#include #include #include #include #include #include #include @ Bad Abort numbers @ ----------------- @ #define BAD_PREFETCH 0 #define BAD_DATA 1 #define BAD_ADDREXCPTN 2 #define BAD_IRQ 3 #define BAD_UNDEFINSTR 4 @ @ Most of the stack format comes from struct pt_regs, but with @ the addition of 8 bytes for storing syscall args 5 and 6. @ This _must_ remain a multiple of 8 for EABI. @ #define S_OFF 8 /* * The SWI code relies on the fact that R0 is at the bottom of the stack * (due to slow/fast restore user regs). */ #if S_R0 != 0 #error "Please fix" #endif .macro zero_fp #ifdef CONFIG_FRAME_POINTER mov fp, #0 #endif .endm .macro alignment_trap, rtemp #ifdef CONFIG_ALIGNMENT_TRAP ldr \rtemp, .LCcralign ldr \rtemp, [\rtemp] mcr p15, 0, \rtemp, c1, c0 #endif .endm #ifdef CONFIG_CPU_V7M /* * ARMv7-M exception entry/exit macros. * * xPSR, ReturnAddress(), LR (R14), R12, R3, R2, R1, and R0 are * automatically saved on the current stack (32 words) before * switching to the exception stack (SP_main). * * If exception is taken while in user mode, SP_main is * empty. Otherwise, SP_main is aligned to 64 bit automatically * (CCR.STKALIGN set). * * Linux assumes that the interrupts are disabled when entering an * exception handler and it may BUG if this is not the case. Interrupts * are disabled during entry and reenabled in the exit macro. * * v7m_exception_slow_exit is used when returning from SVC or PendSV. * When returning to kernel mode, we don't return from exception. */ .macro v7m_exception_entry @ determine the location of the registers saved by the core during @ exception entry. Depending on the mode the cpu was in when the @ exception happend that is either on the main or the process stack. @ Bit 2 of EXC_RETURN stored in the lr register specifies which stack @ was used. tst lr, #EXC_RET_STACK_MASK mrsne r12, psp moveq r12, sp @ we cannot rely on r0-r3 and r12 matching the value saved in the @ exception frame because of tail-chaining. So these have to be @ reloaded. ldmia r12!, {r0-r3} @ Linux expects to have irqs off. Do it here before taking stack space cpsid i sub sp, #S_FRAME_SIZE-S_IP stmdb sp!, {r0-r11} @ load saved r12, lr, return address and xPSR. @ r0-r7 are used for signals and never touched from now on. Clobbering @ r8-r12 is OK. mov r9, r12 ldmia r9!, {r8, r10-r12} @ calculate the original stack pointer value. @ r9 currently points to the memory location just above the auto saved @ xPSR. @ The cpu might automatically 8-byte align the stack. Bit 9 @ of the saved xPSR specifies if stack aligning took place. In this case @ another 32-bit value is included in the stack. tst r12, V7M_xPSR_FRAMEPTRALIGN addne r9, r9, #4 @ store saved r12 using str to have a register to hold the base for stm str r8, [sp, #S_IP] add r8, sp, #S_SP @ store r13-r15, xPSR stmia r8!, {r9-r12} @ store old_r0 str r0, [r8] .endm /* * PENDSV and SVCALL are configured to have the same exception * priorities. As a kernel thread runs at SVCALL execution priority it * can never be preempted and so we will never have to return to a * kernel thread here. */ .macro v7m_exception_slow_exit ret_r0 cpsid i ldr lr, =EXC_RET_THREADMODE_PROCESSSTACK @ read original r12, sp, lr, pc and xPSR add r12, sp, #S_IP ldmia r12, {r1-r5} @ an exception frame is always 8-byte aligned. To tell the hardware if @ the sp to be restored is aligned or not set bit 9 of the saved xPSR @ accordingly. tst r2, #4 subne r2, r2, #4 orrne r5, V7M_xPSR_FRAMEPTRALIGN biceq r5, V7M_xPSR_FRAMEPTRALIGN @ write basic exception frame stmdb r2!, {r1, r3-r5} ldmia sp, {r1, r3-r5} .if \ret_r0 stmdb r2!, {r0, r3-r5} .else stmdb r2!, {r1, r3-r5} .endif @ restore process sp msr psp, r2 @ restore original r4-r11 ldmia sp!, {r0-r11} @ restore main sp add sp, sp, #S_FRAME_SIZE-S_IP cpsie i bx lr .endm #endif /* CONFIG_CPU_V7M */ @ @ Store/load the USER SP and LR registers by switching to the SYS @ mode. Useful in Thumb-2 mode where "stm/ldm rd, {sp, lr}^" is not @ available. Should only be called from SVC mode @ .macro store_user_sp_lr, rd, rtemp, offset = 0 mrs \rtemp, cpsr eor \rtemp, \rtemp, #(SVC_MODE ^ SYSTEM_MODE) msr cpsr_c, \rtemp @ switch to the SYS mode str sp, [\rd, #\offset] @ save sp_usr str lr, [\rd, #\offset + 4] @ save lr_usr eor \rtemp, \rtemp, #(SVC_MODE ^ SYSTEM_MODE) msr cpsr_c, \rtemp @ switch back to the SVC mode .endm .macro load_user_sp_lr, rd, rtemp, offset = 0 mrs \rtemp, cpsr eor \rtemp, \rtemp, #(SVC_MODE ^ SYSTEM_MODE) msr cpsr_c, \rtemp @ switch to the SYS mode ldr sp, [\rd, #\offset] @ load sp_usr ldr lr, [\rd, #\offset + 4] @ load lr_usr eor \rtemp, \rtemp, #(SVC_MODE ^ SYSTEM_MODE) msr cpsr_c, \rtemp @ switch back to the SVC mode .endm #ifndef CONFIG_THUMB2_KERNEL .macro svc_exit, rpsr msr spsr_cxsf, \rpsr #if defined(CONFIG_CPU_V6) ldr r0, [sp] strex r1, r2, [sp] @ clear the exclusive monitor ldmib sp, {r1 - pc}^ @ load r1 - pc, cpsr #elif defined(CONFIG_CPU_32v6K) clrex @ clear the exclusive monitor ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr #else ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr #endif .endm .macro restore_user_regs, fast = 0, offset = 0 ldr r1, [sp, #\offset + S_PSR] @ get calling cpsr ldr lr, [sp, #\offset + S_PC]! @ get pc msr spsr_cxsf, r1 @ save in spsr_svc #if defined(CONFIG_CPU_V6) strex r1, r2, [sp] @ clear the exclusive monitor #elif defined(CONFIG_CPU_32v6K) clrex @ clear the exclusive monitor #endif .if \fast ldmdb sp, {r1 - lr}^ @ get calling r1 - lr .else ldmdb sp, {r0 - lr}^ @ get calling r0 - lr .endif mov r0, r0 @ ARMv5T and earlier require a nop @ after ldm {}^ add sp, sp, #S_FRAME_SIZE - S_PC movs pc, lr @ return & move spsr_svc into cpsr .endm .macro get_thread_info, rd mov \rd, sp, lsr #13 mov \rd, \rd, lsl #13 .endm @ @ 32-bit wide "mov pc, reg" @ .macro movw_pc, reg mov pc, \reg .endm #else /* CONFIG_THUMB2_KERNEL */ .macro svc_exit, rpsr ldr lr, [sp, #S_SP] @ top of the stack ldrd r0, r1, [sp, #S_LR] @ calling lr and pc clrex @ clear the exclusive monitor stmdb lr!, {r0, r1, \rpsr} @ calling lr and rfe context ldmia sp, {r0 - r12} mov sp, lr ldr lr, [sp], #4 rfeia sp! .endm #ifdef CONFIG_CPU_V7M /* * Note we don't need to do clrex here as clearing the local monitor is * part of each exception entry and exit sequence. */ .macro restore_user_regs, fast = 0, offset = 0 .if \offset add sp, #\offset .endif v7m_exception_slow_exit ret_r0 = \fast .endm #else /* ifdef CONFIG_CPU_V7M */ .macro restore_user_regs, fast = 0, offset = 0 clrex @ clear the exclusive monitor mov r2, sp load_user_sp_lr r2, r3, \offset + S_SP @ calling sp, lr ldr r1, [sp, #\offset + S_PSR] @ get calling cpsr ldr lr, [sp, #\offset + S_PC] @ get pc add sp, sp, #\offset + S_SP msr spsr_cxsf, r1 @ save in spsr_svc .if \fast ldmdb sp, {r1 - r12} @ get calling r1 - r12 .else ldmdb sp, {r0 - r12} @ get calling r0 - r12 .endif add sp, sp, #S_FRAME_SIZE - S_SP movs pc, lr @ return & move spsr_svc into cpsr .endm #endif /* ifdef CONFIG_CPU_V7M / else */ .macro get_thread_info, rd mov \rd, sp lsr \rd, \rd, #13 mov \rd, \rd, lsl #13 .endm @ @ 32-bit wide "mov pc, reg" @ .macro movw_pc, reg mov pc, \reg nop .endm #endif /* !CONFIG_THUMB2_KERNEL */ /* * These are the registers used in the syscall handler, and allow us to * have in theory up to 7 arguments to a function - r0 to r6. * * r7 is reserved for the system call number for thumb mode. * * Note that tbl == why is intentional. * * We must set at least "tsk" and "why" when calling ret_with_reschedule. */ scno .req r7 @ syscall number tbl .req r8 @ syscall table pointer why .req r8 @ Linux syscall (!= 0) tsk .req r9 @ current thread_info