. The * tag table is built by the linker from all the __tagtable * declarations. */ static int __init parse_tag(struct tag *tag) { extern struct tagtable __tagtable_begin, __tagtable_end; struct tagtable *t; for (t = &__tagtable_begin; t < &__tagtable_end; t++) if (tag->hdr.tag == t->tag) { t->parse(tag); break; } return t < &__tagtable_end; } /* * Parse all tags in the list we got from the boot loader */ static void __init parse_tags(struct tag *t) { for (; t->hdr.tag != ATAG_NONE; t = tag_next(t)) if (!parse_tag(t)) printk(KERN_WARNING "Ignoring unrecognised tag 0x%08x\n", t->hdr.tag); } /* * Find a free memory region large enough for storing the * bootmem bitmap. */ static unsigned long __init find_bootmap_pfn(const struct resource *mem) { unsigned long bootmap_pages, bootmap_len; unsigned long node_pages = PFN_UP(mem->end - mem->start + 1); unsigned long bootmap_start; bootmap_pages = bootmem_bootmap_pages(node_pages); bootmap_len = bootmap_pages << PAGE_SHIFT; /* * Find a large enough region without reserved pages for * storing the bootmem bitmap. We can take advantage of the * fact that all lists have been sorted. * * We have to check that we don't collide with any reserved * regions, which includes the kernel image and any RAMDISK * images. */ bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE); return bootmap_start >> PAGE_SHIFT; } #define MAX_LOWMEM HIGHMEM_START #define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM) static void __init setup_bootmem(void) { unsigned bootmap_size; unsigned long first_pfn, bootmap_pfn, pages; unsigned long max_pfn, max_low_pfn; unsigned node = 0; struct resource *res; printk(KERN_INFO "Physical memory:\n"); for (res = system_ram; res; res = res->sibling) printk(" %08x-%08x\n", res->start, res->end); printk(KERN_INFO "Reserved memory:\n"); for (res = reserved; res; res = res->sibling) printk(" %08x-%08x: %s\n", res->start, res->end, res->name); nodes_clear(node_online_map); if (system_ram->sibling) printk(KERN_WARNING "Only using first memory bank\n"); for (res = system_ram; res; res = NULL) { first_pfn = PFN_UP(res->start); max_low_pfn = max_pfn = PFN_DOWN(res->end + 1); bootmap_pfn = find_bootmap_pfn(res); if (bootmap_pfn > max_pfn) panic("No space for bootmem bitmap!\n"); if (max_low_pfn > MAX_LOWMEM_PFN) { max_low_pfn = MAX_LOWMEM_PFN; #ifndef CONFIG_HIGHMEM /* * Lowmem is memory that can be addressed * directly through P1/P2 */ printk(KERN_WARNING "Node %u: Only %ld MiB of memory will be used.\n", node, MAX_LOWMEM >> 20); printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); #else #error HIGHMEM is not supported by AVR32 yet #endif } /* Initialize the boot-time allocator with low memory only. */ bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn, first_pfn, max_low_pfn); /* * Register fully available RAM pages with the bootmem * allocator. */ pages = max_low_pfn - first_pfn; free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn), PFN_PHYS(pages)); /* Reserve space for the bootmem bitmap... */ reserve_bootmem_node(NODE_DATA(node), PFN_PHYS(bootmap_pfn), bootmap_size); /* ...and any other reserved regions. */ for (res = reserved; res; res = res->sibling) { if (res->start > PFN_PHYS(max_pfn)) break; /* * resource_init will complain about partial * overlaps, so we'll just ignore such * resources for now. */ if (res->start >= PFN_PHYS(first_pfn) && res->end < PFN_PHYS(max_pfn)) reserve_bootmem_node( NODE_DATA(node), res->start, res->end - res->start + 1); } node_set_online(node); } } void __init setup_arch (char **cmdline_p) { struct clk *cpu_clk; init_mm.start_code = (unsigned long)_text; init_mm.end_code = (unsigned long)_etext; init_mm.end_data = (unsigned long)_edata; init_mm.brk = (unsigned long)_end; /* * Include .init section to make allocations easier. It will * be removed before the resource is actually requested. */ kernel_code.start = __pa(__init_begin); kernel_code.end = __pa(init_mm.end_code - 1); kernel_data.start = __pa(init_mm.end_code); kernel_data.end = __pa(init_mm.brk - 1); parse_tags(bootloader_tags); setup_processor(); setup_platform(); setup_board(); cpu_clk = clk_get(NULL, "cpu"); if (IS_ERR(cpu_clk)) { printk(KERN_WARNING "Warning: Unable to get CPU clock\n"); } else { unsigned long cpu_hz = clk_get_rate(cpu_clk); /* * Well, duh, but it's probably a good idea to * increment the use count. */ clk_enable(cpu_clk); boot_cpu_data.clk = cpu_clk; boot_cpu_data.loops_per_jiffy = cpu_hz * 4; printk("CPU: Running at %lu.%03lu MHz\n", ((cpu_hz + 500) / 1000) / 1000, ((cpu_hz + 500) / 1000) % 1000); } strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_early_param(); setup_bootmem(); #ifdef CONFIG_VT conswitchp = &dummy_con; #endif paging_init(); resource_init(); }