/* * arch/arm/mm/cache-l2x0.c - L210/L220 cache controller support * * Copyright (C) 2007 ARM Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include "cache-tauros3.h" #include "cache-aurora-l2.h" struct l2c_init_data { unsigned num_lock; void (*of_parse)(const struct device_node *, u32 *, u32 *); void (*enable)(void __iomem *, u32, unsigned); void (*fixup)(void __iomem *, u32, struct outer_cache_fns *); void (*save)(void __iomem *); struct outer_cache_fns outer_cache; }; #define CACHE_LINE_SIZE 32 static void __iomem *l2x0_base; static DEFINE_RAW_SPINLOCK(l2x0_lock); static u32 l2x0_way_mask; /* Bitmask of active ways */ static u32 l2x0_size; static unsigned long sync_reg_offset = L2X0_CACHE_SYNC; struct l2x0_regs l2x0_saved_regs; /* * Common code for all cache controllers. */ static inline void l2c_wait_mask(void __iomem *reg, unsigned long mask) { /* wait for cache operation by line or way to complete */ while (readl_relaxed(reg) & mask) cpu_relax(); } /* * This should only be called when we have a requirement that the * register be written due to a work-around, as platforms running * in non-secure mode may not be able to access this register. */ static inline void l2c_set_debug(void __iomem *base, unsigned long val) { outer_cache.set_debug(val); } static void __l2c_op_way(void __iomem *reg) { writel_relaxed(l2x0_way_mask, reg); l2c_wait_mask(reg, l2x0_way_mask); } static inline void l2c_unlock(void __iomem *base, unsigned num) { unsigned i; for (i = 0; i < num; i++) { writel_relaxed(0, base + L2X0_LOCKDOWN_WAY_D_BASE + i * L2X0_LOCKDOWN_STRIDE); writel_relaxed(0, base + L2X0_LOCKDOWN_WAY_I_BASE + i * L2X0_LOCKDOWN_STRIDE); } } /* * Enable the L2 cache controller. This function must only be * called when the cache controller is known to be disabled. */ static void l2c_enable(void __iomem *base, u32 aux, unsigned num_lock) { unsigned long flags; /* Only write the aux register if it needs changing */ if (readl_relaxed(base + L2X0_AUX_CTRL) != aux) writel_relaxed(aux, base + L2X0_AUX_CTRL); l2c_unlock(base, num_lock); local_irq_save(flags); __l2c_op_way(base + L2X0_INV_WAY); writel_relaxed(0, base + sync_reg_offset); l2c_wait_mask(base + sync_reg_offset, 1); local_irq_restore(flags); writel_relaxed(L2X0_CTRL_EN, base + L2X0_CTRL); } static void l2c_disable(void) { void __iomem *base = l2x0_base; outer_cache.flush_all(); writel_relaxed(0, base + L2X0_CTRL); dsb(st); } #ifdef CONFIG_CACHE_PL310 static inline void cache_wait(void __iomem *reg, unsigned long mask) { /* cache operations by line are atomic on PL310 */ } #else #define cache_wait l2c_wait_mask #endif static inline void cache_sync(void) { void __iomem *base = l2x0_base; writel_relaxed(0, base + sync_reg_offset); cache_wait(base + L2X0_CACHE_SYNC, 1); } #if defined(CONFIG_PL310_ERRATA_588369) || defined(CONFIG_PL310_ERRATA_727915) static inline void debug_writel(unsigned long val) { if (outer_cache.set_debug) l2c_set_debug(l2x0_base, val); } #else /* Optimised out for non-errata case */ static inline void debug_writel(unsigned long val) { } #endif static void l2x0_cache_sync(void) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); cache_sync(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void __l2x0_flush_all(void) { debug_writel(0x03); __l2c_op_way(l2x0_base + L2X0_CLEAN_INV_WAY); cache_sync(); debug_writel(0x00); } static void l2x0_flush_all(void) { unsigned long flags; /* clean all ways */ raw_spin_lock_irqsave(&l2x0_lock, flags); __l2x0_flush_all(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_disable(void) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); __l2x0_flush_all(); writel_relaxed(0, l2x0_base + L2X0_CTRL); dsb(st); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } /* * L2C-210 specific code. * * The L2C-2x0 PA, set/way and sync operations are atomic, but we must * ensure that no background operation is running. The way operations * are all background tasks. * * While a background operation is in progress, any new operation is * ignored (unspecified whether this causes an error.) Thankfully, not * used on SMP. * * Never has a different sync register other than L2X0_CACHE_SYNC, but * we use sync_reg_offset here so we can share some of this with L2C-310. */ static void __l2c210_cache_sync(void __iomem *base) { writel_relaxed(0, base + sync_reg_offset); } static void __l2c210_op_pa_range(void __iomem *reg, unsigned long start, unsigned long end) { while (start < end) { writel_relaxed(start, reg); start += CACHE_LINE_SIZE; } } static void l2c210_inv_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; if (start & (CACHE_LINE_SIZE - 1)) { start &= ~(CACHE_LINE_SIZE - 1); writel_relaxed(start, base + L2X0_CLEAN_INV_LINE_PA); start += CACHE_LINE_SIZE; } if (end & (CACHE_LINE_SIZE - 1)) { end &= ~(CACHE_LINE_SIZE - 1); writel_relaxed(end, base + L2X0_CLEAN_INV_LINE_PA); } __l2c210_op_pa_range(base + L2X0_INV_LINE_PA, start, end); __l2c210_cache_sync(base); } static void l2c210_clean_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; start &= ~(CACHE_LINE_SIZE - 1); __l2c210_op_pa_range(base + L2X0_CLEAN_LINE_PA, start, end); __l2c210_cache_sync(base); } static void l2c210_flush_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; start &= ~(CACHE_LINE_SIZE - 1); __l2c210_op_pa_range(base + L2X0_CLEAN_INV_LINE_PA, start, end); __l2c210_cache_sync(base); } static void l2c210_flush_all(void) { void __iomem *base = l2x0_base; BUG_ON(!irqs_disabled()); __l2c_op_way(base + L2X0_CLEAN_INV_WAY); __l2c210_cache_sync(base); } static void l2c210_sync(void) { __l2c210_cache_sync(l2x0_base); } static void l2c210_resume(void) { void __iomem *base = l2x0_base; if (!(readl_relaxed(base + L2X0_CTRL) & L2X0_CTRL_EN)) l2c_enable(base, l2x0_saved_regs.aux_ctrl, 1); } static const struct l2c_init_data l2c210_data __initconst = { .num_lock = 1, .enable = l2c_enable, .outer_cache = { .inv_range = l2c210_inv_range, .clean_range = l2c210_clean_range, .flush_range = l2c210_flush_range, .flush_all = l2c210_flush_all, .disable = l2c_disable, .sync = l2c210_sync, .resume = l2c210_resume, }, }; /* * L2C-220 specific code. * * All operations are background operations: they have to be waited for. * Conflicting requests generate a slave error (which will cause an * imprecise abort.) Never uses sync_reg_offset, so we hard-code the * sync register here. * * However, we can re-use the l2c210_resume call. */ static inline void __l2c220_cache_sync(void __iomem *base) { writel_relaxed(0, base + L2X0_CACHE_SYNC); l2c_wait_mask(base + L2X0_CACHE_SYNC, 1); } static void l2c220_op_way(void __iomem *base, unsigned reg) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); __l2c_op_way(base + reg); __l2c220_cache_sync(base); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static unsigned long l2c220_op_pa_range(void __iomem *reg, unsigned long start, unsigned long end, unsigned long flags) { raw_spinlock_t *lock = &l2x0_lock; while (start < end) { unsigned long blk_end = start + min(end - start, 4096UL); while (start < blk_end) { l2c_wait_mask(reg, 1); writel_relaxed(start, reg); start += CACHE_LINE_SIZE; } if (blk_end < end) { raw_spin_unlock_irqrestore(lock, flags); raw_spin_lock_irqsave(lock, flags); } } return flags; } static void l2c220_inv_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); if ((start | end) & (CACHE_LINE_SIZE - 1)) { if (start & (CACHE_LINE_SIZE - 1)) { start &= ~(CACHE_LINE_SIZE - 1); writel_relaxed(start, base + L2X0_CLEAN_INV_LINE_PA); start += CACHE_LINE_SIZE; } if (end & (CACHE_LINE_SIZE - 1)) { end &= ~(CACHE_LINE_SIZE - 1); l2c_wait_mask(base + L2X0_CLEAN_INV_LINE_PA, 1); writel_relaxed(end, base + L2X0_CLEAN_INV_LINE_PA); } } flags = l2c220_op_pa_range(base + L2X0_INV_LINE_PA, start, end, flags); l2c_wait_mask(base + L2X0_INV_LINE_PA, 1); __l2c220_cache_sync(base); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2c220_clean_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; unsigned long flags; start &= ~(CACHE_LINE_SIZE - 1); if ((end - start) >= l2x0_size) { l2c220_op_way(base, L2X0_CLEAN_WAY); return; } raw_spin_lock_irqsave(&l2x0_lock, flags); flags = l2c220_op_pa_range(base + L2X0_CLEAN_LINE_PA, start, end, flags); l2c_wait_mask(base + L2X0_CLEAN_INV_LINE_PA, 1); __l2c220_cache_sync(base); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2c220_flush_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; unsigned long flags; start &= ~(CACHE_LINE_SIZE - 1); if ((end - start) >= l2x0_size) { l2c220_op_way(base, L2X0_CLEAN_INV_WAY); return; } raw_spin_lock_irqsave(&l2x0_lock, flags); flags = l2c220_op_pa_range(base + L2X0_CLEAN_INV_LINE_PA, start, end, flags); l2c_wait_mask(base + L2X0_CLEAN_INV_LINE_PA, 1); __l2c220_cache_sync(base); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2c220_flush_all(void) { l2c220_op_way(l2x0_base, L2X0_CLEAN_INV_WAY); } static void l2c220_sync(void) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); __l2c220_cache_sync(l2x0_base); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static const struct l2c_init_data l2c220_data = { .num_lock = 1, .enable = l2c_enable, .outer_cache = { .inv_range = l2c220_inv_range, .clean_range = l2c220_clean_range, .flush_range = l2c220_flush_range, .flush_all = l2c220_flush_all, .disable = l2c_disable, .sync = l2c220_sync, .resume = l2c210_resume, }, }; /* * L2C-310 specific code. * * Very similar to L2C-210, the PA, set/way and sync operations are atomic, * and the way operations are all background tasks. However, issuing an * operation while a background operation is in progress results in a * SLVERR response. We can reuse: * * __l2c210_cache_sync (using sync_reg_offset) * l2c210_sync * l2c210_inv_range (if 588369 is not applicable) * l2c210_clean_range * l2c210_flush_range (if 588369 is not applicable) * l2c210_flush_all (if 727915 is not applicable) * * Errata: * 588369: PL310 R0P0->R1P0, fixed R2P0. * Affects: all clean+invalidate operations * clean and invalidate skips the invalidate step, so we need to issue * separate operations. We also require the above debug workaround * enclosing this code fragment on affected parts. On unaffected parts, * we must not use this workaround without the debug register writes * to avoid exposing a problem similar to 727915. * * 727915: PL310 R2P0->R3P0, fixed R3P1. * Affects: clean+invalidate by way * clean and invalidate by way runs in the background, and a store can * hit the line between the clean operation and invalidate operation, * resulting in the store being lost. * * 753970: PL310 R3P0, fixed R3P1. * Affects: sync * prevents merging writes after the sync operation, until another L2C * operation is performed (or a number of other conditions.) * * 769419: PL310 R0P0->R3P1, fixed R3P2. * Affects: store buffer * store buffer is not automatically drained. */ static void l2c310_set_debug(unsigned long val) { writel_relaxed(val, l2x0_base + L2X0_DEBUG_CTRL); } static void l2c310_inv_range_erratum(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; if ((start | end) & (CACHE_LINE_SIZE - 1)) { unsigned long flags; /* Erratum 588369 for both clean+invalidate operations */ raw_spin_lock_irqsave(&l2x0_lock, flags); l2c_set_debug(base, 0x03); if (start & (CACHE_LINE_SIZE - 1)) { start &= ~(CACHE_LINE_SIZE - 1); writel_relaxed(start, base + L2X0_CLEAN_LINE_PA); writel_relaxed(start, base + L2X0_INV_LINE_PA); start += CACHE_LINE_SIZE; } if (end & (CACHE_LINE_SIZE - 1)) { end &= ~(CACHE_LINE_SIZE - 1); writel_relaxed(end, base + L2X0_CLEAN_LINE_PA); writel_relaxed(end, base + L2X0_INV_LINE_PA); } l2c_set_debug(base, 0x00); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } __l2c210_op_pa_range(base + L2X0_INV_LINE_PA, start, end); __l2c210_cache_sync(base); } static void l2c310_flush_range_erratum(unsigned long start, unsigned long end) { raw_spinlock_t *lock = &l2x0_lock; unsigned long flags; void __iomem *base = l2x0_base; raw_spin_lock_irqsave(lock, flags); while (start < end) { unsigned long blk_end = start + min(end - start, 4096UL); l2c_set_debug(base, 0x03); while (start < blk_end) { writel_relaxed(start, base + L2X0_CLEAN_LINE_PA); writel_relaxed(start, base + L2X0_INV_LINE_PA); start += CACHE_LINE_SIZE; } l2c_set_debug(base, 0x00); if (blk_end < end) { raw_spin_unlock_irqrestore(lock, flags); raw_spin_lock_irqsave(lock, flags); } } raw_spin_unlock_irqrestore(lock, flags); __l2c210_cache_sync(base); } static void l2c310_flush_all_erratum(void) { void __iomem *base = l2x0_base; unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); l2c_set_debug(base, 0x03); __l2c_op_way(base + L2X0_CLEAN_INV_WAY); l2c_set_debug(base, 0x00); __l2c210_cache_sync(base); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void __init l2c310_save(void __iomem *base) { unsigned revision; l2x0_saved_regs.tag_latency = readl_relaxed(base + L2X0_TAG_LATENCY_CTRL); l2x0_saved_regs.data_latency = readl_relaxed(base + L2X0_DATA_LATENCY_CTRL); l2x0_saved_regs.filter_end = readl_relaxed(base + L2X0_ADDR_FILTER_END); l2x0_saved_regs.filter_start = readl_relaxed(base + L2X0_ADDR_FILTER_START); revision = readl_relaxed(base + L2X0_CACHE_ID) & L2X0_CACHE_ID_RTL_MASK; /* From r2p0, there is Prefetch offset/control register */ if (revision >= L310_CACHE_ID_RTL_R2P0) l2x0_saved_regs.prefetch_ctrl = readl_relaxed(base + L2X0_PREFETCH_CTRL); /* From r3p0, there is Power control register */ if (revision >= L310_CACHE_ID_RTL_R3P0) l2x0_saved_regs.pwr_ctrl = readl_relaxed(base + L2X0_POWER_CTRL); } static void l2c310_resume(void) { void __iomem *base = l2x0_base; if (!(readl_relaxed(base + L2X0_CTRL) & L2X0_CTRL_EN)) { unsigned revision; /* restore pl310 setup */ writel_relaxed(l2x0_saved_regs.tag_latency, base + L2X0_TAG_LATENCY_CTRL); writel_relaxed(l2x0_saved_regs.data_latency, base + L2X0_DATA_LATENCY_CTRL); writel_relaxed(l2x0_saved_regs.filter_end, base + L2X0_ADDR_FILTER_END); writel_relaxed(l2x0_saved_regs.filter_start, base + L2X0_ADDR_FILTER_START); revision = readl_relaxed(base + L2X0_CACHE_ID) & L2X0_CACHE_ID_RTL_MASK; if (revision >= L310_CACHE_ID_RTL_R2P0) writel_relaxed(l2x0_saved_regs.prefetch_ctrl, base + L2X0_PREFETCH_CTRL); if (revision >= L310_CACHE_ID_RTL_R3P0) writel_relaxed(l2x0_saved_regs.pwr_ctrl, base + L2X0_POWER_CTRL); l2c_enable(base, l2x0_saved_regs.aux_ctrl, 8); } } static void __init l2c310_fixup(void __iomem *base, u32 cache_id, struct outer_cache_fns *fns) { unsigned revision = cache_id & L2X0_CACHE_ID_RTL_MASK; const char *errata[4]; unsigned n = 0; /* For compatibility */ if (revision <= L310_CACHE_ID_RTL_R3P0) fns->set_debug = l2c310_set_debug; if (IS_ENABLED(CONFIG_PL310_ERRATA_588369) && revision < L310_CACHE_ID_RTL_R2P0 && /* For bcm compatibility */ fns->inv_range == l2c210_inv_range) { fns->inv_range = l2c310_inv_range_erratum; fns->flush_range = l2c310_flush_range_erratum; errata[n++] = "588369"; } if (IS_ENABLED(CONFIG_PL310_ERRATA_727915) && revision >= L310_CACHE_ID_RTL_R2P0 && revision < L310_CACHE_ID_RTL_R3P1) { fns->flush_all = l2c310_flush_all_erratum; errata[n++] = "727915"; } if (IS_ENABLED(CONFIG_PL310_ERRATA_753970) && revision == L310_CACHE_ID_RTL_R3P0) { sync_reg_offset = L2X0_DUMMY_REG; errata[n++] = "753970"; } if (IS_ENABLED(CONFIG_PL310_ERRATA_769419)) errata[n++] = "769419"; if (n) { unsigned i; pr_info("L2C-310 errat%s", n > 1 ? "a" : "um"); for (i = 0; i < n; i++) pr_cont(" %s", errata[i]); pr_cont(" enabled\n"); } } static const struct l2c_init_data l2c310_init_fns __initconst = { .num_lock = 8, .enable = l2c_enable, .fixup = l2c310_fixup, .save = l2c310_save, .outer_cache = { .inv_range = l2c210_inv_range, .clean_range = l2c210_clean_range, .flush_range = l2c210_flush_range, .flush_all = l2c210_flush_all, .disable = l2c_disable, .sync = l2c210_sync, .set_debug = l2c310_set_debug, .resume = l2c310_resume, }, }; static void __init __l2c_init(const struct l2c_init_data *data, u32 aux_val, u32 aux_mask, u32 cache_id) { struct outer_cache_fns fns; u32 aux; u32 way_size = 0; int ways; int way_size_shift = L2X0_WAY_SIZE_SHIFT; const char *type; /* * It is strange to save the register state before initialisation, * but hey, this is what the DT implementations decided to do. */ if (data->save) data->save(l2x0_base); aux = readl_relaxed(l2x0_base + L2X0_AUX_CTRL); aux &= aux_mask; aux |= aux_val; /* Determine the number of ways */ switch (cache_id & L2X0_CACHE_ID_PART_MASK) { case L2X0_CACHE_ID_PART_L310: if (aux & (1 << 16)) ways = 16; else ways = 8; type = "L310"; break; case L2X0_CACHE_ID_PART_L210: ways = (aux >> 13) & 0xf; type = "L210"; break; case AURORA_CACHE_ID: ways = (aux >> 13) & 0xf; ways = 2 << ((ways + 1) >> 2); way_size_shift = AURORA_WAY_SIZE_SHIFT; type = "Aurora"; break; default: /* Assume unknown chips have 8 ways */ ways = 8; type = "L2x0 series"; break; } l2x0_way_mask = (1 << ways) - 1; /* * L2 cache Size = Way size * Number of ways */ way_size = (aux & L2X0_AUX_CTRL_WAY_SIZE_MASK) >> 17; way_size = 1 << (way_size + way_size_shift); l2x0_size = ways * way_size * SZ_1K; fns = data->outer_cache; if (data->fixup) data->fixup(l2x0_base, cache_id, &fns); /* * Check if l2x0 controller is already enabled. If we are booting * in non-secure mode accessing the below registers will fault. */ if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN)) data->enable(l2x0_base, aux, data->num_lock); /* Re-read it in case some bits are reserved. */ aux = readl_relaxed(l2x0_base + L2X0_AUX_CTRL); /* Save the value for resuming. */ l2x0_saved_regs.aux_ctrl = aux; outer_cache = fns; pr_info("%s cache controller enabled, %d ways, %d kB\n", type, ways, l2x0_size >> 10); pr_info("%s: CACHE_ID 0x%08x, AUX_CTRL 0x%08x\n", type, cache_id, aux); } void __init l2x0_init(void __iomem *base, u32 aux_val, u32 aux_mask) { const struct l2c_init_data *data; u32 cache_id; l2x0_base = base; cache_id = readl_relaxed(base + L2X0_CACHE_ID); switch (cache_id & L2X0_CACHE_ID_PART_MASK) { default: case L2X0_CACHE_ID_PART_L210: data = &l2c210_data; break; case L2X0_CACHE_ID_PART_L220: data = &l2c220_data; break; case L2X0_CACHE_ID_PART_L310: data = &l2c310_init_fns; break; } __l2c_init(data, aux_val, aux_mask, cache_id); } #ifdef CONFIG_OF static int l2_wt_override; /* Aurora don't have the cache ID register available, so we have to * pass it though the device tree */ static u32 cache_id_part_number_from_dt; static void __init l2x0_of_parse(const struct device_node *np, u32 *aux_val, u32 *aux_mask) { u32 data[2] = { 0, 0 }; u32 tag = 0; u32 dirty = 0; u32 val = 0, mask = 0; of_property_read_u32(np, "arm,tag-latency", &tag); if (tag) { mask |= L2X0_AUX_CTRL_TAG_LATENCY_MASK; val |= (tag - 1) << L2X0_AUX_CTRL_TAG_LATENCY_SHIFT; } of_property_read_u32_array(np, "arm,data-latency", data, ARRAY_SIZE(data)); if (data[0] && data[1]) { mask |= L2X0_AUX_CTRL_DATA_RD_LATENCY_MASK | L2X0_AUX_CTRL_DATA_WR_LATENCY_MASK; val |= ((data[0] - 1) << L2X0_AUX_CTRL_DATA_RD_LATENCY_SHIFT) | ((data[1] - 1) << L2X0_AUX_CTRL_DATA_WR_LATENCY_SHIFT); } of_property_read_u32(np, "arm,dirty-latency", &dirty); if (dirty) { mask |= L2X0_AUX_CTRL_DIRTY_LATENCY_MASK; val |= (dirty - 1) << L2X0_AUX_CTRL_DIRTY_LATENCY_SHIFT; } *aux_val &= ~mask; *aux_val |= val; *aux_mask &= ~mask; } static const struct l2c_init_data of_l2c210_data __initconst = { .num_lock = 1, .of_parse = l2x0_of_parse, .enable = l2c_enable, .outer_cache = { .inv_range = l2c210_inv_range, .clean_range = l2c210_clean_range, .flush_range = l2c210_flush_range, .flush_all = l2c210_flush_all, .disable = l2c_disable, .sync = l2c210_sync, .resume = l2c210_resume, }, }; static const struct l2c_init_data of_l2c220_data __initconst = { .num_lock = 1, .of_parse = l2x0_of_parse, .enable = l2c_enable, .outer_cache = { .inv_range = l2c220_inv_range, .clean_range = l2c220_clean_range, .flush_range = l2c220_flush_range, .flush_all = l2c220_flush_all, .disable = l2c_disable, .sync = l2c220_sync, .resume = l2c210_resume, }, }; static void __init l2c310_of_parse(const struct device_node *np, u32 *aux_val, u32 *aux_mask) { u32 data[3] = { 0, 0, 0 }; u32 tag[3] = { 0, 0, 0 }; u32 filter[2] = { 0, 0 }; of_property_read_u32_array(np, "arm,tag-latency", tag, ARRAY_SIZE(tag)); if (tag[0] && tag[1] && tag[2]) writel_relaxed( ((tag[0] - 1) << L2X0_LATENCY_CTRL_RD_SHIFT) | ((tag[1] - 1) << L2X0_LATENCY_CTRL_WR_SHIFT) | ((tag[2] - 1) << L2X0_LATENCY_CTRL_SETUP_SHIFT), l2x0_base + L2X0_TAG_LATENCY_CTRL); of_property_read_u32_array(np, "arm,data-latency", data, ARRAY_SIZE(data)); if (data[0] && data[1] && data[2]) writel_relaxed( ((data[0] - 1) << L2X0_LATENCY_CTRL_RD_SHIFT) | ((data[1] - 1) << L2X0_LATENCY_CTRL_WR_SHIFT) | ((data[2] - 1) << L2X0_LATENCY_CTRL_SETUP_SHIFT), l2x0_base + L2X0_DATA_LATENCY_CTRL); of_property_read_u32_array(np, "arm,filter-ranges", filter, ARRAY_SIZE(filter)); if (filter[1]) { writel_relaxed(ALIGN(filter[0] + filter[1], SZ_1M), l2x0_base + L2X0_ADDR_FILTER_END); writel_relaxed((filter[0] & ~(SZ_1M - 1)) | L2X0_ADDR_FILTER_EN, l2x0_base + L2X0_ADDR_FILTER_START); } } static const struct l2c_init_data of_l2c310_data __initconst = { .num_lock = 8, .of_parse = l2c310_of_parse, .enable = l2c_enable, .fixup = l2c310_fixup, .save = l2c310_save, .outer_cache = { .inv_range = l2c210_inv_range, .clean_range = l2c210_clean_range, .flush_range = l2c210_flush_range, .flush_all = l2c210_flush_all, .disable = l2c_disable, .sync = l2c210_sync, .set_debug = l2c310_set_debug, .resume = l2c310_resume, }, }; /* * Note that the end addresses passed to Linux primitives are * noninclusive, while the hardware cache range operations use * inclusive start and end addresses. */ static unsigned long calc_range_end(unsigned long start, unsigned long end) { /* * Limit the number of cache lines processed at once, * since cache range operations stall the CPU pipeline * until completion. */ if (end > start + MAX_RANGE_SIZE) end = start + MAX_RANGE_SIZE; /* * Cache range operations can't straddle a page boundary. */ if (end > PAGE_ALIGN(start+1)) end = PAGE_ALIGN(start+1); return end; } /* * Make sure 'start' and 'end' reference the same page, as L2 is PIPT * and range operations only do a TLB lookup on the start address. */ static void aurora_pa_range(unsigned long start, unsigned long end, unsigned long offset) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); writel_relaxed(start, l2x0_base + AURORA_RANGE_BASE_ADDR_REG); writel_relaxed(end, l2x0_base + offset); raw_spin_unlock_irqrestore(&l2x0_lock, flags); cache_sync(); } static void aurora_inv_range(unsigned long start, unsigned long end) { /* * round start and end adresses up to cache line size */ start &= ~(CACHE_LINE_SIZE - 1); end = ALIGN(end, CACHE_LINE_SIZE); /* * Invalidate all full cache lines between 'start' and 'end'. */ while (start < end) { unsigned long range_end = calc_range_end(start, end); aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_INVAL_RANGE_REG); start = range_end; } } static void aurora_clean_range(unsigned long start, unsigned long end) { /* * If L2 is forced to WT, the L2 will always be clean and we * don't need to do anything here. */ if (!l2_wt_override) { start &= ~(CACHE_LINE_SIZE - 1); end = ALIGN(end, CACHE_LINE_SIZE); while (start != end) { unsigned long range_end = calc_range_end(start, end); aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_CLEAN_RANGE_REG); start = range_end; } } } static void aurora_flush_range(unsigned long start, unsigned long end) { start &= ~(CACHE_LINE_SIZE - 1); end = ALIGN(end, CACHE_LINE_SIZE); while (start != end) { unsigned long range_end = calc_range_end(start, end); /* * If L2 is forced to WT, the L2 will always be clean and we * just need to invalidate. */ if (l2_wt_override) aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_INVAL_RANGE_REG); else aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_FLUSH_RANGE_REG); start = range_end; } } static void aurora_save(void __iomem *base) { l2x0_saved_regs.ctrl = readl_relaxed(base + L2X0_CTRL); l2x0_saved_regs.aux_ctrl = readl_relaxed(base + L2X0_AUX_CTRL); } static void aurora_resume(void) { void __iomem *base = l2x0_base; if (!(readl(base + L2X0_CTRL) & L2X0_CTRL_EN)) { writel_relaxed(l2x0_saved_regs.aux_ctrl, base + L2X0_AUX_CTRL); writel_relaxed(l2x0_saved_regs.ctrl, base + L2X0_CTRL); } } /* * For Aurora cache in no outer mode, enable via the CP15 coprocessor * broadcasting of cache commands to L2. */ static void __init aurora_enable_no_outer(void __iomem *base, u32 aux, unsigned num_lock) { u32 u; asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u)); u |= AURORA_CTRL_FW; /* Set the FW bit */ asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u)); isb(); l2c_enable(base, aux, num_lock); } static void __init aurora_fixup(void __iomem *base, u32 cache_id, struct outer_cache_fns *fns) { sync_reg_offset = AURORA_SYNC_REG; } static void __init aurora_of_parse(const struct device_node *np, u32 *aux_val, u32 *aux_mask) { u32 val = AURORA_ACR_REPLACEMENT_TYPE_SEMIPLRU; u32 mask = AURORA_ACR_REPLACEMENT_MASK; of_property_read_u32(np, "cache-id-part", &cache_id_part_number_from_dt); /* Determine and save the write policy */ l2_wt_override = of_property_read_bool(np, "wt-override"); if (l2_wt_override) { val |= AURORA_ACR_FORCE_WRITE_THRO_POLICY; mask |= AURORA_ACR_FORCE_WRITE_POLICY_MASK; } *aux_val &= ~mask; *aux_val |= val; *aux_mask &= ~mask; } static const struct l2c_init_data of_aurora_with_outer_data __initconst = { .num_lock = 4, .of_parse = aurora_of_parse, .enable = l2c_enable, .fixup = aurora_fixup, .save = aurora_save, .outer_cache = { .inv_range = aurora_inv_range, .clean_range = aurora_clean_range, .flush_range = aurora_flush_range, .flush_all = l2x0_flush_all, .disable = l2x0_disable, .sync = l2x0_cache_sync, .resume = aurora_resume, }, }; static const struct l2c_init_data of_aurora_no_outer_data __initconst = { .num_lock = 4, .of_parse = aurora_of_parse, .enable = aurora_enable_no_outer, .fixup = aurora_fixup, .save = aurora_save, .outer_cache = { .resume = aurora_resume, }, }; /* * For certain Broadcom SoCs, depending on the address range, different offsets * need to be added to the address before passing it to L2 for * invalidation/clean/flush * * Section Address Range Offset EMI * 1 0x00000000 - 0x3FFFFFFF 0x80000000 VC * 2 0x40000000 - 0xBFFFFFFF 0x40000000 SYS * 3 0xC0000000 - 0xFFFFFFFF 0x80000000 VC * * When the start and end addresses have crossed two different sections, we * need to break the L2 operation into two, each within its own section. * For example, if we need to invalidate addresses starts at 0xBFFF0000 and * ends at 0xC0001000, we need do invalidate 1) 0xBFFF0000 - 0xBFFFFFFF and 2) * 0xC0000000 - 0xC0001000 * * Note 1: * By breaking a single L2 operation into two, we may potentially suffer some * performance hit, but keep in mind the cross section case is very rare * * Note 2: * We do not need to handle the case when the start address is in * Section 1 and the end address is in Section 3, since it is not a valid use * case * * Note 3: * Section 1 in practical terms can no longer be used on rev A2. Because of * that the code does not need to handle section 1 at all. * */ #define BCM_SYS_EMI_START_ADDR 0x40000000UL #define BCM_VC_EMI_SEC3_START_ADDR 0xC0000000UL #define BCM_SYS_EMI_OFFSET 0x40000000UL #define BCM_VC_EMI_OFFSET 0x80000000UL static inline int bcm_addr_is_sys_emi(unsigned long addr) { return (addr >= BCM_SYS_EMI_START_ADDR) && (addr < BCM_VC_EMI_SEC3_START_ADDR); } static inline unsigned long bcm_l2_phys_addr(unsigned long addr) { if (bcm_addr_is_sys_emi(addr)) return addr + BCM_SYS_EMI_OFFSET; else return addr + BCM_VC_EMI_OFFSET; } static void bcm_inv_range(unsigned long start, unsigned long end) { unsigned long new_start, new_end; BUG_ON(start < BCM_SYS_EMI_START_ADDR); if (unlikely(end <= start)) return; new_start = bcm_l2_phys_addr(start); new_end = bcm_l2_phys_addr(end); /* normal case, no cross section between start and end */ if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) { l2c210_inv_range(new_start, new_end); return; } /* They cross sections, so it can only be a cross from section * 2 to section 3 */ l2c210_inv_range(new_start, bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1)); l2c210_inv_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR), new_end); } static void bcm_clean_range(unsigned long start, unsigned long end) { unsigned long new_start, new_end; BUG_ON(start < BCM_SYS_EMI_START_ADDR); if (unlikely(end <= start)) return; new_start = bcm_l2_phys_addr(start); new_end = bcm_l2_phys_addr(end); /* normal case, no cross section between start and end */ if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) { l2c210_clean_range(new_start, new_end); return; } /* They cross sections, so it can only be a cross from section * 2 to section 3 */ l2c210_clean_range(new_start, bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1)); l2c210_clean_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR), new_end); } static void bcm_flush_range(unsigned long start, unsigned long end) { unsigned long new_start, new_end; BUG_ON(start < BCM_SYS_EMI_START_ADDR); if (unlikely(end <= start)) return; if ((end - start) >= l2x0_size) { outer_cache.flush_all(); return; } new_start = bcm_l2_phys_addr(start); new_end = bcm_l2_phys_addr(end); /* normal case, no cross section between start and end */ if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) { l2c210_flush_range(new_start, new_end); return; } /* They cross sections, so it can only be a cross from section * 2 to section 3 */ l2c210_flush_range(new_start, bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1)); l2c210_flush_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR), new_end); } /* Broadcom L2C-310 start from ARMs R3P2 or later, and require no fixups */ static const struct l2c_init_data of_bcm_l2x0_data __initconst = { .num_lock = 8, .of_parse = l2c310_of_parse, .enable = l2c_enable, .save = l2c310_save, .outer_cache = { .inv_range = bcm_inv_range, .clean_range = bcm_clean_range, .flush_range = bcm_flush_range, .flush_all = l2c210_flush_all, .disable = l2c_disable, .sync = l2c210_sync, .resume = l2c310_resume, }, }; static void __init tauros3_save(void __iomem *base) { l2x0_saved_regs.aux2_ctrl = readl_relaxed(base + TAUROS3_AUX2_CTRL); l2x0_saved_regs.prefetch_ctrl = readl_relaxed(base + L2X0_PREFETCH_CTRL); } static void tauros3_resume(void) { void __iomem *base = l2x0_base; if (!(readl_relaxed(base + L2X0_CTRL) & L2X0_CTRL_EN)) { writel_relaxed(l2x0_saved_regs.aux2_ctrl, base + TAUROS3_AUX2_CTRL); writel_relaxed(l2x0_saved_regs.prefetch_ctrl, base + L2X0_PREFETCH_CTRL); l2c_enable(base, l2x0_saved_regs.aux_ctrl, 8); } } static const struct l2c_init_data of_tauros3_data __initconst = { .num_lock = 8, .enable = l2c_enable, .save = tauros3_save, /* Tauros3 broadcasts L1 cache operations to L2 */ .outer_cache = { .resume = tauros3_resume, }, }; #define L2C_ID(name, fns) { .compatible = name, .data = (void *)&fns } static const struct of_device_id l2x0_ids[] __initconst = { L2C_ID("arm,l210-cache", of_l2c210_data), L2C_ID("arm,l220-cache", of_l2c220_data), L2C_ID("arm,pl310-cache", of_l2c310_data), L2C_ID("brcm,bcm11351-a2-pl310-cache", of_bcm_l2x0_data), L2C_ID("marvell,aurora-outer-cache", of_aurora_with_outer_data), L2C_ID("marvell,aurora-system-cache", of_aurora_no_outer_data), L2C_ID("marvell,tauros3-cache", of_tauros3_data), /* Deprecated IDs */ L2C_ID("bcm,bcm11351-a2-pl310-cache", of_bcm_l2x0_data), {} }; int __init l2x0_of_init(u32 aux_val, u32 aux_mask) { const struct l2c_init_data *data; struct device_node *np; struct resource res; u32 cache_id; np = of_find_matching_node(NULL, l2x0_ids); if (!np) return -ENODEV; if (of_address_to_resource(np, 0, &res)) return -ENODEV; l2x0_base = ioremap(res.start, resource_size(&res)); if (!l2x0_base) return -ENOMEM; l2x0_saved_regs.phy_base = res.start; data = of_match_node(l2x0_ids, np)->data; /* L2 configuration can only be changed if the cache is disabled */ if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN)) if (data->of_parse) data->of_parse(np, &aux_val, &aux_mask); if (cache_id_part_number_from_dt) cache_id = cache_id_part_number_from_dt; else cache_id = readl_relaxed(l2x0_base + L2X0_CACHE_ID); __l2c_init(data, aux_val, aux_mask, cache_id); return 0; } #endif