/* * arch/arm64/kernel/topology.c * * Copyright (C) 2011,2013,2014 Linaro Limited. * * Based on the arm32 version written by Vincent Guittot in turn based on * arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include void store_cpu_topology(unsigned int cpuid) { struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; u64 mpidr; if (cpuid_topo->package_id != -1) goto topology_populated; mpidr = read_cpuid_mpidr(); /* Uniprocessor systems can rely on default topology values */ if (mpidr & MPIDR_UP_BITMASK) return; /* * This would be the place to create cpu topology based on MPIDR. * * However, it cannot be trusted to depict the actual topology; some * pieces of the architecture enforce an artificial cap on Aff0 values * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up * having absolutely no relationship to the actual underlying system * topology, and cannot be reasonably used as core / package ID. * * If the MT bit is set, Aff0 *could* be used to define a thread ID, but * we still wouldn't be able to obtain a sane core ID. This means we * need to entirely ignore MPIDR for any topology deduction. */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = cpuid; cpuid_topo->package_id = cpu_to_node(cpuid); pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n", cpuid, cpuid_topo->package_id, cpuid_topo->core_id, cpuid_topo->thread_id, mpidr); topology_populated: update_siblings_masks(cpuid); } #ifdef CONFIG_ACPI static bool __init acpi_cpu_is_threaded(int cpu) { int is_threaded = acpi_pptt_cpu_is_thread(cpu); /* * if the PPTT doesn't have thread information, assume a homogeneous * machine and return the current CPU's thread state. */ if (is_threaded < 0) is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK; return !!is_threaded; } /* * Propagate the topology information of the processor_topology_node tree to the * cpu_topology array. */ int __init parse_acpi_topology(void) { int cpu, topology_id; if (acpi_disabled) return 0; for_each_possible_cpu(cpu) { int i, cache_id; topology_id = find_acpi_cpu_topology(cpu, 0); if (topology_id < 0) return topology_id; if (acpi_cpu_is_threaded(cpu)) { cpu_topology[cpu].thread_id = topology_id; topology_id = find_acpi_cpu_topology(cpu, 1); cpu_topology[cpu].core_id = topology_id; } else { cpu_topology[cpu].thread_id = -1; cpu_topology[cpu].core_id = topology_id; } topology_id = find_acpi_cpu_topology_package(cpu); cpu_topology[cpu].package_id = topology_id; i = acpi_find_last_cache_level(cpu); if (i > 0) { /* * this is the only part of cpu_topology that has * a direct relationship with the cache topology */ cache_id = find_acpi_cpu_cache_topology(cpu, i); if (cache_id > 0) cpu_topology[cpu].llc_id = cache_id; } } return 0; } #endif #ifdef CONFIG_ARM64_AMU_EXTN #define read_corecnt() read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0) #define read_constcnt() read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0) #else #define read_corecnt() (0UL) #define read_constcnt() (0UL) #endif #undef pr_fmt #define pr_fmt(fmt) "AMU: " fmt static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale); static DEFINE_PER_CPU(u64, arch_const_cycles_prev); static DEFINE_PER_CPU(u64, arch_core_cycles_prev); static cpumask_var_t amu_fie_cpus; void update_freq_counters_refs(void) { this_cpu_write(arch_core_cycles_prev, read_corecnt()); this_cpu_write(arch_const_cycles_prev, read_constcnt()); } static inline bool freq_counters_valid(int cpu) { if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask)) return false; if (!cpu_has_amu_feat(cpu)) { pr_debug("CPU%d: counters are not supported.\n", cpu); return false; } if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) || !per_cpu(arch_core_cycles_prev, cpu))) { pr_debug("CPU%d: cycle counters are not enabled.\n", cpu); return false; } return true; } static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate) { u64 ratio; if (unlikely(!max_rate || !ref_rate)) { pr_debug("CPU%d: invalid maximum or reference frequency.\n", cpu); return -EINVAL; } /* * Pre-compute the fixed ratio between the frequency of the constant * reference counter and the maximum frequency of the CPU. * * ref_rate * arch_max_freq_scale = ---------- * SCHED_CAPACITY_SCALEĀ² * max_rate * * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALEĀ² * in order to ensure a good resolution for arch_max_freq_scale for * very low reference frequencies (down to the KHz range which should * be unlikely). */ ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT); ratio = div64_u64(ratio, max_rate); if (!ratio) { WARN_ONCE(1, "Reference frequency too low.\n"); return -EINVAL; } per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio; return 0; } static inline bool enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus) { struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); if (!policy) { pr_debug("CPU%d: No cpufreq policy found.\n", cpu); return false; } if (cpumask_subset(policy->related_cpus, valid_cpus)) cpumask_or(amu_fie_cpus, policy->related_cpus, amu_fie_cpus); cpufreq_cpu_put(policy); return true; } static DEFINE_STATIC_KEY_FALSE(amu_fie_key); #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key) static int __init init_amu_fie(void) { bool invariance_status = topology_scale_freq_invariant(); cpumask_var_t valid_cpus; bool have_policy = false; int ret = 0; int cpu; if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL)) return -ENOMEM; if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) { ret = -ENOMEM; goto free_valid_mask; } for_each_present_cpu(cpu) { if (!freq_counters_valid(cpu) || freq_inv_set_max_ratio(cpu, cpufreq_get_hw_max_freq(cpu) * 1000, arch_timer_get_rate())) continue; cpumask_set_cpu(cpu, valid_cpus); have_policy |= enable_policy_freq_counters(cpu, valid_cpus); } /* * If we are not restricted by cpufreq policies, we only enable * the use of the AMU feature for FIE if all CPUs support AMU. * Otherwise, enable_policy_freq_counters has already enabled * policy cpus. */ if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask)) cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus); if (!cpumask_empty(amu_fie_cpus)) { pr_info("CPUs[%*pbl]: counters will be used for FIE.", cpumask_pr_args(amu_fie_cpus)); static_branch_enable(&amu_fie_key); } /* * If the system is not fully invariant after AMU init, disable * partial use of counters for frequency invariance. */ if (!topology_scale_freq_invariant()) static_branch_disable(&amu_fie_key); /* * Task scheduler behavior depends on frequency invariance support, * either cpufreq or counter driven. If the support status changes as * a result of counter initialisation and use, retrigger the build of * scheduling domains to ensure the information is propagated properly. */ if (invariance_status != topology_scale_freq_invariant()) rebuild_sched_domains_energy(); free_valid_mask: free_cpumask_var(valid_cpus); return ret; } late_initcall_sync(init_amu_fie); bool arch_freq_counters_available(const struct cpumask *cpus) { return amu_freq_invariant() && cpumask_subset(cpus, amu_fie_cpus); } void topology_scale_freq_tick(void) { u64 prev_core_cnt, prev_const_cnt; u64 core_cnt, const_cnt, scale; int cpu = smp_processor_id(); if (!amu_freq_invariant()) return; if (!cpumask_test_cpu(cpu, amu_fie_cpus)) return; prev_const_cnt = this_cpu_read(arch_const_cycles_prev); prev_core_cnt = this_cpu_read(arch_core_cycles_prev); update_freq_counters_refs(); const_cnt = this_cpu_read(arch_const_cycles_prev); core_cnt = this_cpu_read(arch_core_cycles_prev); if (unlikely(core_cnt <= prev_core_cnt || const_cnt <= prev_const_cnt)) goto store_and_exit; /* * /\core arch_max_freq_scale * scale = ------- * -------------------- * /\const SCHED_CAPACITY_SCALE * * See validate_cpu_freq_invariance_counters() for details on * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT. */ scale = core_cnt - prev_core_cnt; scale *= this_cpu_read(arch_max_freq_scale); scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT, const_cnt - prev_const_cnt); scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE); this_cpu_write(freq_scale, (unsigned long)scale); store_and_exit: this_cpu_write(arch_core_cycles_prev, core_cnt); this_cpu_write(arch_const_cycles_prev, const_cnt); } #ifdef CONFIG_ACPI_CPPC_LIB #include static void cpu_read_corecnt(void *val) { *(u64 *)val = read_corecnt(); } static void cpu_read_constcnt(void *val) { *(u64 *)val = read_constcnt(); } static inline int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val) { /* * Abort call on counterless CPU or when interrupts are * disabled - can lead to deadlock in smp sync call. */ if (!cpu_has_amu_feat(cpu)) return -EOPNOTSUPP; if (WARN_ON_ONCE(irqs_disabled())) return -EPERM; smp_call_function_single(cpu, func, val, 1); return 0; } /* * Refer to drivers/acpi/cppc_acpi.c for the description of the functions * below. */ bool cpc_ffh_supported(void) { return freq_counters_valid(get_cpu_with_amu_feat()); } int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val) { int ret = -EOPNOTSUPP; switch ((u64)reg->address) { case 0x0: ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val); break; case 0x1: ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val); break; } if (!ret) { *val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1, reg->bit_offset); *val >>= reg->bit_offset; } return ret; } int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) { return -EOPNOTSUPP; } #endif /* CONFIG_ACPI_CPPC_LIB */