From a7305e684fcfb33029fe3d0af6b7d8dc4c8ca7a1 Mon Sep 17 00:00:00 2001
From: Ulf Hansson <ulf.hansson@linaro.org>
Date: Tue, 6 Oct 2020 18:05:13 +0200
Subject: PM: AVS: qcom-cpr: Move the driver to the qcom specific drivers

The avs drivers are all SoC specific drivers that doesn't share any code.
Instead they are located in a directory, mostly to keep similar
functionality together. From a maintenance point of view, it makes better
sense to collect SoC specific drivers like these, into the SoC specific
directories.

Therefore, let's move the qcom-cpr driver to the qcom directory.

Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Acked-by: Niklas Cassel <nks@flawful.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
---
 drivers/power/avs/Kconfig    |   16 -
 drivers/power/avs/Makefile   |    1 -
 drivers/power/avs/qcom-cpr.c | 1788 ------------------------------------------
 drivers/soc/qcom/Kconfig     |   16 +
 drivers/soc/qcom/Makefile    |    1 +
 drivers/soc/qcom/cpr.c       | 1788 ++++++++++++++++++++++++++++++++++++++++++
 6 files changed, 1805 insertions(+), 1805 deletions(-)
 delete mode 100644 drivers/power/avs/qcom-cpr.c
 create mode 100644 drivers/soc/qcom/cpr.c

(limited to 'drivers')

diff --git a/drivers/power/avs/Kconfig b/drivers/power/avs/Kconfig
index d789509ae7e9..a4e40e534e6a 100644
--- a/drivers/power/avs/Kconfig
+++ b/drivers/power/avs/Kconfig
@@ -1,17 +1 @@
 # SPDX-License-Identifier: GPL-2.0-only
-
-config QCOM_CPR
-	tristate "QCOM Core Power Reduction (CPR) support"
-	depends on POWER_AVS && HAS_IOMEM
-	select PM_OPP
-	select REGMAP
-	help
-	  Say Y here to enable support for the CPR hardware found on Qualcomm
-	  SoCs like QCS404.
-
-	  This driver populates CPU OPPs tables and makes adjustments to the
-	  tables based on feedback from the CPR hardware. If you want to do
-	  CPUfrequency scaling say Y here.
-
-	  To compile this driver as a module, choose M here: the module will
-	  be called qcom-cpr
diff --git a/drivers/power/avs/Makefile b/drivers/power/avs/Makefile
index 735832f47214..a4e40e534e6a 100644
--- a/drivers/power/avs/Makefile
+++ b/drivers/power/avs/Makefile
@@ -1,2 +1 @@
 # SPDX-License-Identifier: GPL-2.0-only
-obj-$(CONFIG_QCOM_CPR)			+= qcom-cpr.o
diff --git a/drivers/power/avs/qcom-cpr.c b/drivers/power/avs/qcom-cpr.c
deleted file mode 100644
index b24cc77d1889..000000000000
--- a/drivers/power/avs/qcom-cpr.c
+++ /dev/null
@@ -1,1788 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
- * Copyright (c) 2019, Linaro Limited
- */
-
-#include <linux/module.h>
-#include <linux/err.h>
-#include <linux/debugfs.h>
-#include <linux/string.h>
-#include <linux/kernel.h>
-#include <linux/list.h>
-#include <linux/init.h>
-#include <linux/io.h>
-#include <linux/bitops.h>
-#include <linux/slab.h>
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <linux/platform_device.h>
-#include <linux/pm_domain.h>
-#include <linux/pm_opp.h>
-#include <linux/interrupt.h>
-#include <linux/regmap.h>
-#include <linux/mfd/syscon.h>
-#include <linux/regulator/consumer.h>
-#include <linux/clk.h>
-#include <linux/nvmem-consumer.h>
-
-/* Register Offsets for RB-CPR and Bit Definitions */
-
-/* RBCPR Version Register */
-#define REG_RBCPR_VERSION		0
-#define RBCPR_VER_2			0x02
-#define FLAGS_IGNORE_1ST_IRQ_STATUS	BIT(0)
-
-/* RBCPR Gate Count and Target Registers */
-#define REG_RBCPR_GCNT_TARGET(n)	(0x60 + 4 * (n))
-
-#define RBCPR_GCNT_TARGET_TARGET_SHIFT	0
-#define RBCPR_GCNT_TARGET_TARGET_MASK	GENMASK(11, 0)
-#define RBCPR_GCNT_TARGET_GCNT_SHIFT	12
-#define RBCPR_GCNT_TARGET_GCNT_MASK	GENMASK(9, 0)
-
-/* RBCPR Timer Control */
-#define REG_RBCPR_TIMER_INTERVAL	0x44
-#define REG_RBIF_TIMER_ADJUST		0x4c
-
-#define RBIF_TIMER_ADJ_CONS_UP_MASK	GENMASK(3, 0)
-#define RBIF_TIMER_ADJ_CONS_UP_SHIFT	0
-#define RBIF_TIMER_ADJ_CONS_DOWN_MASK	GENMASK(3, 0)
-#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT	4
-#define RBIF_TIMER_ADJ_CLAMP_INT_MASK	GENMASK(7, 0)
-#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT	8
-
-/* RBCPR Config Register */
-#define REG_RBIF_LIMIT			0x48
-#define RBIF_LIMIT_CEILING_MASK		GENMASK(5, 0)
-#define RBIF_LIMIT_CEILING_SHIFT	6
-#define RBIF_LIMIT_FLOOR_BITS		6
-#define RBIF_LIMIT_FLOOR_MASK		GENMASK(5, 0)
-
-#define RBIF_LIMIT_CEILING_DEFAULT	RBIF_LIMIT_CEILING_MASK
-#define RBIF_LIMIT_FLOOR_DEFAULT	0
-
-#define REG_RBIF_SW_VLEVEL		0x94
-#define RBIF_SW_VLEVEL_DEFAULT		0x20
-
-#define REG_RBCPR_STEP_QUOT		0x80
-#define RBCPR_STEP_QUOT_STEPQUOT_MASK	GENMASK(7, 0)
-#define RBCPR_STEP_QUOT_IDLE_CLK_MASK	GENMASK(3, 0)
-#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT	8
-
-/* RBCPR Control Register */
-#define REG_RBCPR_CTL			0x90
-
-#define RBCPR_CTL_LOOP_EN			BIT(0)
-#define RBCPR_CTL_TIMER_EN			BIT(3)
-#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN		BIT(5)
-#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN	BIT(6)
-#define RBCPR_CTL_COUNT_MODE			BIT(10)
-#define RBCPR_CTL_UP_THRESHOLD_MASK	GENMASK(3, 0)
-#define RBCPR_CTL_UP_THRESHOLD_SHIFT	24
-#define RBCPR_CTL_DN_THRESHOLD_MASK	GENMASK(3, 0)
-#define RBCPR_CTL_DN_THRESHOLD_SHIFT	28
-
-/* RBCPR Ack/Nack Response */
-#define REG_RBIF_CONT_ACK_CMD		0x98
-#define REG_RBIF_CONT_NACK_CMD		0x9c
-
-/* RBCPR Result status Register */
-#define REG_RBCPR_RESULT_0		0xa0
-
-#define RBCPR_RESULT0_BUSY_SHIFT	19
-#define RBCPR_RESULT0_BUSY_MASK		BIT(RBCPR_RESULT0_BUSY_SHIFT)
-#define RBCPR_RESULT0_ERROR_LT0_SHIFT	18
-#define RBCPR_RESULT0_ERROR_SHIFT	6
-#define RBCPR_RESULT0_ERROR_MASK	GENMASK(11, 0)
-#define RBCPR_RESULT0_ERROR_STEPS_SHIFT	2
-#define RBCPR_RESULT0_ERROR_STEPS_MASK	GENMASK(3, 0)
-#define RBCPR_RESULT0_STEP_UP_SHIFT	1
-
-/* RBCPR Interrupt Control Register */
-#define REG_RBIF_IRQ_EN(n)		(0x100 + 4 * (n))
-#define REG_RBIF_IRQ_CLEAR		0x110
-#define REG_RBIF_IRQ_STATUS		0x114
-
-#define CPR_INT_DONE		BIT(0)
-#define CPR_INT_MIN		BIT(1)
-#define CPR_INT_DOWN		BIT(2)
-#define CPR_INT_MID		BIT(3)
-#define CPR_INT_UP		BIT(4)
-#define CPR_INT_MAX		BIT(5)
-#define CPR_INT_CLAMP		BIT(6)
-#define CPR_INT_ALL	(CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
-			CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
-#define CPR_INT_DEFAULT	(CPR_INT_UP | CPR_INT_DOWN)
-
-#define CPR_NUM_RING_OSC	8
-
-/* CPR eFuse parameters */
-#define CPR_FUSE_TARGET_QUOT_BITS_MASK	GENMASK(11, 0)
-
-#define CPR_FUSE_MIN_QUOT_DIFF		50
-
-#define FUSE_REVISION_UNKNOWN		(-1)
-
-enum voltage_change_dir {
-	NO_CHANGE,
-	DOWN,
-	UP,
-};
-
-struct cpr_fuse {
-	char *ring_osc;
-	char *init_voltage;
-	char *quotient;
-	char *quotient_offset;
-};
-
-struct fuse_corner_data {
-	int ref_uV;
-	int max_uV;
-	int min_uV;
-	int max_volt_scale;
-	int max_quot_scale;
-	/* fuse quot */
-	int quot_offset;
-	int quot_scale;
-	int quot_adjust;
-	/* fuse quot_offset */
-	int quot_offset_scale;
-	int quot_offset_adjust;
-};
-
-struct cpr_fuses {
-	int init_voltage_step;
-	int init_voltage_width;
-	struct fuse_corner_data *fuse_corner_data;
-};
-
-struct corner_data {
-	unsigned int fuse_corner;
-	unsigned long freq;
-};
-
-struct cpr_desc {
-	unsigned int num_fuse_corners;
-	int min_diff_quot;
-	int *step_quot;
-
-	unsigned int		timer_delay_us;
-	unsigned int		timer_cons_up;
-	unsigned int		timer_cons_down;
-	unsigned int		up_threshold;
-	unsigned int		down_threshold;
-	unsigned int		idle_clocks;
-	unsigned int		gcnt_us;
-	unsigned int		vdd_apc_step_up_limit;
-	unsigned int		vdd_apc_step_down_limit;
-	unsigned int		clamp_timer_interval;
-
-	struct cpr_fuses cpr_fuses;
-	bool reduce_to_fuse_uV;
-	bool reduce_to_corner_uV;
-};
-
-struct acc_desc {
-	unsigned int	enable_reg;
-	u32		enable_mask;
-
-	struct reg_sequence	*config;
-	struct reg_sequence	*settings;
-	int			num_regs_per_fuse;
-};
-
-struct cpr_acc_desc {
-	const struct cpr_desc *cpr_desc;
-	const struct acc_desc *acc_desc;
-};
-
-struct fuse_corner {
-	int min_uV;
-	int max_uV;
-	int uV;
-	int quot;
-	int step_quot;
-	const struct reg_sequence *accs;
-	int num_accs;
-	unsigned long max_freq;
-	u8 ring_osc_idx;
-};
-
-struct corner {
-	int min_uV;
-	int max_uV;
-	int uV;
-	int last_uV;
-	int quot_adjust;
-	u32 save_ctl;
-	u32 save_irq;
-	unsigned long freq;
-	struct fuse_corner *fuse_corner;
-};
-
-struct cpr_drv {
-	unsigned int		num_corners;
-	unsigned int		ref_clk_khz;
-
-	struct generic_pm_domain pd;
-	struct device		*dev;
-	struct device		*attached_cpu_dev;
-	struct mutex		lock;
-	void __iomem		*base;
-	struct corner		*corner;
-	struct regulator	*vdd_apc;
-	struct clk		*cpu_clk;
-	struct regmap		*tcsr;
-	bool			loop_disabled;
-	u32			gcnt;
-	unsigned long		flags;
-
-	struct fuse_corner	*fuse_corners;
-	struct corner		*corners;
-
-	const struct cpr_desc *desc;
-	const struct acc_desc *acc_desc;
-	const struct cpr_fuse *cpr_fuses;
-
-	struct dentry *debugfs;
-};
-
-static bool cpr_is_allowed(struct cpr_drv *drv)
-{
-	return !drv->loop_disabled;
-}
-
-static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
-{
-	writel_relaxed(value, drv->base + offset);
-}
-
-static u32 cpr_read(struct cpr_drv *drv, u32 offset)
-{
-	return readl_relaxed(drv->base + offset);
-}
-
-static void
-cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
-{
-	u32 val;
-
-	val = readl_relaxed(drv->base + offset);
-	val &= ~mask;
-	val |= value & mask;
-	writel_relaxed(val, drv->base + offset);
-}
-
-static void cpr_irq_clr(struct cpr_drv *drv)
-{
-	cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
-}
-
-static void cpr_irq_clr_nack(struct cpr_drv *drv)
-{
-	cpr_irq_clr(drv);
-	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
-}
-
-static void cpr_irq_clr_ack(struct cpr_drv *drv)
-{
-	cpr_irq_clr(drv);
-	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
-}
-
-static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
-{
-	cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
-}
-
-static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
-{
-	cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
-}
-
-static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
-{
-	u32 val, mask;
-	const struct cpr_desc *desc = drv->desc;
-
-	/* Program Consecutive Up & Down */
-	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
-	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
-	mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
-	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
-	cpr_masked_write(drv, REG_RBCPR_CTL,
-			 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
-			 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
-			 corner->save_ctl);
-	cpr_irq_set(drv, corner->save_irq);
-
-	if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
-		val = RBCPR_CTL_LOOP_EN;
-	else
-		val = 0;
-	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
-}
-
-static void cpr_ctl_disable(struct cpr_drv *drv)
-{
-	cpr_irq_set(drv, 0);
-	cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
-		       RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
-	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
-			 RBIF_TIMER_ADJ_CONS_UP_MASK |
-			 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
-	cpr_irq_clr(drv);
-	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
-	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
-	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
-}
-
-static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
-{
-	u32 reg_val;
-
-	reg_val = cpr_read(drv, REG_RBCPR_CTL);
-	return reg_val & RBCPR_CTL_LOOP_EN;
-}
-
-static bool cpr_ctl_is_busy(struct cpr_drv *drv)
-{
-	u32 reg_val;
-
-	reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
-	return reg_val & RBCPR_RESULT0_BUSY_MASK;
-}
-
-static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
-{
-	corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
-	corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
-}
-
-static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
-{
-	u32 gcnt, ctl, irq, ro_sel, step_quot;
-	struct fuse_corner *fuse = corner->fuse_corner;
-	const struct cpr_desc *desc = drv->desc;
-	int i;
-
-	ro_sel = fuse->ring_osc_idx;
-	gcnt = drv->gcnt;
-	gcnt |= fuse->quot - corner->quot_adjust;
-
-	/* Program the step quotient and idle clocks */
-	step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
-	step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
-	cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
-
-	/* Clear the target quotient value and gate count of all ROs */
-	for (i = 0; i < CPR_NUM_RING_OSC; i++)
-		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
-
-	cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
-	ctl = corner->save_ctl;
-	cpr_write(drv, REG_RBCPR_CTL, ctl);
-	irq = corner->save_irq;
-	cpr_irq_set(drv, irq);
-	dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
-		ctl, irq);
-}
-
-static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
-			struct fuse_corner *end)
-{
-	if (f == end)
-		return;
-
-	if (f < end) {
-		for (f += 1; f <= end; f++)
-			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
-	} else {
-		for (f -= 1; f >= end; f--)
-			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
-	}
-}
-
-static int cpr_pre_voltage(struct cpr_drv *drv,
-			   struct fuse_corner *fuse_corner,
-			   enum voltage_change_dir dir)
-{
-	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
-
-	if (drv->tcsr && dir == DOWN)
-		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
-
-	return 0;
-}
-
-static int cpr_post_voltage(struct cpr_drv *drv,
-			    struct fuse_corner *fuse_corner,
-			    enum voltage_change_dir dir)
-{
-	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
-
-	if (drv->tcsr && dir == UP)
-		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
-
-	return 0;
-}
-
-static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
-			     int new_uV, enum voltage_change_dir dir)
-{
-	int ret;
-	struct fuse_corner *fuse_corner = corner->fuse_corner;
-
-	ret = cpr_pre_voltage(drv, fuse_corner, dir);
-	if (ret)
-		return ret;
-
-	ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
-	if (ret) {
-		dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
-				    new_uV);
-		return ret;
-	}
-
-	ret = cpr_post_voltage(drv, fuse_corner, dir);
-	if (ret)
-		return ret;
-
-	return 0;
-}
-
-static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
-{
-	return drv->corner ? drv->corner - drv->corners + 1 : 0;
-}
-
-static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
-{
-	u32 val, error_steps, reg_mask;
-	int last_uV, new_uV, step_uV, ret;
-	struct corner *corner;
-	const struct cpr_desc *desc = drv->desc;
-
-	if (dir != UP && dir != DOWN)
-		return 0;
-
-	step_uV = regulator_get_linear_step(drv->vdd_apc);
-	if (!step_uV)
-		return -EINVAL;
-
-	corner = drv->corner;
-
-	val = cpr_read(drv, REG_RBCPR_RESULT_0);
-
-	error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
-	error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
-	last_uV = corner->last_uV;
-
-	if (dir == UP) {
-		if (desc->clamp_timer_interval &&
-		    error_steps < desc->up_threshold) {
-			/*
-			 * Handle the case where another measurement started
-			 * after the interrupt was triggered due to a core
-			 * exiting from power collapse.
-			 */
-			error_steps = max(desc->up_threshold,
-					  desc->vdd_apc_step_up_limit);
-		}
-
-		if (last_uV >= corner->max_uV) {
-			cpr_irq_clr_nack(drv);
-
-			/* Maximize the UP threshold */
-			reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
-			reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
-			val = reg_mask;
-			cpr_ctl_modify(drv, reg_mask, val);
-
-			/* Disable UP interrupt */
-			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
-
-			return 0;
-		}
-
-		if (error_steps > desc->vdd_apc_step_up_limit)
-			error_steps = desc->vdd_apc_step_up_limit;
-
-		/* Calculate new voltage */
-		new_uV = last_uV + error_steps * step_uV;
-		new_uV = min(new_uV, corner->max_uV);
-
-		dev_dbg(drv->dev,
-			"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
-			new_uV, last_uV, cpr_get_cur_perf_state(drv));
-	} else {
-		if (desc->clamp_timer_interval &&
-		    error_steps < desc->down_threshold) {
-			/*
-			 * Handle the case where another measurement started
-			 * after the interrupt was triggered due to a core
-			 * exiting from power collapse.
-			 */
-			error_steps = max(desc->down_threshold,
-					  desc->vdd_apc_step_down_limit);
-		}
-
-		if (last_uV <= corner->min_uV) {
-			cpr_irq_clr_nack(drv);
-
-			/* Enable auto nack down */
-			reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
-			val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
-
-			cpr_ctl_modify(drv, reg_mask, val);
-
-			/* Disable DOWN interrupt */
-			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
-
-			return 0;
-		}
-
-		if (error_steps > desc->vdd_apc_step_down_limit)
-			error_steps = desc->vdd_apc_step_down_limit;
-
-		/* Calculate new voltage */
-		new_uV = last_uV - error_steps * step_uV;
-		new_uV = max(new_uV, corner->min_uV);
-
-		dev_dbg(drv->dev,
-			"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
-			new_uV, last_uV, cpr_get_cur_perf_state(drv));
-	}
-
-	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
-	if (ret) {
-		cpr_irq_clr_nack(drv);
-		return ret;
-	}
-	drv->corner->last_uV = new_uV;
-
-	if (dir == UP) {
-		/* Disable auto nack down */
-		reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
-		val = 0;
-	} else {
-		/* Restore default threshold for UP */
-		reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
-		reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
-		val = desc->up_threshold;
-		val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
-	}
-
-	cpr_ctl_modify(drv, reg_mask, val);
-
-	/* Re-enable default interrupts */
-	cpr_irq_set(drv, CPR_INT_DEFAULT);
-
-	/* Ack */
-	cpr_irq_clr_ack(drv);
-
-	return 0;
-}
-
-static irqreturn_t cpr_irq_handler(int irq, void *dev)
-{
-	struct cpr_drv *drv = dev;
-	const struct cpr_desc *desc = drv->desc;
-	irqreturn_t ret = IRQ_HANDLED;
-	u32 val;
-
-	mutex_lock(&drv->lock);
-
-	val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
-	if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
-		val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
-
-	dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
-
-	if (!cpr_ctl_is_enabled(drv)) {
-		dev_dbg(drv->dev, "CPR is disabled\n");
-		ret = IRQ_NONE;
-	} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
-		dev_dbg(drv->dev, "CPR measurement is not ready\n");
-	} else if (!cpr_is_allowed(drv)) {
-		val = cpr_read(drv, REG_RBCPR_CTL);
-		dev_err_ratelimited(drv->dev,
-				    "Interrupt broken? RBCPR_CTL = %#02x\n",
-				    val);
-		ret = IRQ_NONE;
-	} else {
-		/*
-		 * Following sequence of handling is as per each IRQ's
-		 * priority
-		 */
-		if (val & CPR_INT_UP) {
-			cpr_scale(drv, UP);
-		} else if (val & CPR_INT_DOWN) {
-			cpr_scale(drv, DOWN);
-		} else if (val & CPR_INT_MIN) {
-			cpr_irq_clr_nack(drv);
-		} else if (val & CPR_INT_MAX) {
-			cpr_irq_clr_nack(drv);
-		} else if (val & CPR_INT_MID) {
-			/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
-			dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
-		} else {
-			dev_dbg(drv->dev,
-				"IRQ occurred for unknown flag (%#08x)\n", val);
-		}
-
-		/* Save register values for the corner */
-		cpr_corner_save(drv, drv->corner);
-	}
-
-	mutex_unlock(&drv->lock);
-
-	return ret;
-}
-
-static int cpr_enable(struct cpr_drv *drv)
-{
-	int ret;
-
-	ret = regulator_enable(drv->vdd_apc);
-	if (ret)
-		return ret;
-
-	mutex_lock(&drv->lock);
-
-	if (cpr_is_allowed(drv) && drv->corner) {
-		cpr_irq_clr(drv);
-		cpr_corner_restore(drv, drv->corner);
-		cpr_ctl_enable(drv, drv->corner);
-	}
-
-	mutex_unlock(&drv->lock);
-
-	return 0;
-}
-
-static int cpr_disable(struct cpr_drv *drv)
-{
-	mutex_lock(&drv->lock);
-
-	if (cpr_is_allowed(drv)) {
-		cpr_ctl_disable(drv);
-		cpr_irq_clr(drv);
-	}
-
-	mutex_unlock(&drv->lock);
-
-	return regulator_disable(drv->vdd_apc);
-}
-
-static int cpr_config(struct cpr_drv *drv)
-{
-	int i;
-	u32 val, gcnt;
-	struct corner *corner;
-	const struct cpr_desc *desc = drv->desc;
-
-	/* Disable interrupt and CPR */
-	cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
-	cpr_write(drv, REG_RBCPR_CTL, 0);
-
-	/* Program the default HW ceiling, floor and vlevel */
-	val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
-		<< RBIF_LIMIT_CEILING_SHIFT;
-	val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
-	cpr_write(drv, REG_RBIF_LIMIT, val);
-	cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
-
-	/*
-	 * Clear the target quotient value and gate count of all
-	 * ring oscillators
-	 */
-	for (i = 0; i < CPR_NUM_RING_OSC; i++)
-		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
-
-	/* Init and save gcnt */
-	gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
-	gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
-	gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
-	drv->gcnt = gcnt;
-
-	/* Program the delay count for the timer */
-	val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
-	cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
-	dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
-		desc->timer_delay_us);
-
-	/* Program Consecutive Up & Down */
-	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
-	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
-	val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
-	cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
-
-	/* Program the control register */
-	val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
-	val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
-	val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
-	val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
-	cpr_write(drv, REG_RBCPR_CTL, val);
-
-	for (i = 0; i < drv->num_corners; i++) {
-		corner = &drv->corners[i];
-		corner->save_ctl = val;
-		corner->save_irq = CPR_INT_DEFAULT;
-	}
-
-	cpr_irq_set(drv, CPR_INT_DEFAULT);
-
-	val = cpr_read(drv, REG_RBCPR_VERSION);
-	if (val <= RBCPR_VER_2)
-		drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
-
-	return 0;
-}
-
-static int cpr_set_performance_state(struct generic_pm_domain *domain,
-				     unsigned int state)
-{
-	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-	struct corner *corner, *end;
-	enum voltage_change_dir dir;
-	int ret = 0, new_uV;
-
-	mutex_lock(&drv->lock);
-
-	dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
-		__func__, state, cpr_get_cur_perf_state(drv));
-
-	/*
-	 * Determine new corner we're going to.
-	 * Remove one since lowest performance state is 1.
-	 */
-	corner = drv->corners + state - 1;
-	end = &drv->corners[drv->num_corners - 1];
-	if (corner > end || corner < drv->corners) {
-		ret = -EINVAL;
-		goto unlock;
-	}
-
-	/* Determine direction */
-	if (drv->corner > corner)
-		dir = DOWN;
-	else if (drv->corner < corner)
-		dir = UP;
-	else
-		dir = NO_CHANGE;
-
-	if (cpr_is_allowed(drv))
-		new_uV = corner->last_uV;
-	else
-		new_uV = corner->uV;
-
-	if (cpr_is_allowed(drv))
-		cpr_ctl_disable(drv);
-
-	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
-	if (ret)
-		goto unlock;
-
-	if (cpr_is_allowed(drv)) {
-		cpr_irq_clr(drv);
-		if (drv->corner != corner)
-			cpr_corner_restore(drv, corner);
-		cpr_ctl_enable(drv, corner);
-	}
-
-	drv->corner = corner;
-
-unlock:
-	mutex_unlock(&drv->lock);
-
-	return ret;
-}
-
-static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
-{
-	struct nvmem_cell *cell;
-	ssize_t len;
-	char *ret;
-	int i;
-
-	*data = 0;
-
-	cell = nvmem_cell_get(dev, cname);
-	if (IS_ERR(cell)) {
-		if (PTR_ERR(cell) != -EPROBE_DEFER)
-			dev_err(dev, "undefined cell %s\n", cname);
-		return PTR_ERR(cell);
-	}
-
-	ret = nvmem_cell_read(cell, &len);
-	nvmem_cell_put(cell);
-	if (IS_ERR(ret)) {
-		dev_err(dev, "can't read cell %s\n", cname);
-		return PTR_ERR(ret);
-	}
-
-	for (i = 0; i < len; i++)
-		*data |= ret[i] << (8 * i);
-
-	kfree(ret);
-	dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
-
-	return 0;
-}
-
-static int
-cpr_populate_ring_osc_idx(struct cpr_drv *drv)
-{
-	struct fuse_corner *fuse = drv->fuse_corners;
-	struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
-	const struct cpr_fuse *fuses = drv->cpr_fuses;
-	u32 data;
-	int ret;
-
-	for (; fuse < end; fuse++, fuses++) {
-		ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
-				     &data);
-		if (ret)
-			return ret;
-		fuse->ring_osc_idx = data;
-	}
-
-	return 0;
-}
-
-static int cpr_read_fuse_uV(const struct cpr_desc *desc,
-			    const struct fuse_corner_data *fdata,
-			    const char *init_v_efuse,
-			    int step_volt,
-			    struct cpr_drv *drv)
-{
-	int step_size_uV, steps, uV;
-	u32 bits = 0;
-	int ret;
-
-	ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
-	if (ret)
-		return ret;
-
-	steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
-	/* Not two's complement.. instead highest bit is sign bit */
-	if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
-		steps = -steps;
-
-	step_size_uV = desc->cpr_fuses.init_voltage_step;
-
-	uV = fdata->ref_uV + steps * step_size_uV;
-	return DIV_ROUND_UP(uV, step_volt) * step_volt;
-}
-
-static int cpr_fuse_corner_init(struct cpr_drv *drv)
-{
-	const struct cpr_desc *desc = drv->desc;
-	const struct cpr_fuse *fuses = drv->cpr_fuses;
-	const struct acc_desc *acc_desc = drv->acc_desc;
-	int i;
-	unsigned int step_volt;
-	struct fuse_corner_data *fdata;
-	struct fuse_corner *fuse, *end;
-	int uV;
-	const struct reg_sequence *accs;
-	int ret;
-
-	accs = acc_desc->settings;
-
-	step_volt = regulator_get_linear_step(drv->vdd_apc);
-	if (!step_volt)
-		return -EINVAL;
-
-	/* Populate fuse_corner members */
-	fuse = drv->fuse_corners;
-	end = &fuse[desc->num_fuse_corners - 1];
-	fdata = desc->cpr_fuses.fuse_corner_data;
-
-	for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
-		/*
-		 * Update SoC voltages: platforms might choose a different
-		 * regulators than the one used to characterize the algorithms
-		 * (ie, init_voltage_step).
-		 */
-		fdata->min_uV = roundup(fdata->min_uV, step_volt);
-		fdata->max_uV = roundup(fdata->max_uV, step_volt);
-
-		/* Populate uV */
-		uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
-				      step_volt, drv);
-		if (uV < 0)
-			return uV;
-
-		fuse->min_uV = fdata->min_uV;
-		fuse->max_uV = fdata->max_uV;
-		fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
-
-		if (fuse == end) {
-			/*
-			 * Allow the highest fuse corner's PVS voltage to
-			 * define the ceiling voltage for that corner in order
-			 * to support SoC's in which variable ceiling values
-			 * are required.
-			 */
-			end->max_uV = max(end->max_uV, end->uV);
-		}
-
-		/* Populate target quotient by scaling */
-		ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
-		if (ret)
-			return ret;
-
-		fuse->quot *= fdata->quot_scale;
-		fuse->quot += fdata->quot_offset;
-		fuse->quot += fdata->quot_adjust;
-		fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
-
-		/* Populate acc settings */
-		fuse->accs = accs;
-		fuse->num_accs = acc_desc->num_regs_per_fuse;
-		accs += acc_desc->num_regs_per_fuse;
-	}
-
-	/*
-	 * Restrict all fuse corner PVS voltages based upon per corner
-	 * ceiling and floor voltages.
-	 */
-	for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
-		if (fuse->uV > fuse->max_uV)
-			fuse->uV = fuse->max_uV;
-		else if (fuse->uV < fuse->min_uV)
-			fuse->uV = fuse->min_uV;
-
-		ret = regulator_is_supported_voltage(drv->vdd_apc,
-						     fuse->min_uV,
-						     fuse->min_uV);
-		if (!ret) {
-			dev_err(drv->dev,
-				"min uV: %d (fuse corner: %d) not supported by regulator\n",
-				fuse->min_uV, i);
-			return -EINVAL;
-		}
-
-		ret = regulator_is_supported_voltage(drv->vdd_apc,
-						     fuse->max_uV,
-						     fuse->max_uV);
-		if (!ret) {
-			dev_err(drv->dev,
-				"max uV: %d (fuse corner: %d) not supported by regulator\n",
-				fuse->max_uV, i);
-			return -EINVAL;
-		}
-
-		dev_dbg(drv->dev,
-			"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
-			i, fuse->min_uV, fuse->uV, fuse->max_uV,
-			fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
-	}
-
-	return 0;
-}
-
-static int cpr_calculate_scaling(const char *quot_offset,
-				 struct cpr_drv *drv,
-				 const struct fuse_corner_data *fdata,
-				 const struct corner *corner)
-{
-	u32 quot_diff = 0;
-	unsigned long freq_diff;
-	int scaling;
-	const struct fuse_corner *fuse, *prev_fuse;
-	int ret;
-
-	fuse = corner->fuse_corner;
-	prev_fuse = fuse - 1;
-
-	if (quot_offset) {
-		ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
-		if (ret)
-			return ret;
-
-		quot_diff *= fdata->quot_offset_scale;
-		quot_diff += fdata->quot_offset_adjust;
-	} else {
-		quot_diff = fuse->quot - prev_fuse->quot;
-	}
-
-	freq_diff = fuse->max_freq - prev_fuse->max_freq;
-	freq_diff /= 1000000; /* Convert to MHz */
-	scaling = 1000 * quot_diff / freq_diff;
-	return min(scaling, fdata->max_quot_scale);
-}
-
-static int cpr_interpolate(const struct corner *corner, int step_volt,
-			   const struct fuse_corner_data *fdata)
-{
-	unsigned long f_high, f_low, f_diff;
-	int uV_high, uV_low, uV;
-	u64 temp, temp_limit;
-	const struct fuse_corner *fuse, *prev_fuse;
-
-	fuse = corner->fuse_corner;
-	prev_fuse = fuse - 1;
-
-	f_high = fuse->max_freq;
-	f_low = prev_fuse->max_freq;
-	uV_high = fuse->uV;
-	uV_low = prev_fuse->uV;
-	f_diff = fuse->max_freq - corner->freq;
-
-	/*
-	 * Don't interpolate in the wrong direction. This could happen
-	 * if the adjusted fuse voltage overlaps with the previous fuse's
-	 * adjusted voltage.
-	 */
-	if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
-		return corner->uV;
-
-	temp = f_diff * (uV_high - uV_low);
-	do_div(temp, f_high - f_low);
-
-	/*
-	 * max_volt_scale has units of uV/MHz while freq values
-	 * have units of Hz.  Divide by 1000000 to convert to.
-	 */
-	temp_limit = f_diff * fdata->max_volt_scale;
-	do_div(temp_limit, 1000000);
-
-	uV = uV_high - min(temp, temp_limit);
-	return roundup(uV, step_volt);
-}
-
-static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
-{
-	struct device_node *np;
-	unsigned int fuse_corner = 0;
-
-	np = dev_pm_opp_get_of_node(opp);
-	if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
-		pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
-		       __func__);
-
-	of_node_put(np);
-
-	return fuse_corner;
-}
-
-static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
-					    struct device *cpu_dev)
-{
-	u64 rate = 0;
-	struct device_node *ref_np;
-	struct device_node *desc_np;
-	struct device_node *child_np = NULL;
-	struct device_node *child_req_np = NULL;
-
-	desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
-	if (!desc_np)
-		return 0;
-
-	ref_np = dev_pm_opp_get_of_node(ref);
-	if (!ref_np)
-		goto out_ref;
-
-	do {
-		of_node_put(child_req_np);
-		child_np = of_get_next_available_child(desc_np, child_np);
-		child_req_np = of_parse_phandle(child_np, "required-opps", 0);
-	} while (child_np && child_req_np != ref_np);
-
-	if (child_np && child_req_np == ref_np)
-		of_property_read_u64(child_np, "opp-hz", &rate);
-
-	of_node_put(child_req_np);
-	of_node_put(child_np);
-	of_node_put(ref_np);
-out_ref:
-	of_node_put(desc_np);
-
-	return (unsigned long) rate;
-}
-
-static int cpr_corner_init(struct cpr_drv *drv)
-{
-	const struct cpr_desc *desc = drv->desc;
-	const struct cpr_fuse *fuses = drv->cpr_fuses;
-	int i, level, scaling = 0;
-	unsigned int fnum, fc;
-	const char *quot_offset;
-	struct fuse_corner *fuse, *prev_fuse;
-	struct corner *corner, *end;
-	struct corner_data *cdata;
-	const struct fuse_corner_data *fdata;
-	bool apply_scaling;
-	unsigned long freq_diff, freq_diff_mhz;
-	unsigned long freq;
-	int step_volt = regulator_get_linear_step(drv->vdd_apc);
-	struct dev_pm_opp *opp;
-
-	if (!step_volt)
-		return -EINVAL;
-
-	corner = drv->corners;
-	end = &corner[drv->num_corners - 1];
-
-	cdata = devm_kcalloc(drv->dev, drv->num_corners,
-			     sizeof(struct corner_data),
-			     GFP_KERNEL);
-	if (!cdata)
-		return -ENOMEM;
-
-	/*
-	 * Store maximum frequency for each fuse corner based on the frequency
-	 * plan
-	 */
-	for (level = 1; level <= drv->num_corners; level++) {
-		opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
-		if (IS_ERR(opp))
-			return -EINVAL;
-		fc = cpr_get_fuse_corner(opp);
-		if (!fc) {
-			dev_pm_opp_put(opp);
-			return -EINVAL;
-		}
-		fnum = fc - 1;
-		freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
-		if (!freq) {
-			dev_pm_opp_put(opp);
-			return -EINVAL;
-		}
-		cdata[level - 1].fuse_corner = fnum;
-		cdata[level - 1].freq = freq;
-
-		fuse = &drv->fuse_corners[fnum];
-		dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
-			freq, dev_pm_opp_get_level(opp) - 1, fnum);
-		if (freq > fuse->max_freq)
-			fuse->max_freq = freq;
-		dev_pm_opp_put(opp);
-	}
-
-	/*
-	 * Get the quotient adjustment scaling factor, according to:
-	 *
-	 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
-	 *		/ (freq(corner_N) - freq(corner_N-1)), max_factor)
-	 *
-	 * QUOT(corner_N):	quotient read from fuse for fuse corner N
-	 * QUOT(corner_N-1):	quotient read from fuse for fuse corner (N - 1)
-	 * freq(corner_N):	max frequency in MHz supported by fuse corner N
-	 * freq(corner_N-1):	max frequency in MHz supported by fuse corner
-	 *			 (N - 1)
-	 *
-	 * Then walk through the corners mapped to each fuse corner
-	 * and calculate the quotient adjustment for each one using the
-	 * following formula:
-	 *
-	 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
-	 *
-	 * freq_max: max frequency in MHz supported by the fuse corner
-	 * freq_corner: frequency in MHz corresponding to the corner
-	 * scaling: calculated from above equation
-	 *
-	 *
-	 *     +                           +
-	 *     |                         v |
-	 *   q |           f c           o |           f c
-	 *   u |         c               l |         c
-	 *   o |       f                 t |       f
-	 *   t |     c                   a |     c
-	 *     | c f                     g | c f
-	 *     |                         e |
-	 *     +---------------            +----------------
-	 *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
-	 *          corner                      corner
-	 *
-	 *    c = corner
-	 *    f = fuse corner
-	 *
-	 */
-	for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
-		fnum = cdata[i].fuse_corner;
-		fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
-		quot_offset = fuses[fnum].quotient_offset;
-		fuse = &drv->fuse_corners[fnum];
-		if (fnum)
-			prev_fuse = &drv->fuse_corners[fnum - 1];
-		else
-			prev_fuse = NULL;
-
-		corner->fuse_corner = fuse;
-		corner->freq = cdata[i].freq;
-		corner->uV = fuse->uV;
-
-		if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
-			scaling = cpr_calculate_scaling(quot_offset, drv,
-							fdata, corner);
-			if (scaling < 0)
-				return scaling;
-
-			apply_scaling = true;
-		} else if (corner->freq == fuse->max_freq) {
-			/* This is a fuse corner; don't scale anything */
-			apply_scaling = false;
-		}
-
-		if (apply_scaling) {
-			freq_diff = fuse->max_freq - corner->freq;
-			freq_diff_mhz = freq_diff / 1000000;
-			corner->quot_adjust = scaling * freq_diff_mhz / 1000;
-
-			corner->uV = cpr_interpolate(corner, step_volt, fdata);
-		}
-
-		corner->max_uV = fuse->max_uV;
-		corner->min_uV = fuse->min_uV;
-		corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
-		corner->last_uV = corner->uV;
-
-		/* Reduce the ceiling voltage if needed */
-		if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
-			corner->max_uV = corner->uV;
-		else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
-			corner->max_uV = max(corner->min_uV, fuse->uV);
-
-		dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
-			corner->min_uV, corner->uV, corner->max_uV,
-			fuse->quot - corner->quot_adjust);
-	}
-
-	return 0;
-}
-
-static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
-{
-	const struct cpr_desc *desc = drv->desc;
-	struct cpr_fuse *fuses;
-	int i;
-
-	fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
-			     sizeof(struct cpr_fuse),
-			     GFP_KERNEL);
-	if (!fuses)
-		return ERR_PTR(-ENOMEM);
-
-	for (i = 0; i < desc->num_fuse_corners; i++) {
-		char tbuf[32];
-
-		snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
-		fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
-		if (!fuses[i].ring_osc)
-			return ERR_PTR(-ENOMEM);
-
-		snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
-		fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
-						     GFP_KERNEL);
-		if (!fuses[i].init_voltage)
-			return ERR_PTR(-ENOMEM);
-
-		snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
-		fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
-		if (!fuses[i].quotient)
-			return ERR_PTR(-ENOMEM);
-
-		snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
-		fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
-							GFP_KERNEL);
-		if (!fuses[i].quotient_offset)
-			return ERR_PTR(-ENOMEM);
-	}
-
-	return fuses;
-}
-
-static void cpr_set_loop_allowed(struct cpr_drv *drv)
-{
-	drv->loop_disabled = false;
-}
-
-static int cpr_init_parameters(struct cpr_drv *drv)
-{
-	const struct cpr_desc *desc = drv->desc;
-	struct clk *clk;
-
-	clk = clk_get(drv->dev, "ref");
-	if (IS_ERR(clk))
-		return PTR_ERR(clk);
-
-	drv->ref_clk_khz = clk_get_rate(clk) / 1000;
-	clk_put(clk);
-
-	if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
-	    desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
-	    desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
-	    desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
-	    desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
-	    desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
-		return -EINVAL;
-
-	dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
-		desc->up_threshold, desc->down_threshold);
-
-	return 0;
-}
-
-static int cpr_find_initial_corner(struct cpr_drv *drv)
-{
-	unsigned long rate;
-	const struct corner *end;
-	struct corner *iter;
-	unsigned int i = 0;
-
-	if (!drv->cpu_clk) {
-		dev_err(drv->dev, "cannot get rate from NULL clk\n");
-		return -EINVAL;
-	}
-
-	end = &drv->corners[drv->num_corners - 1];
-	rate = clk_get_rate(drv->cpu_clk);
-
-	/*
-	 * Some bootloaders set a CPU clock frequency that is not defined
-	 * in the OPP table. When running at an unlisted frequency,
-	 * cpufreq_online() will change to the OPP which has the lowest
-	 * frequency, at or above the unlisted frequency.
-	 * Since cpufreq_online() always "rounds up" in the case of an
-	 * unlisted frequency, this function always "rounds down" in case
-	 * of an unlisted frequency. That way, when cpufreq_online()
-	 * triggers the first ever call to cpr_set_performance_state(),
-	 * it will correctly determine the direction as UP.
-	 */
-	for (iter = drv->corners; iter <= end; iter++) {
-		if (iter->freq > rate)
-			break;
-		i++;
-		if (iter->freq == rate) {
-			drv->corner = iter;
-			break;
-		}
-		if (iter->freq < rate)
-			drv->corner = iter;
-	}
-
-	if (!drv->corner) {
-		dev_err(drv->dev, "boot up corner not found\n");
-		return -EINVAL;
-	}
-
-	dev_dbg(drv->dev, "boot up perf state: %u\n", i);
-
-	return 0;
-}
-
-static const struct cpr_desc qcs404_cpr_desc = {
-	.num_fuse_corners = 3,
-	.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
-	.step_quot = (int []){ 25, 25, 25, },
-	.timer_delay_us = 5000,
-	.timer_cons_up = 0,
-	.timer_cons_down = 2,
-	.up_threshold = 1,
-	.down_threshold = 3,
-	.idle_clocks = 15,
-	.gcnt_us = 1,
-	.vdd_apc_step_up_limit = 1,
-	.vdd_apc_step_down_limit = 1,
-	.cpr_fuses = {
-		.init_voltage_step = 8000,
-		.init_voltage_width = 6,
-		.fuse_corner_data = (struct fuse_corner_data[]){
-			/* fuse corner 0 */
-			{
-				.ref_uV = 1224000,
-				.max_uV = 1224000,
-				.min_uV = 1048000,
-				.max_volt_scale = 0,
-				.max_quot_scale = 0,
-				.quot_offset = 0,
-				.quot_scale = 1,
-				.quot_adjust = 0,
-				.quot_offset_scale = 5,
-				.quot_offset_adjust = 0,
-			},
-			/* fuse corner 1 */
-			{
-				.ref_uV = 1288000,
-				.max_uV = 1288000,
-				.min_uV = 1048000,
-				.max_volt_scale = 2000,
-				.max_quot_scale = 1400,
-				.quot_offset = 0,
-				.quot_scale = 1,
-				.quot_adjust = -20,
-				.quot_offset_scale = 5,
-				.quot_offset_adjust = 0,
-			},
-			/* fuse corner 2 */
-			{
-				.ref_uV = 1352000,
-				.max_uV = 1384000,
-				.min_uV = 1088000,
-				.max_volt_scale = 2000,
-				.max_quot_scale = 1400,
-				.quot_offset = 0,
-				.quot_scale = 1,
-				.quot_adjust = 0,
-				.quot_offset_scale = 5,
-				.quot_offset_adjust = 0,
-			},
-		},
-	},
-};
-
-static const struct acc_desc qcs404_acc_desc = {
-	.settings = (struct reg_sequence[]){
-		{ 0xb120, 0x1041040 },
-		{ 0xb124, 0x41 },
-		{ 0xb120, 0x0 },
-		{ 0xb124, 0x0 },
-		{ 0xb120, 0x0 },
-		{ 0xb124, 0x0 },
-	},
-	.config = (struct reg_sequence[]){
-		{ 0xb138, 0xff },
-		{ 0xb130, 0x5555 },
-	},
-	.num_regs_per_fuse = 2,
-};
-
-static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
-	.cpr_desc = &qcs404_cpr_desc,
-	.acc_desc = &qcs404_acc_desc,
-};
-
-static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
-					      struct dev_pm_opp *opp)
-{
-	return dev_pm_opp_get_level(opp);
-}
-
-static int cpr_power_off(struct generic_pm_domain *domain)
-{
-	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-
-	return cpr_disable(drv);
-}
-
-static int cpr_power_on(struct generic_pm_domain *domain)
-{
-	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-
-	return cpr_enable(drv);
-}
-
-static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
-			     struct device *dev)
-{
-	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
-	const struct acc_desc *acc_desc = drv->acc_desc;
-	int ret = 0;
-
-	mutex_lock(&drv->lock);
-
-	dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
-
-	/*
-	 * This driver only supports scaling voltage for a CPU cluster
-	 * where all CPUs in the cluster share a single regulator.
-	 * Therefore, save the struct device pointer only for the first
-	 * CPU device that gets attached. There is no need to do any
-	 * additional initialization when further CPUs get attached.
-	 */
-	if (drv->attached_cpu_dev)
-		goto unlock;
-
-	/*
-	 * cpr_scale_voltage() requires the direction (if we are changing
-	 * to a higher or lower OPP). The first time
-	 * cpr_set_performance_state() is called, there is no previous
-	 * performance state defined. Therefore, we call
-	 * cpr_find_initial_corner() that gets the CPU clock frequency
-	 * set by the bootloader, so that we can determine the direction
-	 * the first time cpr_set_performance_state() is called.
-	 */
-	drv->cpu_clk = devm_clk_get(dev, NULL);
-	if (IS_ERR(drv->cpu_clk)) {
-		ret = PTR_ERR(drv->cpu_clk);
-		if (ret != -EPROBE_DEFER)
-			dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
-		goto unlock;
-	}
-	drv->attached_cpu_dev = dev;
-
-	dev_dbg(drv->dev, "using cpu clk from: %s\n",
-		dev_name(drv->attached_cpu_dev));
-
-	/*
-	 * Everything related to (virtual) corners has to be initialized
-	 * here, when attaching to the power domain, since we need to know
-	 * the maximum frequency for each fuse corner, and this is only
-	 * available after the cpufreq driver has attached to us.
-	 * The reason for this is that we need to know the highest
-	 * frequency associated with each fuse corner.
-	 */
-	ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
-	if (ret < 0) {
-		dev_err(drv->dev, "could not get OPP count\n");
-		goto unlock;
-	}
-	drv->num_corners = ret;
-
-	if (drv->num_corners < 2) {
-		dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
-		ret = -EINVAL;
-		goto unlock;
-	}
-
-	drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
-				    sizeof(*drv->corners),
-				    GFP_KERNEL);
-	if (!drv->corners) {
-		ret = -ENOMEM;
-		goto unlock;
-	}
-
-	ret = cpr_corner_init(drv);
-	if (ret)
-		goto unlock;
-
-	cpr_set_loop_allowed(drv);
-
-	ret = cpr_init_parameters(drv);
-	if (ret)
-		goto unlock;
-
-	/* Configure CPR HW but keep it disabled */
-	ret = cpr_config(drv);
-	if (ret)
-		goto unlock;
-
-	ret = cpr_find_initial_corner(drv);
-	if (ret)
-		goto unlock;
-
-	if (acc_desc->config)
-		regmap_multi_reg_write(drv->tcsr, acc_desc->config,
-				       acc_desc->num_regs_per_fuse);
-
-	/* Enable ACC if required */
-	if (acc_desc->enable_mask)
-		regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
-				   acc_desc->enable_mask,
-				   acc_desc->enable_mask);
-
-	dev_info(drv->dev, "driver initialized with %u OPPs\n",
-		 drv->num_corners);
-
-unlock:
-	mutex_unlock(&drv->lock);
-
-	return ret;
-}
-
-static int cpr_debug_info_show(struct seq_file *s, void *unused)
-{
-	u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
-	u32 step_dn, step_up, error, error_lt0, busy;
-	struct cpr_drv *drv = s->private;
-	struct fuse_corner *fuse_corner;
-	struct corner *corner;
-
-	corner = drv->corner;
-	fuse_corner = corner->fuse_corner;
-
-	seq_printf(s, "corner, current_volt = %d uV\n",
-		       corner->last_uV);
-
-	ro_sel = fuse_corner->ring_osc_idx;
-	gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
-	seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
-
-	ctl = cpr_read(drv, REG_RBCPR_CTL);
-	seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
-
-	irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
-	seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
-
-	reg = cpr_read(drv, REG_RBCPR_RESULT_0);
-	seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
-
-	step_dn = reg & 0x01;
-	step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
-	seq_printf(s, "  [step_dn = %u", step_dn);
-
-	seq_printf(s, ", step_up = %u", step_up);
-
-	error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
-				& RBCPR_RESULT0_ERROR_STEPS_MASK;
-	seq_printf(s, ", error_steps = %u", error_steps);
-
-	error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
-	seq_printf(s, ", error = %u", error);
-
-	error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
-	seq_printf(s, ", error_lt_0 = %u", error_lt0);
-
-	busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
-	seq_printf(s, ", busy = %u]\n", busy);
-
-	return 0;
-}
-DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
-
-static void cpr_debugfs_init(struct cpr_drv *drv)
-{
-	drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
-
-	debugfs_create_file("debug_info", 0444, drv->debugfs,
-			    drv, &cpr_debug_info_fops);
-}
-
-static int cpr_probe(struct platform_device *pdev)
-{
-	struct resource *res;
-	struct device *dev = &pdev->dev;
-	struct cpr_drv *drv;
-	int irq, ret;
-	const struct cpr_acc_desc *data;
-	struct device_node *np;
-	u32 cpr_rev = FUSE_REVISION_UNKNOWN;
-
-	data = of_device_get_match_data(dev);
-	if (!data || !data->cpr_desc || !data->acc_desc)
-		return -EINVAL;
-
-	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
-	if (!drv)
-		return -ENOMEM;
-	drv->dev = dev;
-	drv->desc = data->cpr_desc;
-	drv->acc_desc = data->acc_desc;
-
-	drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
-					 sizeof(*drv->fuse_corners),
-					 GFP_KERNEL);
-	if (!drv->fuse_corners)
-		return -ENOMEM;
-
-	np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
-	if (!np)
-		return -ENODEV;
-
-	drv->tcsr = syscon_node_to_regmap(np);
-	of_node_put(np);
-	if (IS_ERR(drv->tcsr))
-		return PTR_ERR(drv->tcsr);
-
-	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	drv->base = devm_ioremap_resource(dev, res);
-	if (IS_ERR(drv->base))
-		return PTR_ERR(drv->base);
-
-	irq = platform_get_irq(pdev, 0);
-	if (irq < 0)
-		return -EINVAL;
-
-	drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
-	if (IS_ERR(drv->vdd_apc))
-		return PTR_ERR(drv->vdd_apc);
-
-	/*
-	 * Initialize fuse corners, since it simply depends
-	 * on data in efuses.
-	 * Everything related to (virtual) corners has to be
-	 * initialized after attaching to the power domain,
-	 * since it depends on the CPU's OPP table.
-	 */
-	ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
-	if (ret)
-		return ret;
-
-	drv->cpr_fuses = cpr_get_fuses(drv);
-	if (IS_ERR(drv->cpr_fuses))
-		return PTR_ERR(drv->cpr_fuses);
-
-	ret = cpr_populate_ring_osc_idx(drv);
-	if (ret)
-		return ret;
-
-	ret = cpr_fuse_corner_init(drv);
-	if (ret)
-		return ret;
-
-	mutex_init(&drv->lock);
-
-	ret = devm_request_threaded_irq(dev, irq, NULL,
-					cpr_irq_handler,
-					IRQF_ONESHOT | IRQF_TRIGGER_RISING,
-					"cpr", drv);
-	if (ret)
-		return ret;
-
-	drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
-					  GFP_KERNEL);
-	if (!drv->pd.name)
-		return -EINVAL;
-
-	drv->pd.power_off = cpr_power_off;
-	drv->pd.power_on = cpr_power_on;
-	drv->pd.set_performance_state = cpr_set_performance_state;
-	drv->pd.opp_to_performance_state = cpr_get_performance_state;
-	drv->pd.attach_dev = cpr_pd_attach_dev;
-
-	ret = pm_genpd_init(&drv->pd, NULL, true);
-	if (ret)
-		return ret;
-
-	ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
-	if (ret)
-		return ret;
-
-	platform_set_drvdata(pdev, drv);
-	cpr_debugfs_init(drv);
-
-	return 0;
-}
-
-static int cpr_remove(struct platform_device *pdev)
-{
-	struct cpr_drv *drv = platform_get_drvdata(pdev);
-
-	if (cpr_is_allowed(drv)) {
-		cpr_ctl_disable(drv);
-		cpr_irq_set(drv, 0);
-	}
-
-	of_genpd_del_provider(pdev->dev.of_node);
-	pm_genpd_remove(&drv->pd);
-
-	debugfs_remove_recursive(drv->debugfs);
-
-	return 0;
-}
-
-static const struct of_device_id cpr_match_table[] = {
-	{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
-	{ }
-};
-MODULE_DEVICE_TABLE(of, cpr_match_table);
-
-static struct platform_driver cpr_driver = {
-	.probe		= cpr_probe,
-	.remove		= cpr_remove,
-	.driver		= {
-		.name	= "qcom-cpr",
-		.of_match_table = cpr_match_table,
-	},
-};
-module_platform_driver(cpr_driver);
-
-MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
-MODULE_LICENSE("GPL v2");
diff --git a/drivers/soc/qcom/Kconfig b/drivers/soc/qcom/Kconfig
index 3dc3e3d61ea3..6a3b69b43ad5 100644
--- a/drivers/soc/qcom/Kconfig
+++ b/drivers/soc/qcom/Kconfig
@@ -26,6 +26,22 @@ config QCOM_COMMAND_DB
 	  resource on a RPM-hardened platform must use this database to get
 	  SoC specific identifier and information for the shared resources.
 
+config QCOM_CPR
+	tristate "QCOM Core Power Reduction (CPR) support"
+	depends on ARCH_QCOM && HAS_IOMEM
+	select PM_OPP
+	select REGMAP
+	help
+	  Say Y here to enable support for the CPR hardware found on Qualcomm
+	  SoCs like QCS404.
+
+	  This driver populates CPU OPPs tables and makes adjustments to the
+	  tables based on feedback from the CPR hardware. If you want to do
+	  CPUfrequency scaling say Y here.
+
+	  To compile this driver as a module, choose M here: the module will
+	  be called qcom-cpr
+
 config QCOM_GENI_SE
 	tristate "QCOM GENI Serial Engine Driver"
 	depends on ARCH_QCOM || COMPILE_TEST
diff --git a/drivers/soc/qcom/Makefile b/drivers/soc/qcom/Makefile
index 93392d9dc7f7..ad675a6593d0 100644
--- a/drivers/soc/qcom/Makefile
+++ b/drivers/soc/qcom/Makefile
@@ -3,6 +3,7 @@ CFLAGS_rpmh-rsc.o := -I$(src)
 obj-$(CONFIG_QCOM_AOSS_QMP) +=	qcom_aoss.o
 obj-$(CONFIG_QCOM_GENI_SE) +=	qcom-geni-se.o
 obj-$(CONFIG_QCOM_COMMAND_DB) += cmd-db.o
+obj-$(CONFIG_QCOM_CPR)		+= cpr.o
 obj-$(CONFIG_QCOM_GSBI)	+=	qcom_gsbi.o
 obj-$(CONFIG_QCOM_MDT_LOADER)	+= mdt_loader.o
 obj-$(CONFIG_QCOM_OCMEM)	+= ocmem.o
diff --git a/drivers/soc/qcom/cpr.c b/drivers/soc/qcom/cpr.c
new file mode 100644
index 000000000000..b24cc77d1889
--- /dev/null
+++ b/drivers/soc/qcom/cpr.c
@@ -0,0 +1,1788 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
+ * Copyright (c) 2019, Linaro Limited
+ */
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/debugfs.h>
+#include <linux/string.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_domain.h>
+#include <linux/pm_opp.h>
+#include <linux/interrupt.h>
+#include <linux/regmap.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regulator/consumer.h>
+#include <linux/clk.h>
+#include <linux/nvmem-consumer.h>
+
+/* Register Offsets for RB-CPR and Bit Definitions */
+
+/* RBCPR Version Register */
+#define REG_RBCPR_VERSION		0
+#define RBCPR_VER_2			0x02
+#define FLAGS_IGNORE_1ST_IRQ_STATUS	BIT(0)
+
+/* RBCPR Gate Count and Target Registers */
+#define REG_RBCPR_GCNT_TARGET(n)	(0x60 + 4 * (n))
+
+#define RBCPR_GCNT_TARGET_TARGET_SHIFT	0
+#define RBCPR_GCNT_TARGET_TARGET_MASK	GENMASK(11, 0)
+#define RBCPR_GCNT_TARGET_GCNT_SHIFT	12
+#define RBCPR_GCNT_TARGET_GCNT_MASK	GENMASK(9, 0)
+
+/* RBCPR Timer Control */
+#define REG_RBCPR_TIMER_INTERVAL	0x44
+#define REG_RBIF_TIMER_ADJUST		0x4c
+
+#define RBIF_TIMER_ADJ_CONS_UP_MASK	GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_UP_SHIFT	0
+#define RBIF_TIMER_ADJ_CONS_DOWN_MASK	GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT	4
+#define RBIF_TIMER_ADJ_CLAMP_INT_MASK	GENMASK(7, 0)
+#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT	8
+
+/* RBCPR Config Register */
+#define REG_RBIF_LIMIT			0x48
+#define RBIF_LIMIT_CEILING_MASK		GENMASK(5, 0)
+#define RBIF_LIMIT_CEILING_SHIFT	6
+#define RBIF_LIMIT_FLOOR_BITS		6
+#define RBIF_LIMIT_FLOOR_MASK		GENMASK(5, 0)
+
+#define RBIF_LIMIT_CEILING_DEFAULT	RBIF_LIMIT_CEILING_MASK
+#define RBIF_LIMIT_FLOOR_DEFAULT	0
+
+#define REG_RBIF_SW_VLEVEL		0x94
+#define RBIF_SW_VLEVEL_DEFAULT		0x20
+
+#define REG_RBCPR_STEP_QUOT		0x80
+#define RBCPR_STEP_QUOT_STEPQUOT_MASK	GENMASK(7, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_MASK	GENMASK(3, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT	8
+
+/* RBCPR Control Register */
+#define REG_RBCPR_CTL			0x90
+
+#define RBCPR_CTL_LOOP_EN			BIT(0)
+#define RBCPR_CTL_TIMER_EN			BIT(3)
+#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN		BIT(5)
+#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN	BIT(6)
+#define RBCPR_CTL_COUNT_MODE			BIT(10)
+#define RBCPR_CTL_UP_THRESHOLD_MASK	GENMASK(3, 0)
+#define RBCPR_CTL_UP_THRESHOLD_SHIFT	24
+#define RBCPR_CTL_DN_THRESHOLD_MASK	GENMASK(3, 0)
+#define RBCPR_CTL_DN_THRESHOLD_SHIFT	28
+
+/* RBCPR Ack/Nack Response */
+#define REG_RBIF_CONT_ACK_CMD		0x98
+#define REG_RBIF_CONT_NACK_CMD		0x9c
+
+/* RBCPR Result status Register */
+#define REG_RBCPR_RESULT_0		0xa0
+
+#define RBCPR_RESULT0_BUSY_SHIFT	19
+#define RBCPR_RESULT0_BUSY_MASK		BIT(RBCPR_RESULT0_BUSY_SHIFT)
+#define RBCPR_RESULT0_ERROR_LT0_SHIFT	18
+#define RBCPR_RESULT0_ERROR_SHIFT	6
+#define RBCPR_RESULT0_ERROR_MASK	GENMASK(11, 0)
+#define RBCPR_RESULT0_ERROR_STEPS_SHIFT	2
+#define RBCPR_RESULT0_ERROR_STEPS_MASK	GENMASK(3, 0)
+#define RBCPR_RESULT0_STEP_UP_SHIFT	1
+
+/* RBCPR Interrupt Control Register */
+#define REG_RBIF_IRQ_EN(n)		(0x100 + 4 * (n))
+#define REG_RBIF_IRQ_CLEAR		0x110
+#define REG_RBIF_IRQ_STATUS		0x114
+
+#define CPR_INT_DONE		BIT(0)
+#define CPR_INT_MIN		BIT(1)
+#define CPR_INT_DOWN		BIT(2)
+#define CPR_INT_MID		BIT(3)
+#define CPR_INT_UP		BIT(4)
+#define CPR_INT_MAX		BIT(5)
+#define CPR_INT_CLAMP		BIT(6)
+#define CPR_INT_ALL	(CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
+			CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
+#define CPR_INT_DEFAULT	(CPR_INT_UP | CPR_INT_DOWN)
+
+#define CPR_NUM_RING_OSC	8
+
+/* CPR eFuse parameters */
+#define CPR_FUSE_TARGET_QUOT_BITS_MASK	GENMASK(11, 0)
+
+#define CPR_FUSE_MIN_QUOT_DIFF		50
+
+#define FUSE_REVISION_UNKNOWN		(-1)
+
+enum voltage_change_dir {
+	NO_CHANGE,
+	DOWN,
+	UP,
+};
+
+struct cpr_fuse {
+	char *ring_osc;
+	char *init_voltage;
+	char *quotient;
+	char *quotient_offset;
+};
+
+struct fuse_corner_data {
+	int ref_uV;
+	int max_uV;
+	int min_uV;
+	int max_volt_scale;
+	int max_quot_scale;
+	/* fuse quot */
+	int quot_offset;
+	int quot_scale;
+	int quot_adjust;
+	/* fuse quot_offset */
+	int quot_offset_scale;
+	int quot_offset_adjust;
+};
+
+struct cpr_fuses {
+	int init_voltage_step;
+	int init_voltage_width;
+	struct fuse_corner_data *fuse_corner_data;
+};
+
+struct corner_data {
+	unsigned int fuse_corner;
+	unsigned long freq;
+};
+
+struct cpr_desc {
+	unsigned int num_fuse_corners;
+	int min_diff_quot;
+	int *step_quot;
+
+	unsigned int		timer_delay_us;
+	unsigned int		timer_cons_up;
+	unsigned int		timer_cons_down;
+	unsigned int		up_threshold;
+	unsigned int		down_threshold;
+	unsigned int		idle_clocks;
+	unsigned int		gcnt_us;
+	unsigned int		vdd_apc_step_up_limit;
+	unsigned int		vdd_apc_step_down_limit;
+	unsigned int		clamp_timer_interval;
+
+	struct cpr_fuses cpr_fuses;
+	bool reduce_to_fuse_uV;
+	bool reduce_to_corner_uV;
+};
+
+struct acc_desc {
+	unsigned int	enable_reg;
+	u32		enable_mask;
+
+	struct reg_sequence	*config;
+	struct reg_sequence	*settings;
+	int			num_regs_per_fuse;
+};
+
+struct cpr_acc_desc {
+	const struct cpr_desc *cpr_desc;
+	const struct acc_desc *acc_desc;
+};
+
+struct fuse_corner {
+	int min_uV;
+	int max_uV;
+	int uV;
+	int quot;
+	int step_quot;
+	const struct reg_sequence *accs;
+	int num_accs;
+	unsigned long max_freq;
+	u8 ring_osc_idx;
+};
+
+struct corner {
+	int min_uV;
+	int max_uV;
+	int uV;
+	int last_uV;
+	int quot_adjust;
+	u32 save_ctl;
+	u32 save_irq;
+	unsigned long freq;
+	struct fuse_corner *fuse_corner;
+};
+
+struct cpr_drv {
+	unsigned int		num_corners;
+	unsigned int		ref_clk_khz;
+
+	struct generic_pm_domain pd;
+	struct device		*dev;
+	struct device		*attached_cpu_dev;
+	struct mutex		lock;
+	void __iomem		*base;
+	struct corner		*corner;
+	struct regulator	*vdd_apc;
+	struct clk		*cpu_clk;
+	struct regmap		*tcsr;
+	bool			loop_disabled;
+	u32			gcnt;
+	unsigned long		flags;
+
+	struct fuse_corner	*fuse_corners;
+	struct corner		*corners;
+
+	const struct cpr_desc *desc;
+	const struct acc_desc *acc_desc;
+	const struct cpr_fuse *cpr_fuses;
+
+	struct dentry *debugfs;
+};
+
+static bool cpr_is_allowed(struct cpr_drv *drv)
+{
+	return !drv->loop_disabled;
+}
+
+static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
+{
+	writel_relaxed(value, drv->base + offset);
+}
+
+static u32 cpr_read(struct cpr_drv *drv, u32 offset)
+{
+	return readl_relaxed(drv->base + offset);
+}
+
+static void
+cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
+{
+	u32 val;
+
+	val = readl_relaxed(drv->base + offset);
+	val &= ~mask;
+	val |= value & mask;
+	writel_relaxed(val, drv->base + offset);
+}
+
+static void cpr_irq_clr(struct cpr_drv *drv)
+{
+	cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
+}
+
+static void cpr_irq_clr_nack(struct cpr_drv *drv)
+{
+	cpr_irq_clr(drv);
+	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+}
+
+static void cpr_irq_clr_ack(struct cpr_drv *drv)
+{
+	cpr_irq_clr(drv);
+	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+}
+
+static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
+{
+	cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
+}
+
+static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
+{
+	cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
+}
+
+static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
+{
+	u32 val, mask;
+	const struct cpr_desc *desc = drv->desc;
+
+	/* Program Consecutive Up & Down */
+	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+	mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
+	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
+	cpr_masked_write(drv, REG_RBCPR_CTL,
+			 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+			 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
+			 corner->save_ctl);
+	cpr_irq_set(drv, corner->save_irq);
+
+	if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
+		val = RBCPR_CTL_LOOP_EN;
+	else
+		val = 0;
+	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
+}
+
+static void cpr_ctl_disable(struct cpr_drv *drv)
+{
+	cpr_irq_set(drv, 0);
+	cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+		       RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
+	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
+			 RBIF_TIMER_ADJ_CONS_UP_MASK |
+			 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
+	cpr_irq_clr(drv);
+	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
+}
+
+static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
+{
+	u32 reg_val;
+
+	reg_val = cpr_read(drv, REG_RBCPR_CTL);
+	return reg_val & RBCPR_CTL_LOOP_EN;
+}
+
+static bool cpr_ctl_is_busy(struct cpr_drv *drv)
+{
+	u32 reg_val;
+
+	reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
+	return reg_val & RBCPR_RESULT0_BUSY_MASK;
+}
+
+static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
+{
+	corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
+	corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
+}
+
+static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
+{
+	u32 gcnt, ctl, irq, ro_sel, step_quot;
+	struct fuse_corner *fuse = corner->fuse_corner;
+	const struct cpr_desc *desc = drv->desc;
+	int i;
+
+	ro_sel = fuse->ring_osc_idx;
+	gcnt = drv->gcnt;
+	gcnt |= fuse->quot - corner->quot_adjust;
+
+	/* Program the step quotient and idle clocks */
+	step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
+	step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
+	cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
+
+	/* Clear the target quotient value and gate count of all ROs */
+	for (i = 0; i < CPR_NUM_RING_OSC; i++)
+		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+	cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
+	ctl = corner->save_ctl;
+	cpr_write(drv, REG_RBCPR_CTL, ctl);
+	irq = corner->save_irq;
+	cpr_irq_set(drv, irq);
+	dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
+		ctl, irq);
+}
+
+static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
+			struct fuse_corner *end)
+{
+	if (f == end)
+		return;
+
+	if (f < end) {
+		for (f += 1; f <= end; f++)
+			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+	} else {
+		for (f -= 1; f >= end; f--)
+			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+	}
+}
+
+static int cpr_pre_voltage(struct cpr_drv *drv,
+			   struct fuse_corner *fuse_corner,
+			   enum voltage_change_dir dir)
+{
+	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+	if (drv->tcsr && dir == DOWN)
+		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+	return 0;
+}
+
+static int cpr_post_voltage(struct cpr_drv *drv,
+			    struct fuse_corner *fuse_corner,
+			    enum voltage_change_dir dir)
+{
+	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+	if (drv->tcsr && dir == UP)
+		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+	return 0;
+}
+
+static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
+			     int new_uV, enum voltage_change_dir dir)
+{
+	int ret;
+	struct fuse_corner *fuse_corner = corner->fuse_corner;
+
+	ret = cpr_pre_voltage(drv, fuse_corner, dir);
+	if (ret)
+		return ret;
+
+	ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
+	if (ret) {
+		dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
+				    new_uV);
+		return ret;
+	}
+
+	ret = cpr_post_voltage(drv, fuse_corner, dir);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
+{
+	return drv->corner ? drv->corner - drv->corners + 1 : 0;
+}
+
+static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
+{
+	u32 val, error_steps, reg_mask;
+	int last_uV, new_uV, step_uV, ret;
+	struct corner *corner;
+	const struct cpr_desc *desc = drv->desc;
+
+	if (dir != UP && dir != DOWN)
+		return 0;
+
+	step_uV = regulator_get_linear_step(drv->vdd_apc);
+	if (!step_uV)
+		return -EINVAL;
+
+	corner = drv->corner;
+
+	val = cpr_read(drv, REG_RBCPR_RESULT_0);
+
+	error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
+	error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
+	last_uV = corner->last_uV;
+
+	if (dir == UP) {
+		if (desc->clamp_timer_interval &&
+		    error_steps < desc->up_threshold) {
+			/*
+			 * Handle the case where another measurement started
+			 * after the interrupt was triggered due to a core
+			 * exiting from power collapse.
+			 */
+			error_steps = max(desc->up_threshold,
+					  desc->vdd_apc_step_up_limit);
+		}
+
+		if (last_uV >= corner->max_uV) {
+			cpr_irq_clr_nack(drv);
+
+			/* Maximize the UP threshold */
+			reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+			reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+			val = reg_mask;
+			cpr_ctl_modify(drv, reg_mask, val);
+
+			/* Disable UP interrupt */
+			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
+
+			return 0;
+		}
+
+		if (error_steps > desc->vdd_apc_step_up_limit)
+			error_steps = desc->vdd_apc_step_up_limit;
+
+		/* Calculate new voltage */
+		new_uV = last_uV + error_steps * step_uV;
+		new_uV = min(new_uV, corner->max_uV);
+
+		dev_dbg(drv->dev,
+			"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
+			new_uV, last_uV, cpr_get_cur_perf_state(drv));
+	} else {
+		if (desc->clamp_timer_interval &&
+		    error_steps < desc->down_threshold) {
+			/*
+			 * Handle the case where another measurement started
+			 * after the interrupt was triggered due to a core
+			 * exiting from power collapse.
+			 */
+			error_steps = max(desc->down_threshold,
+					  desc->vdd_apc_step_down_limit);
+		}
+
+		if (last_uV <= corner->min_uV) {
+			cpr_irq_clr_nack(drv);
+
+			/* Enable auto nack down */
+			reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+			val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+
+			cpr_ctl_modify(drv, reg_mask, val);
+
+			/* Disable DOWN interrupt */
+			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
+
+			return 0;
+		}
+
+		if (error_steps > desc->vdd_apc_step_down_limit)
+			error_steps = desc->vdd_apc_step_down_limit;
+
+		/* Calculate new voltage */
+		new_uV = last_uV - error_steps * step_uV;
+		new_uV = max(new_uV, corner->min_uV);
+
+		dev_dbg(drv->dev,
+			"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
+			new_uV, last_uV, cpr_get_cur_perf_state(drv));
+	}
+
+	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
+	if (ret) {
+		cpr_irq_clr_nack(drv);
+		return ret;
+	}
+	drv->corner->last_uV = new_uV;
+
+	if (dir == UP) {
+		/* Disable auto nack down */
+		reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+		val = 0;
+	} else {
+		/* Restore default threshold for UP */
+		reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+		reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+		val = desc->up_threshold;
+		val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+	}
+
+	cpr_ctl_modify(drv, reg_mask, val);
+
+	/* Re-enable default interrupts */
+	cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+	/* Ack */
+	cpr_irq_clr_ack(drv);
+
+	return 0;
+}
+
+static irqreturn_t cpr_irq_handler(int irq, void *dev)
+{
+	struct cpr_drv *drv = dev;
+	const struct cpr_desc *desc = drv->desc;
+	irqreturn_t ret = IRQ_HANDLED;
+	u32 val;
+
+	mutex_lock(&drv->lock);
+
+	val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+	if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
+		val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+
+	dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
+
+	if (!cpr_ctl_is_enabled(drv)) {
+		dev_dbg(drv->dev, "CPR is disabled\n");
+		ret = IRQ_NONE;
+	} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
+		dev_dbg(drv->dev, "CPR measurement is not ready\n");
+	} else if (!cpr_is_allowed(drv)) {
+		val = cpr_read(drv, REG_RBCPR_CTL);
+		dev_err_ratelimited(drv->dev,
+				    "Interrupt broken? RBCPR_CTL = %#02x\n",
+				    val);
+		ret = IRQ_NONE;
+	} else {
+		/*
+		 * Following sequence of handling is as per each IRQ's
+		 * priority
+		 */
+		if (val & CPR_INT_UP) {
+			cpr_scale(drv, UP);
+		} else if (val & CPR_INT_DOWN) {
+			cpr_scale(drv, DOWN);
+		} else if (val & CPR_INT_MIN) {
+			cpr_irq_clr_nack(drv);
+		} else if (val & CPR_INT_MAX) {
+			cpr_irq_clr_nack(drv);
+		} else if (val & CPR_INT_MID) {
+			/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
+			dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
+		} else {
+			dev_dbg(drv->dev,
+				"IRQ occurred for unknown flag (%#08x)\n", val);
+		}
+
+		/* Save register values for the corner */
+		cpr_corner_save(drv, drv->corner);
+	}
+
+	mutex_unlock(&drv->lock);
+
+	return ret;
+}
+
+static int cpr_enable(struct cpr_drv *drv)
+{
+	int ret;
+
+	ret = regulator_enable(drv->vdd_apc);
+	if (ret)
+		return ret;
+
+	mutex_lock(&drv->lock);
+
+	if (cpr_is_allowed(drv) && drv->corner) {
+		cpr_irq_clr(drv);
+		cpr_corner_restore(drv, drv->corner);
+		cpr_ctl_enable(drv, drv->corner);
+	}
+
+	mutex_unlock(&drv->lock);
+
+	return 0;
+}
+
+static int cpr_disable(struct cpr_drv *drv)
+{
+	mutex_lock(&drv->lock);
+
+	if (cpr_is_allowed(drv)) {
+		cpr_ctl_disable(drv);
+		cpr_irq_clr(drv);
+	}
+
+	mutex_unlock(&drv->lock);
+
+	return regulator_disable(drv->vdd_apc);
+}
+
+static int cpr_config(struct cpr_drv *drv)
+{
+	int i;
+	u32 val, gcnt;
+	struct corner *corner;
+	const struct cpr_desc *desc = drv->desc;
+
+	/* Disable interrupt and CPR */
+	cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
+	cpr_write(drv, REG_RBCPR_CTL, 0);
+
+	/* Program the default HW ceiling, floor and vlevel */
+	val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
+		<< RBIF_LIMIT_CEILING_SHIFT;
+	val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
+	cpr_write(drv, REG_RBIF_LIMIT, val);
+	cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
+
+	/*
+	 * Clear the target quotient value and gate count of all
+	 * ring oscillators
+	 */
+	for (i = 0; i < CPR_NUM_RING_OSC; i++)
+		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+	/* Init and save gcnt */
+	gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
+	gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
+	gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
+	drv->gcnt = gcnt;
+
+	/* Program the delay count for the timer */
+	val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
+	cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
+	dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
+		desc->timer_delay_us);
+
+	/* Program Consecutive Up & Down */
+	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+	val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
+	cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
+
+	/* Program the control register */
+	val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
+	val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
+	val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
+	val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
+	cpr_write(drv, REG_RBCPR_CTL, val);
+
+	for (i = 0; i < drv->num_corners; i++) {
+		corner = &drv->corners[i];
+		corner->save_ctl = val;
+		corner->save_irq = CPR_INT_DEFAULT;
+	}
+
+	cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+	val = cpr_read(drv, REG_RBCPR_VERSION);
+	if (val <= RBCPR_VER_2)
+		drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
+
+	return 0;
+}
+
+static int cpr_set_performance_state(struct generic_pm_domain *domain,
+				     unsigned int state)
+{
+	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+	struct corner *corner, *end;
+	enum voltage_change_dir dir;
+	int ret = 0, new_uV;
+
+	mutex_lock(&drv->lock);
+
+	dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
+		__func__, state, cpr_get_cur_perf_state(drv));
+
+	/*
+	 * Determine new corner we're going to.
+	 * Remove one since lowest performance state is 1.
+	 */
+	corner = drv->corners + state - 1;
+	end = &drv->corners[drv->num_corners - 1];
+	if (corner > end || corner < drv->corners) {
+		ret = -EINVAL;
+		goto unlock;
+	}
+
+	/* Determine direction */
+	if (drv->corner > corner)
+		dir = DOWN;
+	else if (drv->corner < corner)
+		dir = UP;
+	else
+		dir = NO_CHANGE;
+
+	if (cpr_is_allowed(drv))
+		new_uV = corner->last_uV;
+	else
+		new_uV = corner->uV;
+
+	if (cpr_is_allowed(drv))
+		cpr_ctl_disable(drv);
+
+	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
+	if (ret)
+		goto unlock;
+
+	if (cpr_is_allowed(drv)) {
+		cpr_irq_clr(drv);
+		if (drv->corner != corner)
+			cpr_corner_restore(drv, corner);
+		cpr_ctl_enable(drv, corner);
+	}
+
+	drv->corner = corner;
+
+unlock:
+	mutex_unlock(&drv->lock);
+
+	return ret;
+}
+
+static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
+{
+	struct nvmem_cell *cell;
+	ssize_t len;
+	char *ret;
+	int i;
+
+	*data = 0;
+
+	cell = nvmem_cell_get(dev, cname);
+	if (IS_ERR(cell)) {
+		if (PTR_ERR(cell) != -EPROBE_DEFER)
+			dev_err(dev, "undefined cell %s\n", cname);
+		return PTR_ERR(cell);
+	}
+
+	ret = nvmem_cell_read(cell, &len);
+	nvmem_cell_put(cell);
+	if (IS_ERR(ret)) {
+		dev_err(dev, "can't read cell %s\n", cname);
+		return PTR_ERR(ret);
+	}
+
+	for (i = 0; i < len; i++)
+		*data |= ret[i] << (8 * i);
+
+	kfree(ret);
+	dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
+
+	return 0;
+}
+
+static int
+cpr_populate_ring_osc_idx(struct cpr_drv *drv)
+{
+	struct fuse_corner *fuse = drv->fuse_corners;
+	struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
+	const struct cpr_fuse *fuses = drv->cpr_fuses;
+	u32 data;
+	int ret;
+
+	for (; fuse < end; fuse++, fuses++) {
+		ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
+				     &data);
+		if (ret)
+			return ret;
+		fuse->ring_osc_idx = data;
+	}
+
+	return 0;
+}
+
+static int cpr_read_fuse_uV(const struct cpr_desc *desc,
+			    const struct fuse_corner_data *fdata,
+			    const char *init_v_efuse,
+			    int step_volt,
+			    struct cpr_drv *drv)
+{
+	int step_size_uV, steps, uV;
+	u32 bits = 0;
+	int ret;
+
+	ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
+	if (ret)
+		return ret;
+
+	steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
+	/* Not two's complement.. instead highest bit is sign bit */
+	if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
+		steps = -steps;
+
+	step_size_uV = desc->cpr_fuses.init_voltage_step;
+
+	uV = fdata->ref_uV + steps * step_size_uV;
+	return DIV_ROUND_UP(uV, step_volt) * step_volt;
+}
+
+static int cpr_fuse_corner_init(struct cpr_drv *drv)
+{
+	const struct cpr_desc *desc = drv->desc;
+	const struct cpr_fuse *fuses = drv->cpr_fuses;
+	const struct acc_desc *acc_desc = drv->acc_desc;
+	int i;
+	unsigned int step_volt;
+	struct fuse_corner_data *fdata;
+	struct fuse_corner *fuse, *end;
+	int uV;
+	const struct reg_sequence *accs;
+	int ret;
+
+	accs = acc_desc->settings;
+
+	step_volt = regulator_get_linear_step(drv->vdd_apc);
+	if (!step_volt)
+		return -EINVAL;
+
+	/* Populate fuse_corner members */
+	fuse = drv->fuse_corners;
+	end = &fuse[desc->num_fuse_corners - 1];
+	fdata = desc->cpr_fuses.fuse_corner_data;
+
+	for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
+		/*
+		 * Update SoC voltages: platforms might choose a different
+		 * regulators than the one used to characterize the algorithms
+		 * (ie, init_voltage_step).
+		 */
+		fdata->min_uV = roundup(fdata->min_uV, step_volt);
+		fdata->max_uV = roundup(fdata->max_uV, step_volt);
+
+		/* Populate uV */
+		uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
+				      step_volt, drv);
+		if (uV < 0)
+			return uV;
+
+		fuse->min_uV = fdata->min_uV;
+		fuse->max_uV = fdata->max_uV;
+		fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
+
+		if (fuse == end) {
+			/*
+			 * Allow the highest fuse corner's PVS voltage to
+			 * define the ceiling voltage for that corner in order
+			 * to support SoC's in which variable ceiling values
+			 * are required.
+			 */
+			end->max_uV = max(end->max_uV, end->uV);
+		}
+
+		/* Populate target quotient by scaling */
+		ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
+		if (ret)
+			return ret;
+
+		fuse->quot *= fdata->quot_scale;
+		fuse->quot += fdata->quot_offset;
+		fuse->quot += fdata->quot_adjust;
+		fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
+
+		/* Populate acc settings */
+		fuse->accs = accs;
+		fuse->num_accs = acc_desc->num_regs_per_fuse;
+		accs += acc_desc->num_regs_per_fuse;
+	}
+
+	/*
+	 * Restrict all fuse corner PVS voltages based upon per corner
+	 * ceiling and floor voltages.
+	 */
+	for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
+		if (fuse->uV > fuse->max_uV)
+			fuse->uV = fuse->max_uV;
+		else if (fuse->uV < fuse->min_uV)
+			fuse->uV = fuse->min_uV;
+
+		ret = regulator_is_supported_voltage(drv->vdd_apc,
+						     fuse->min_uV,
+						     fuse->min_uV);
+		if (!ret) {
+			dev_err(drv->dev,
+				"min uV: %d (fuse corner: %d) not supported by regulator\n",
+				fuse->min_uV, i);
+			return -EINVAL;
+		}
+
+		ret = regulator_is_supported_voltage(drv->vdd_apc,
+						     fuse->max_uV,
+						     fuse->max_uV);
+		if (!ret) {
+			dev_err(drv->dev,
+				"max uV: %d (fuse corner: %d) not supported by regulator\n",
+				fuse->max_uV, i);
+			return -EINVAL;
+		}
+
+		dev_dbg(drv->dev,
+			"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
+			i, fuse->min_uV, fuse->uV, fuse->max_uV,
+			fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
+	}
+
+	return 0;
+}
+
+static int cpr_calculate_scaling(const char *quot_offset,
+				 struct cpr_drv *drv,
+				 const struct fuse_corner_data *fdata,
+				 const struct corner *corner)
+{
+	u32 quot_diff = 0;
+	unsigned long freq_diff;
+	int scaling;
+	const struct fuse_corner *fuse, *prev_fuse;
+	int ret;
+
+	fuse = corner->fuse_corner;
+	prev_fuse = fuse - 1;
+
+	if (quot_offset) {
+		ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
+		if (ret)
+			return ret;
+
+		quot_diff *= fdata->quot_offset_scale;
+		quot_diff += fdata->quot_offset_adjust;
+	} else {
+		quot_diff = fuse->quot - prev_fuse->quot;
+	}
+
+	freq_diff = fuse->max_freq - prev_fuse->max_freq;
+	freq_diff /= 1000000; /* Convert to MHz */
+	scaling = 1000 * quot_diff / freq_diff;
+	return min(scaling, fdata->max_quot_scale);
+}
+
+static int cpr_interpolate(const struct corner *corner, int step_volt,
+			   const struct fuse_corner_data *fdata)
+{
+	unsigned long f_high, f_low, f_diff;
+	int uV_high, uV_low, uV;
+	u64 temp, temp_limit;
+	const struct fuse_corner *fuse, *prev_fuse;
+
+	fuse = corner->fuse_corner;
+	prev_fuse = fuse - 1;
+
+	f_high = fuse->max_freq;
+	f_low = prev_fuse->max_freq;
+	uV_high = fuse->uV;
+	uV_low = prev_fuse->uV;
+	f_diff = fuse->max_freq - corner->freq;
+
+	/*
+	 * Don't interpolate in the wrong direction. This could happen
+	 * if the adjusted fuse voltage overlaps with the previous fuse's
+	 * adjusted voltage.
+	 */
+	if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
+		return corner->uV;
+
+	temp = f_diff * (uV_high - uV_low);
+	do_div(temp, f_high - f_low);
+
+	/*
+	 * max_volt_scale has units of uV/MHz while freq values
+	 * have units of Hz.  Divide by 1000000 to convert to.
+	 */
+	temp_limit = f_diff * fdata->max_volt_scale;
+	do_div(temp_limit, 1000000);
+
+	uV = uV_high - min(temp, temp_limit);
+	return roundup(uV, step_volt);
+}
+
+static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
+{
+	struct device_node *np;
+	unsigned int fuse_corner = 0;
+
+	np = dev_pm_opp_get_of_node(opp);
+	if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
+		pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
+		       __func__);
+
+	of_node_put(np);
+
+	return fuse_corner;
+}
+
+static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
+					    struct device *cpu_dev)
+{
+	u64 rate = 0;
+	struct device_node *ref_np;
+	struct device_node *desc_np;
+	struct device_node *child_np = NULL;
+	struct device_node *child_req_np = NULL;
+
+	desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
+	if (!desc_np)
+		return 0;
+
+	ref_np = dev_pm_opp_get_of_node(ref);
+	if (!ref_np)
+		goto out_ref;
+
+	do {
+		of_node_put(child_req_np);
+		child_np = of_get_next_available_child(desc_np, child_np);
+		child_req_np = of_parse_phandle(child_np, "required-opps", 0);
+	} while (child_np && child_req_np != ref_np);
+
+	if (child_np && child_req_np == ref_np)
+		of_property_read_u64(child_np, "opp-hz", &rate);
+
+	of_node_put(child_req_np);
+	of_node_put(child_np);
+	of_node_put(ref_np);
+out_ref:
+	of_node_put(desc_np);
+
+	return (unsigned long) rate;
+}
+
+static int cpr_corner_init(struct cpr_drv *drv)
+{
+	const struct cpr_desc *desc = drv->desc;
+	const struct cpr_fuse *fuses = drv->cpr_fuses;
+	int i, level, scaling = 0;
+	unsigned int fnum, fc;
+	const char *quot_offset;
+	struct fuse_corner *fuse, *prev_fuse;
+	struct corner *corner, *end;
+	struct corner_data *cdata;
+	const struct fuse_corner_data *fdata;
+	bool apply_scaling;
+	unsigned long freq_diff, freq_diff_mhz;
+	unsigned long freq;
+	int step_volt = regulator_get_linear_step(drv->vdd_apc);
+	struct dev_pm_opp *opp;
+
+	if (!step_volt)
+		return -EINVAL;
+
+	corner = drv->corners;
+	end = &corner[drv->num_corners - 1];
+
+	cdata = devm_kcalloc(drv->dev, drv->num_corners,
+			     sizeof(struct corner_data),
+			     GFP_KERNEL);
+	if (!cdata)
+		return -ENOMEM;
+
+	/*
+	 * Store maximum frequency for each fuse corner based on the frequency
+	 * plan
+	 */
+	for (level = 1; level <= drv->num_corners; level++) {
+		opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
+		if (IS_ERR(opp))
+			return -EINVAL;
+		fc = cpr_get_fuse_corner(opp);
+		if (!fc) {
+			dev_pm_opp_put(opp);
+			return -EINVAL;
+		}
+		fnum = fc - 1;
+		freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
+		if (!freq) {
+			dev_pm_opp_put(opp);
+			return -EINVAL;
+		}
+		cdata[level - 1].fuse_corner = fnum;
+		cdata[level - 1].freq = freq;
+
+		fuse = &drv->fuse_corners[fnum];
+		dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
+			freq, dev_pm_opp_get_level(opp) - 1, fnum);
+		if (freq > fuse->max_freq)
+			fuse->max_freq = freq;
+		dev_pm_opp_put(opp);
+	}
+
+	/*
+	 * Get the quotient adjustment scaling factor, according to:
+	 *
+	 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
+	 *		/ (freq(corner_N) - freq(corner_N-1)), max_factor)
+	 *
+	 * QUOT(corner_N):	quotient read from fuse for fuse corner N
+	 * QUOT(corner_N-1):	quotient read from fuse for fuse corner (N - 1)
+	 * freq(corner_N):	max frequency in MHz supported by fuse corner N
+	 * freq(corner_N-1):	max frequency in MHz supported by fuse corner
+	 *			 (N - 1)
+	 *
+	 * Then walk through the corners mapped to each fuse corner
+	 * and calculate the quotient adjustment for each one using the
+	 * following formula:
+	 *
+	 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
+	 *
+	 * freq_max: max frequency in MHz supported by the fuse corner
+	 * freq_corner: frequency in MHz corresponding to the corner
+	 * scaling: calculated from above equation
+	 *
+	 *
+	 *     +                           +
+	 *     |                         v |
+	 *   q |           f c           o |           f c
+	 *   u |         c               l |         c
+	 *   o |       f                 t |       f
+	 *   t |     c                   a |     c
+	 *     | c f                     g | c f
+	 *     |                         e |
+	 *     +---------------            +----------------
+	 *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
+	 *          corner                      corner
+	 *
+	 *    c = corner
+	 *    f = fuse corner
+	 *
+	 */
+	for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
+		fnum = cdata[i].fuse_corner;
+		fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
+		quot_offset = fuses[fnum].quotient_offset;
+		fuse = &drv->fuse_corners[fnum];
+		if (fnum)
+			prev_fuse = &drv->fuse_corners[fnum - 1];
+		else
+			prev_fuse = NULL;
+
+		corner->fuse_corner = fuse;
+		corner->freq = cdata[i].freq;
+		corner->uV = fuse->uV;
+
+		if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
+			scaling = cpr_calculate_scaling(quot_offset, drv,
+							fdata, corner);
+			if (scaling < 0)
+				return scaling;
+
+			apply_scaling = true;
+		} else if (corner->freq == fuse->max_freq) {
+			/* This is a fuse corner; don't scale anything */
+			apply_scaling = false;
+		}
+
+		if (apply_scaling) {
+			freq_diff = fuse->max_freq - corner->freq;
+			freq_diff_mhz = freq_diff / 1000000;
+			corner->quot_adjust = scaling * freq_diff_mhz / 1000;
+
+			corner->uV = cpr_interpolate(corner, step_volt, fdata);
+		}
+
+		corner->max_uV = fuse->max_uV;
+		corner->min_uV = fuse->min_uV;
+		corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
+		corner->last_uV = corner->uV;
+
+		/* Reduce the ceiling voltage if needed */
+		if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
+			corner->max_uV = corner->uV;
+		else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
+			corner->max_uV = max(corner->min_uV, fuse->uV);
+
+		dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
+			corner->min_uV, corner->uV, corner->max_uV,
+			fuse->quot - corner->quot_adjust);
+	}
+
+	return 0;
+}
+
+static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
+{
+	const struct cpr_desc *desc = drv->desc;
+	struct cpr_fuse *fuses;
+	int i;
+
+	fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
+			     sizeof(struct cpr_fuse),
+			     GFP_KERNEL);
+	if (!fuses)
+		return ERR_PTR(-ENOMEM);
+
+	for (i = 0; i < desc->num_fuse_corners; i++) {
+		char tbuf[32];
+
+		snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
+		fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
+		if (!fuses[i].ring_osc)
+			return ERR_PTR(-ENOMEM);
+
+		snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
+		fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
+						     GFP_KERNEL);
+		if (!fuses[i].init_voltage)
+			return ERR_PTR(-ENOMEM);
+
+		snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
+		fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
+		if (!fuses[i].quotient)
+			return ERR_PTR(-ENOMEM);
+
+		snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
+		fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
+							GFP_KERNEL);
+		if (!fuses[i].quotient_offset)
+			return ERR_PTR(-ENOMEM);
+	}
+
+	return fuses;
+}
+
+static void cpr_set_loop_allowed(struct cpr_drv *drv)
+{
+	drv->loop_disabled = false;
+}
+
+static int cpr_init_parameters(struct cpr_drv *drv)
+{
+	const struct cpr_desc *desc = drv->desc;
+	struct clk *clk;
+
+	clk = clk_get(drv->dev, "ref");
+	if (IS_ERR(clk))
+		return PTR_ERR(clk);
+
+	drv->ref_clk_khz = clk_get_rate(clk) / 1000;
+	clk_put(clk);
+
+	if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
+	    desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
+	    desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
+	    desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
+	    desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
+	    desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
+		return -EINVAL;
+
+	dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
+		desc->up_threshold, desc->down_threshold);
+
+	return 0;
+}
+
+static int cpr_find_initial_corner(struct cpr_drv *drv)
+{
+	unsigned long rate;
+	const struct corner *end;
+	struct corner *iter;
+	unsigned int i = 0;
+
+	if (!drv->cpu_clk) {
+		dev_err(drv->dev, "cannot get rate from NULL clk\n");
+		return -EINVAL;
+	}
+
+	end = &drv->corners[drv->num_corners - 1];
+	rate = clk_get_rate(drv->cpu_clk);
+
+	/*
+	 * Some bootloaders set a CPU clock frequency that is not defined
+	 * in the OPP table. When running at an unlisted frequency,
+	 * cpufreq_online() will change to the OPP which has the lowest
+	 * frequency, at or above the unlisted frequency.
+	 * Since cpufreq_online() always "rounds up" in the case of an
+	 * unlisted frequency, this function always "rounds down" in case
+	 * of an unlisted frequency. That way, when cpufreq_online()
+	 * triggers the first ever call to cpr_set_performance_state(),
+	 * it will correctly determine the direction as UP.
+	 */
+	for (iter = drv->corners; iter <= end; iter++) {
+		if (iter->freq > rate)
+			break;
+		i++;
+		if (iter->freq == rate) {
+			drv->corner = iter;
+			break;
+		}
+		if (iter->freq < rate)
+			drv->corner = iter;
+	}
+
+	if (!drv->corner) {
+		dev_err(drv->dev, "boot up corner not found\n");
+		return -EINVAL;
+	}
+
+	dev_dbg(drv->dev, "boot up perf state: %u\n", i);
+
+	return 0;
+}
+
+static const struct cpr_desc qcs404_cpr_desc = {
+	.num_fuse_corners = 3,
+	.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
+	.step_quot = (int []){ 25, 25, 25, },
+	.timer_delay_us = 5000,
+	.timer_cons_up = 0,
+	.timer_cons_down = 2,
+	.up_threshold = 1,
+	.down_threshold = 3,
+	.idle_clocks = 15,
+	.gcnt_us = 1,
+	.vdd_apc_step_up_limit = 1,
+	.vdd_apc_step_down_limit = 1,
+	.cpr_fuses = {
+		.init_voltage_step = 8000,
+		.init_voltage_width = 6,
+		.fuse_corner_data = (struct fuse_corner_data[]){
+			/* fuse corner 0 */
+			{
+				.ref_uV = 1224000,
+				.max_uV = 1224000,
+				.min_uV = 1048000,
+				.max_volt_scale = 0,
+				.max_quot_scale = 0,
+				.quot_offset = 0,
+				.quot_scale = 1,
+				.quot_adjust = 0,
+				.quot_offset_scale = 5,
+				.quot_offset_adjust = 0,
+			},
+			/* fuse corner 1 */
+			{
+				.ref_uV = 1288000,
+				.max_uV = 1288000,
+				.min_uV = 1048000,
+				.max_volt_scale = 2000,
+				.max_quot_scale = 1400,
+				.quot_offset = 0,
+				.quot_scale = 1,
+				.quot_adjust = -20,
+				.quot_offset_scale = 5,
+				.quot_offset_adjust = 0,
+			},
+			/* fuse corner 2 */
+			{
+				.ref_uV = 1352000,
+				.max_uV = 1384000,
+				.min_uV = 1088000,
+				.max_volt_scale = 2000,
+				.max_quot_scale = 1400,
+				.quot_offset = 0,
+				.quot_scale = 1,
+				.quot_adjust = 0,
+				.quot_offset_scale = 5,
+				.quot_offset_adjust = 0,
+			},
+		},
+	},
+};
+
+static const struct acc_desc qcs404_acc_desc = {
+	.settings = (struct reg_sequence[]){
+		{ 0xb120, 0x1041040 },
+		{ 0xb124, 0x41 },
+		{ 0xb120, 0x0 },
+		{ 0xb124, 0x0 },
+		{ 0xb120, 0x0 },
+		{ 0xb124, 0x0 },
+	},
+	.config = (struct reg_sequence[]){
+		{ 0xb138, 0xff },
+		{ 0xb130, 0x5555 },
+	},
+	.num_regs_per_fuse = 2,
+};
+
+static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
+	.cpr_desc = &qcs404_cpr_desc,
+	.acc_desc = &qcs404_acc_desc,
+};
+
+static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
+					      struct dev_pm_opp *opp)
+{
+	return dev_pm_opp_get_level(opp);
+}
+
+static int cpr_power_off(struct generic_pm_domain *domain)
+{
+	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+
+	return cpr_disable(drv);
+}
+
+static int cpr_power_on(struct generic_pm_domain *domain)
+{
+	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+
+	return cpr_enable(drv);
+}
+
+static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
+			     struct device *dev)
+{
+	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+	const struct acc_desc *acc_desc = drv->acc_desc;
+	int ret = 0;
+
+	mutex_lock(&drv->lock);
+
+	dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
+
+	/*
+	 * This driver only supports scaling voltage for a CPU cluster
+	 * where all CPUs in the cluster share a single regulator.
+	 * Therefore, save the struct device pointer only for the first
+	 * CPU device that gets attached. There is no need to do any
+	 * additional initialization when further CPUs get attached.
+	 */
+	if (drv->attached_cpu_dev)
+		goto unlock;
+
+	/*
+	 * cpr_scale_voltage() requires the direction (if we are changing
+	 * to a higher or lower OPP). The first time
+	 * cpr_set_performance_state() is called, there is no previous
+	 * performance state defined. Therefore, we call
+	 * cpr_find_initial_corner() that gets the CPU clock frequency
+	 * set by the bootloader, so that we can determine the direction
+	 * the first time cpr_set_performance_state() is called.
+	 */
+	drv->cpu_clk = devm_clk_get(dev, NULL);
+	if (IS_ERR(drv->cpu_clk)) {
+		ret = PTR_ERR(drv->cpu_clk);
+		if (ret != -EPROBE_DEFER)
+			dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
+		goto unlock;
+	}
+	drv->attached_cpu_dev = dev;
+
+	dev_dbg(drv->dev, "using cpu clk from: %s\n",
+		dev_name(drv->attached_cpu_dev));
+
+	/*
+	 * Everything related to (virtual) corners has to be initialized
+	 * here, when attaching to the power domain, since we need to know
+	 * the maximum frequency for each fuse corner, and this is only
+	 * available after the cpufreq driver has attached to us.
+	 * The reason for this is that we need to know the highest
+	 * frequency associated with each fuse corner.
+	 */
+	ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
+	if (ret < 0) {
+		dev_err(drv->dev, "could not get OPP count\n");
+		goto unlock;
+	}
+	drv->num_corners = ret;
+
+	if (drv->num_corners < 2) {
+		dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
+		ret = -EINVAL;
+		goto unlock;
+	}
+
+	drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
+				    sizeof(*drv->corners),
+				    GFP_KERNEL);
+	if (!drv->corners) {
+		ret = -ENOMEM;
+		goto unlock;
+	}
+
+	ret = cpr_corner_init(drv);
+	if (ret)
+		goto unlock;
+
+	cpr_set_loop_allowed(drv);
+
+	ret = cpr_init_parameters(drv);
+	if (ret)
+		goto unlock;
+
+	/* Configure CPR HW but keep it disabled */
+	ret = cpr_config(drv);
+	if (ret)
+		goto unlock;
+
+	ret = cpr_find_initial_corner(drv);
+	if (ret)
+		goto unlock;
+
+	if (acc_desc->config)
+		regmap_multi_reg_write(drv->tcsr, acc_desc->config,
+				       acc_desc->num_regs_per_fuse);
+
+	/* Enable ACC if required */
+	if (acc_desc->enable_mask)
+		regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
+				   acc_desc->enable_mask,
+				   acc_desc->enable_mask);
+
+	dev_info(drv->dev, "driver initialized with %u OPPs\n",
+		 drv->num_corners);
+
+unlock:
+	mutex_unlock(&drv->lock);
+
+	return ret;
+}
+
+static int cpr_debug_info_show(struct seq_file *s, void *unused)
+{
+	u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
+	u32 step_dn, step_up, error, error_lt0, busy;
+	struct cpr_drv *drv = s->private;
+	struct fuse_corner *fuse_corner;
+	struct corner *corner;
+
+	corner = drv->corner;
+	fuse_corner = corner->fuse_corner;
+
+	seq_printf(s, "corner, current_volt = %d uV\n",
+		       corner->last_uV);
+
+	ro_sel = fuse_corner->ring_osc_idx;
+	gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
+	seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
+
+	ctl = cpr_read(drv, REG_RBCPR_CTL);
+	seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
+
+	irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+	seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
+
+	reg = cpr_read(drv, REG_RBCPR_RESULT_0);
+	seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
+
+	step_dn = reg & 0x01;
+	step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
+	seq_printf(s, "  [step_dn = %u", step_dn);
+
+	seq_printf(s, ", step_up = %u", step_up);
+
+	error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
+				& RBCPR_RESULT0_ERROR_STEPS_MASK;
+	seq_printf(s, ", error_steps = %u", error_steps);
+
+	error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
+	seq_printf(s, ", error = %u", error);
+
+	error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
+	seq_printf(s, ", error_lt_0 = %u", error_lt0);
+
+	busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
+	seq_printf(s, ", busy = %u]\n", busy);
+
+	return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
+
+static void cpr_debugfs_init(struct cpr_drv *drv)
+{
+	drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
+
+	debugfs_create_file("debug_info", 0444, drv->debugfs,
+			    drv, &cpr_debug_info_fops);
+}
+
+static int cpr_probe(struct platform_device *pdev)
+{
+	struct resource *res;
+	struct device *dev = &pdev->dev;
+	struct cpr_drv *drv;
+	int irq, ret;
+	const struct cpr_acc_desc *data;
+	struct device_node *np;
+	u32 cpr_rev = FUSE_REVISION_UNKNOWN;
+
+	data = of_device_get_match_data(dev);
+	if (!data || !data->cpr_desc || !data->acc_desc)
+		return -EINVAL;
+
+	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
+	if (!drv)
+		return -ENOMEM;
+	drv->dev = dev;
+	drv->desc = data->cpr_desc;
+	drv->acc_desc = data->acc_desc;
+
+	drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
+					 sizeof(*drv->fuse_corners),
+					 GFP_KERNEL);
+	if (!drv->fuse_corners)
+		return -ENOMEM;
+
+	np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
+	if (!np)
+		return -ENODEV;
+
+	drv->tcsr = syscon_node_to_regmap(np);
+	of_node_put(np);
+	if (IS_ERR(drv->tcsr))
+		return PTR_ERR(drv->tcsr);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	drv->base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(drv->base))
+		return PTR_ERR(drv->base);
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0)
+		return -EINVAL;
+
+	drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
+	if (IS_ERR(drv->vdd_apc))
+		return PTR_ERR(drv->vdd_apc);
+
+	/*
+	 * Initialize fuse corners, since it simply depends
+	 * on data in efuses.
+	 * Everything related to (virtual) corners has to be
+	 * initialized after attaching to the power domain,
+	 * since it depends on the CPU's OPP table.
+	 */
+	ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
+	if (ret)
+		return ret;
+
+	drv->cpr_fuses = cpr_get_fuses(drv);
+	if (IS_ERR(drv->cpr_fuses))
+		return PTR_ERR(drv->cpr_fuses);
+
+	ret = cpr_populate_ring_osc_idx(drv);
+	if (ret)
+		return ret;
+
+	ret = cpr_fuse_corner_init(drv);
+	if (ret)
+		return ret;
+
+	mutex_init(&drv->lock);
+
+	ret = devm_request_threaded_irq(dev, irq, NULL,
+					cpr_irq_handler,
+					IRQF_ONESHOT | IRQF_TRIGGER_RISING,
+					"cpr", drv);
+	if (ret)
+		return ret;
+
+	drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
+					  GFP_KERNEL);
+	if (!drv->pd.name)
+		return -EINVAL;
+
+	drv->pd.power_off = cpr_power_off;
+	drv->pd.power_on = cpr_power_on;
+	drv->pd.set_performance_state = cpr_set_performance_state;
+	drv->pd.opp_to_performance_state = cpr_get_performance_state;
+	drv->pd.attach_dev = cpr_pd_attach_dev;
+
+	ret = pm_genpd_init(&drv->pd, NULL, true);
+	if (ret)
+		return ret;
+
+	ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
+	if (ret)
+		return ret;
+
+	platform_set_drvdata(pdev, drv);
+	cpr_debugfs_init(drv);
+
+	return 0;
+}
+
+static int cpr_remove(struct platform_device *pdev)
+{
+	struct cpr_drv *drv = platform_get_drvdata(pdev);
+
+	if (cpr_is_allowed(drv)) {
+		cpr_ctl_disable(drv);
+		cpr_irq_set(drv, 0);
+	}
+
+	of_genpd_del_provider(pdev->dev.of_node);
+	pm_genpd_remove(&drv->pd);
+
+	debugfs_remove_recursive(drv->debugfs);
+
+	return 0;
+}
+
+static const struct of_device_id cpr_match_table[] = {
+	{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
+	{ }
+};
+MODULE_DEVICE_TABLE(of, cpr_match_table);
+
+static struct platform_driver cpr_driver = {
+	.probe		= cpr_probe,
+	.remove		= cpr_remove,
+	.driver		= {
+		.name	= "qcom-cpr",
+		.of_match_table = cpr_match_table,
+	},
+};
+module_platform_driver(cpr_driver);
+
+MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
+MODULE_LICENSE("GPL v2");
-- 
cgit v1.2.3