From 6c287605fd56466e645693eff3ae7c08fba56e0a Mon Sep 17 00:00:00 2001 From: David Hildenbrand Date: Mon, 9 May 2022 18:20:44 -0700 Subject: mm: remember exclusively mapped anonymous pages with PG_anon_exclusive Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as exclusive, and use that information to make GUP pins reliable and stay consistent with the page mapped into the page table even if the page table entry gets write-protected. With that information at hand, we can extend our COW logic to always reuse anonymous pages that are exclusive. For anonymous pages that might be shared, the existing logic applies. As already documented, PG_anon_exclusive is usually only expressive in combination with a page table entry. Especially PTE vs. PMD-mapped anonymous pages require more thought, some examples: due to mremap() we can easily have a single compound page PTE-mapped into multiple page tables exclusively in a single process -- multiple page table locks apply. Further, due to MADV_WIPEONFORK we might not necessarily write-protect all PTEs, and only some subpages might be pinned. Long story short: once PTE-mapped, we have to track information about exclusivity per sub-page, but until then, we can just track it for the compound page in the head page and not having to update a whole bunch of subpages all of the time for a simple PMD mapping of a THP. For simplicity, this commit mostly talks about "anonymous pages", while it's for THP actually "the part of an anonymous folio referenced via a page table entry". To not spill PG_anon_exclusive code all over the mm code-base, we let the anon rmap code to handle all PG_anon_exclusive logic it can easily handle. If a writable, present page table entry points at an anonymous (sub)page, that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably pin (FOLL_PIN) on an anonymous page references via a present page table entry, it must only pin if PG_anon_exclusive is set for the mapped (sub)page. This commit doesn't adjust GUP, so this is only implicitly handled for FOLL_WRITE, follow-up commits will teach GUP to also respect it for FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully reliable. Whenever an anonymous page is to be shared (fork(), KSM), or when temporarily unmapping an anonymous page (swap, migration), the relevant PG_anon_exclusive bit has to be cleared to mark the anonymous page possibly shared. Clearing will fail if there are GUP pins on the page: * For fork(), this means having to copy the page and not being able to share it. fork() protects against concurrent GUP using the PT lock and the src_mm->write_protect_seq. * For KSM, this means sharing will fail. For swap this means, unmapping will fail, For migration this means, migration will fail early. All three cases protect against concurrent GUP using the PT lock and a proper clear/invalidate+flush of the relevant page table entry. This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a pinned page gets mapped R/O and the successive write fault ends up replacing the page instead of reusing it. It improves the situation for O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if fork() is *not* involved, however swapout and fork() are still problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP users will fix the issue for them. I. Details about basic handling I.1. Fresh anonymous pages page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the given page exclusive via __page_set_anon_rmap(exclusive=1). As that is the mechanism fresh anonymous pages come into life (besides migration code where we copy the page->mapping), all fresh anonymous pages will start out as exclusive. I.2. COW reuse handling of anonymous pages When a COW handler stumbles over a (sub)page that's marked exclusive, it simply reuses it. Otherwise, the handler tries harder under page lock to detect if the (sub)page is exclusive and can be reused. If exclusive, page_move_anon_rmap() will mark the given (sub)page exclusive. Note that hugetlb code does not yet check for PageAnonExclusive(), as it still uses the old COW logic that is prone to the COW security issue because hugetlb code cannot really tolerate unnecessary/wrong COW as huge pages are a scarce resource. I.3. Migration handling try_to_migrate() has to try marking an exclusive anonymous page shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. migrate_vma_collect_pmd() and __split_huge_pmd_locked() are handled similarly. Writable migration entries implicitly point at shared anonymous pages. For readable migration entries that information is stored via a new "readable-exclusive" migration entry, specific to anonymous pages. When restoring a migration entry in remove_migration_pte(), information about exlusivity is detected via the migration entry type, and RMAP_EXCLUSIVE is set accordingly for page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information. I.4. Swapout handling try_to_unmap() has to try marking the mapped page possibly shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. For now, information about exclusivity is lost. In the future, we might want to remember that information in the swap entry in some cases, however, it requires more thought, care, and a way to store that information in swap entries. I.5. Swapin handling do_swap_page() will never stumble over exclusive anonymous pages in the swap cache, as try_to_migrate() prohibits that. do_swap_page() always has to detect manually if an anonymous page is exclusive and has to set RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly. I.6. THP handling __split_huge_pmd_locked() has to move the information about exclusivity from the PMD to the PTEs. a) In case we have a readable-exclusive PMD migration entry, simply insert readable-exclusive PTE migration entries. b) In case we have a present PMD entry and we don't want to freeze ("convert to migration entries"), simply forward PG_anon_exclusive to all sub-pages, no need to temporarily clear the bit. c) In case we have a present PMD entry and want to freeze, handle it similar to try_to_migrate(): try marking the page shared first. In case we fail, we ignore the "freeze" instruction and simply split ordinarily. try_to_migrate() will properly fail because the THP is still mapped via PTEs. When splitting a compound anonymous folio (THP), the information about exclusivity is implicitly handled via the migration entries: no need to replicate PG_anon_exclusive manually. I.7. fork() handling fork() handling is relatively easy, because PG_anon_exclusive is only expressive for some page table entry types. a) Present anonymous pages page_try_dup_anon_rmap() will mark the given subpage shared -- which will fail if the page is pinned. If it failed, we have to copy (or PTE-map a PMD to handle it on the PTE level). Note that device exclusive entries are just a pointer at a PageAnon() page. fork() will first convert a device exclusive entry to a present page table and handle it just like present anonymous pages. b) Device private entry Device private entries point at PageAnon() pages that cannot be mapped directly and, therefore, cannot get pinned. page_try_dup_anon_rmap() will mark the given subpage shared, which cannot fail because they cannot get pinned. c) HW poison entries PG_anon_exclusive will remain untouched and is stale -- the page table entry is just a placeholder after all. d) Migration entries Writable and readable-exclusive entries are converted to readable entries: possibly shared. I.8. mprotect() handling mprotect() only has to properly handle the new readable-exclusive migration entry: When write-protecting a migration entry that points at an anonymous page, remember the information about exclusivity via the "readable-exclusive" migration entry type. II. Migration and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a migration entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_migrate() places a migration entry after checking for GUP pins and marks the page possibly shared. 2. GUP-fast pins the page due to lack of synchronization 3. fork() converts the "writable/readable-exclusive" migration entry into a readable migration entry 4. Migration fails due to the GUP pin (failing to freeze the refcount) 5. Migration entries are restored. PG_anon_exclusive is lost -> We have a pinned page that is not marked exclusive anymore. Note that we move information about exclusivity from the page to the migration entry as it otherwise highly overcomplicates fork() and PTE-mapping a THP. III. Swapout and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a swap entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_unmap() places a swap entry after checking for GUP pins and clears exclusivity information on the page. 2. GUP-fast pins the page due to lack of synchronization. -> We have a pinned page that is not marked exclusive anymore. If we'd ever store information about exclusivity in the swap entry, similar to migration handling, the same considerations as in II would apply. This is future work. Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com Signed-off-by: David Hildenbrand Acked-by: Vlastimil Babka Cc: Andrea Arcangeli Cc: Christoph Hellwig Cc: David Rientjes Cc: Don Dutile Cc: Hugh Dickins Cc: Jan Kara Cc: Jann Horn Cc: Jason Gunthorpe Cc: John Hubbard Cc: Khalid Aziz Cc: "Kirill A. Shutemov" Cc: Liang Zhang Cc: "Matthew Wilcox (Oracle)" Cc: Michal Hocko Cc: Mike Kravetz Cc: Mike Rapoport Cc: Nadav Amit Cc: Oded Gabbay Cc: Oleg Nesterov Cc: Pedro Demarchi Gomes Cc: Peter Xu Cc: Rik van Riel Cc: Roman Gushchin Cc: Shakeel Butt Cc: Yang Shi Signed-off-by: Andrew Morton --- mm/memory.c | 33 +++++++++++++++++++++++++-------- 1 file changed, 25 insertions(+), 8 deletions(-) (limited to 'mm/memory.c') diff --git a/mm/memory.c b/mm/memory.c index 0b0727758c86..454ecc05ad85 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -720,6 +720,8 @@ static void restore_exclusive_pte(struct vm_area_struct *vma, else if (is_writable_device_exclusive_entry(entry)) pte = maybe_mkwrite(pte_mkdirty(pte), vma); + VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); + /* * No need to take a page reference as one was already * created when the swap entry was made. @@ -796,11 +798,12 @@ copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, rss[mm_counter(page)]++; - if (is_writable_migration_entry(entry) && + if (!is_readable_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* - * COW mappings require pages in both - * parent and child to be set to read. + * COW mappings require pages in both parent and child + * to be set to read. A previously exclusive entry is + * now shared. */ entry = make_readable_migration_entry( swp_offset(entry)); @@ -951,6 +954,7 @@ copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } + VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); /* * If it's a shared mapping, mark it clean in @@ -2949,6 +2953,9 @@ static inline void wp_page_reuse(struct vm_fault *vmf) struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; + + VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page)); + /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely @@ -3273,6 +3280,13 @@ static vm_fault_t do_wp_page(struct vm_fault *vmf) if (PageAnon(vmf->page)) { struct page *page = vmf->page; + /* + * If the page is exclusive to this process we must reuse the + * page without further checks. + */ + if (PageAnonExclusive(page)) + goto reuse; + /* * We have to verify under page lock: these early checks are * just an optimization to avoid locking the page and freeing @@ -3305,6 +3319,7 @@ static vm_fault_t do_wp_page(struct vm_fault *vmf) */ page_move_anon_rmap(page, vma); unlock_page(page); +reuse: wp_page_reuse(vmf); return VM_FAULT_WRITE; } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == @@ -3696,11 +3711,12 @@ vm_fault_t do_swap_page(struct vm_fault *vmf) * that are certainly not shared because we just allocated them without * exposing them to the swapcache. */ - if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) && - (page != swapcache || page_count(page) == 1)) { - pte = maybe_mkwrite(pte_mkdirty(pte), vma); - vmf->flags &= ~FAULT_FLAG_WRITE; - ret |= VM_FAULT_WRITE; + if (!PageKsm(page) && (page != swapcache || page_count(page) == 1)) { + if (vmf->flags & FAULT_FLAG_WRITE) { + pte = maybe_mkwrite(pte_mkdirty(pte), vma); + vmf->flags &= ~FAULT_FLAG_WRITE; + ret |= VM_FAULT_WRITE; + } rmap_flags |= RMAP_EXCLUSIVE; } flush_icache_page(vma, page); @@ -3720,6 +3736,7 @@ vm_fault_t do_swap_page(struct vm_fault *vmf) page_add_anon_rmap(page, vma, vmf->address, rmap_flags); } + VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page))); set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); -- cgit v1.2.3