Age | Commit message (Collapse) | Author | Files | Lines |
|
When moving tasks from old memcg (with move_charge_at_immigrate on new
memcg), followed by removal of old memcg, hit General Protection Fault in
mem_cgroup_lru_del_list() (called from release_pages called from
free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from
exit_mmap from mmput from exit_mm from do_exit).
Somewhat reproducible, takes a few hours: the old struct mem_cgroup has
been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is
still trying to update its stats, and take page off lru before freeing.
A task, or a charge, or a page on lru: each secures a memcg against
removal. In this case, the last task has been moved out of the old memcg,
and it is exiting: anonymous pages are uncharged one by one from the
memcg, as they are zapped from its pagetables, so the charge gets down to
0; but the pages themselves are queued in an mmu_gather for freeing.
Most of those pages will be on lru (and force_empty is careful to
lru_add_drain_all, to add pages from pagevec to lru first), but not
necessarily all: perhaps some have been isolated for page reclaim, perhaps
some isolated for other reasons. So, force_empty may find no task, no
charge and no page on lru, and let the removal proceed.
There would still be no problem if these pages were immediately freed; but
typically (and the put_page_testzero protocol demands it) they have to be
added back to lru before they are found freeable, then removed from lru
and freed. We don't see the issue when adding, because the
mem_cgroup_iter() loops keep their own reference to the memcg being
scanned; but when it comes to mem_cgroup_lru_del_list().
I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and
PageCgroupUsed flags were used (like a trick with mirrors) to deflect view
of pc->mem_cgroup to the stable root_mem_cgroup when neither set.
38c5d72f3ebe ("memcg: simplify LRU handling by new rule") mercifully
removed those convolutions, but left this General Protection Fault.
But it's surprisingly easy to restore the old behaviour: just check
PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec
to add), and reset pc to root_mem_cgroup if page is uncharged. A risky
change? just going back to how it worked before; testing, and an audit of
uses of pc->mem_cgroup, show no problem.
And there's a nice bonus: with mem_cgroup_lru_add_list() itself making
sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no
longer has any purpose, and we can safely revert 4e5f01c2b9b9 ("memcg:
clear pc->mem_cgroup if necessary").
Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c
is not strictly necessary: the lru_lock there, with RCU before memcg
structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe
without that; but it seems cleaner to rely on one dependency less.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix CONFIG_TRANSPARENT_HUGEPAGE=y CONFIG_SMP=n CONFIG_DEBUG_VM=y
CONFIG_DEBUG_SPINLOCK=n kernel: spin_is_locked() is then always false,
and so triggers some BUGs in Transparent HugePage codepaths.
asm-generic/bug.h mentions this problem, and provides a WARN_ON_SMP(x);
but being too lazy to add VM_BUG_ON_SMP, BUG_ON_SMP, WARN_ON_SMP_ONCE,
VM_WARN_ON_SMP_ONCE, just test NR_CPUS != 1 in the existing VM_BUG_ONs.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
del_page_from_lru() repeats del_page_from_lru_list(), also working out
which LRU the page was on, clearing the relevant bits. Decouple those
functions: remove del_page_from_lru() and add page_off_lru().
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
checkpatch rightly protests
WARNING: EXPORT_SYMBOL(foo); should immediately follow its function/variable
so fix the five offenders in mm/swap.c.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
What's so special about ____pagevec_lru_add() that it needs four leading
underscores? Nothing, it just helped to distinguish from
__pagevec_lru_add() in 2.6.28 development. Cut two leading underscores.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Replace pagevecs in putback_lru_pages() and move_active_pages_to_lru()
by lists of pages_to_free: then apply Konstantin Khlebnikov's
free_hot_cold_page_list() to them instead of pagevec_release().
Which simplifies the flow (no need to drop and retake lock whenever
pagevec fills up) and reduces stale addresses in stack backtraces
(which often showed through the pagevecs); but more importantly,
removes another 120 bytes from the deepest stacks in page reclaim.
Although I've not recently seen an actual stack overflow here with
a vanilla kernel, move_active_pages_to_lru() has often featured in
deep backtraces.
However, free_hot_cold_page_list() does not handle compound pages
(nor need it: a Transparent HugePage would have been split by the
time it reaches the call in shrink_page_list()), but it is possible
for putback_lru_pages() or move_active_pages_to_lru() to be left
holding the last reference on a THP, so must exclude the unlikely
compound case before putting on pages_to_free.
Remove pagevec_strip(), its work now done in move_active_pages_to_lru().
The pagevec in scan_mapping_unevictable_pages() remains in mm/vmscan.c,
but that is never on the reclaim path, and cannot be replaced by a list.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch started off as a cleanup: __split_huge_page_refcounts() has to
cope with two scenarios, when the hugepage being split is already on LRU,
and when it is not; but why does it have to split that accounting across
three different sites? Consolidate it in lru_add_page_tail(), handling
evictable and unevictable alike, and use standard add_page_to_lru_list()
when accounting is needed (when the head is not yet on LRU).
But a recent regression in -next, I guess the removal of PageCgroupAcctLRU
test from mem_cgroup_split_huge_fixup(), makes this now a necessary fix:
under load, the MEM_CGROUP_ZSTAT count was wrapping to a huge number,
messing up reclaim calculations and causing a freeze at rmdir of cgroup.
Add a VM_BUG_ON to mem_cgroup_lru_del_list() when we're about to wrap that
count - this has not been the only such incident. Document that
lru_add_page_tail() is for Transparent HugePages by #ifdef around it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Put the tail subpages of an isolated hugepage under splitting in the lru
reclaim head as they supposedly should be isolated too next.
Queues the subpages in physical order in the lru for non isolated
hugepages under splitting. That might provide some theoretical cache
benefit to the buddy allocator later.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now that all code that operated on global per-zone LRU lists is
converted to operate on per-memory cgroup LRU lists instead, there is no
reason to keep the double-LRU scheme around any longer.
The pc->lru member is removed and page->lru is linked directly to the
per-memory cgroup LRU lists, which removes two pointers from a
descriptor that exists for every page frame in the system.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Having a unified structure with a LRU list set for both global zones and
per-memcg zones allows to keep that code simple which deals with LRU
lists and does not care about the container itself.
Once the per-memcg LRU lists directly link struct pages, the isolation
function and all other list manipulations are shared between the memcg
case and the global LRU case.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds helper free_hot_cold_page_list() to free list of 0-order
pages. It frees pages directly from list without temporary page-vector.
It also calls trace_mm_pagevec_free() to simulate pagevec_free()
behaviour.
bloat-o-meter:
add/remove: 1/1 grow/shrink: 1/3 up/down: 267/-295 (-28)
function old new delta
free_hot_cold_page_list - 264 +264
get_page_from_freelist 2129 2132 +3
__pagevec_free 243 239 -4
split_free_page 380 373 -7
release_pages 606 510 -96
free_page_list 188 - -188
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
Revert "tracing: Include module.h in define_trace.h"
irq: don't put module.h into irq.h for tracking irqgen modules.
bluetooth: macroize two small inlines to avoid module.h
ip_vs.h: fix implicit use of module_get/module_put from module.h
nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
include: replace linux/module.h with "struct module" wherever possible
include: convert various register fcns to macros to avoid include chaining
crypto.h: remove unused crypto_tfm_alg_modname() inline
uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
pm_runtime.h: explicitly requires notifier.h
linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
miscdevice.h: fix up implicit use of lists and types
stop_machine.h: fix implicit use of smp.h for smp_processor_id
of: fix implicit use of errno.h in include/linux/of.h
of_platform.h: delete needless include <linux/module.h>
acpi: remove module.h include from platform/aclinux.h
miscdevice.h: delete unnecessary inclusion of module.h
device_cgroup.h: delete needless include <linux/module.h>
net: sch_generic remove redundant use of <linux/module.h>
net: inet_timewait_sock doesnt need <linux/module.h>
...
Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in
- drivers/media/dvb/frontends/dibx000_common.c
- drivers/media/video/{mt9m111.c,ov6650.c}
- drivers/mfd/ab3550-core.c
- include/linux/dmaengine.h
|
|
Michel while working on the working set estimation code, noticed that
calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
wasn't safe, if the pfn ended up being a tail page of a transparent
hugepage under splitting by __split_huge_page_refcount().
He then found the problem could also theoretically materialize with
page_cache_get_speculative() during the speculative radix tree lookups
that uses get_page_unless_zero() in SMP if the radix tree page is freed
and reallocated and get_user_pages is called on it before
page_cache_get_speculative has a chance to call get_page_unless_zero().
So the best way to fix the problem is to keep page_tail->_count zero at
all times. This will guarantee that get_page_unless_zero() can never
succeed on any tail page. page_tail->_mapcount is guaranteed zero and
is unused for all tail pages of a compound page, so we can simply
account the tail page references there and transfer them to
tail_page->_count in __split_huge_page_refcount() (in addition to the
head_page->_mapcount).
While debugging this s/_count/_mapcount/ change I also noticed get_page is
called by direct-io.c on pages returned by get_user_pages. That wasn't
entirely safe because the two atomic_inc in get_page weren't atomic. As
opposed to other get_user_page users like secondary-MMU page fault to
establish the shadow pagetables would never call any superflous get_page
after get_user_page returns. It's safer to make get_page universally safe
for tail pages and to use get_page_foll() within follow_page (inside
get_user_pages()). get_page_foll() is safe to do the refcounting for tail
pages without taking any locks because it is run within PT lock protected
critical sections (PT lock for pte and page_table_lock for
pmd_trans_huge).
The standard get_page() as invoked by direct-io instead will now take
the compound_lock but still only for tail pages. The direct-io paths
are usually I/O bound and the compound_lock is per THP so very
finegrined, so there's no risk of scalability issues with it. A simple
direct-io benchmarks with all lockdep prove locking and spinlock
debugging infrastructure enabled shows identical performance and no
overhead. So it's worth it. Ideally direct-io should stop calling
get_page() on pages returned by get_user_pages(). The spinlock in
get_page() is already optimized away for no-THP builds but doing
get_page() on tail pages returned by GUP is generally a rare operation
and usually only run in I/O paths.
This new refcounting on page_tail->_mapcount in addition to avoiding new
RCU critical sections will also allow the working set estimation code to
work without any further complexity associated to the tail page
refcounting with THP.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The files changed within are only using the EXPORT_SYMBOL
macro variants. They are not using core modular infrastructure
and hence don't need module.h but only the export.h header.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
The zone->lru_lock is heavily contented in workload where activate_page()
is frequently used. We could do batch activate_page() to reduce the lock
contention. The batched pages will be added into zone list when the pool
is full or page reclaim is trying to drain them.
For example, in a 4 socket 64 CPU system, create a sparse file and 64
processes, processes shared map to the file. Each process read access the
whole file and then exit. The process exit will do unmap_vmas() and cause
a lot of activate_page() call. In such workload, we saw about 58% total
time reduction with below patch. Other workloads with a lot of
activate_page also benefits a lot too.
Andrew Morton suggested activate_page() and putback_lru_pages() should
follow the same path to active pages, but this is hard to implement (see
commit 7a608572a282a ("Revert "mm: batch activate_page() to reduce lock
contention")). On the other hand, do we really need putback_lru_pages()
to follow the same path? I tested several FIO/FFSB benchmark (about 20
scripts for each benchmark) in 3 machines here from 2 sockets to 4
sockets. My test doesn't show anything significant with/without below
patch (there is slight difference but mostly some noise which we found
even without below patch before). Below patch basically returns to the
same as my first post.
I tested some microbenchmarks:
case-anon-cow-rand-mt 0.58%
case-anon-cow-rand -3.30%
case-anon-cow-seq-mt -0.51%
case-anon-cow-seq -5.68%
case-anon-r-rand-mt 0.23%
case-anon-r-rand 0.81%
case-anon-r-seq-mt -0.71%
case-anon-r-seq -1.99%
case-anon-rx-rand-mt 2.11%
case-anon-rx-seq-mt 3.46%
case-anon-w-rand-mt -0.03%
case-anon-w-rand -0.50%
case-anon-w-seq-mt -1.08%
case-anon-w-seq -0.12%
case-anon-wx-rand-mt -5.02%
case-anon-wx-seq-mt -1.43%
case-fork 1.65%
case-fork-sleep -0.07%
case-fork-withmem 1.39%
case-hugetlb -0.59%
case-lru-file-mmap-read-mt -0.54%
case-lru-file-mmap-read 0.61%
case-lru-file-mmap-read-rand -2.24%
case-lru-file-readonce -0.64%
case-lru-file-readtwice -11.69%
case-lru-memcg -1.35%
case-mmap-pread-rand-mt 1.88%
case-mmap-pread-rand -15.26%
case-mmap-pread-seq-mt 0.89%
case-mmap-pread-seq -69.72%
case-mmap-xread-rand-mt 0.71%
case-mmap-xread-seq-mt 0.38%
The most significent are:
case-lru-file-readtwice -11.69%
case-mmap-pread-rand -15.26%
case-mmap-pread-seq -69.72%
which use activate_page a lot. others are basically variations because
each run has slightly difference.
In UP case, 'size mm/swap.o'
before the two patches:
text data bss dec hex filename
6466 896 4 7366 1cc6 mm/swap.o
after the two patches:
text data bss dec hex filename
6343 896 4 7243 1c4b mm/swap.o
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It's pointless that deactive_page's operates on unevictable pages. This
patch removes unnecessary overhead which might be a bit problem in case
that there are many unevictable page in system(ex, mprotect workload)
[akpm@linux-foundation.org: tidy up comment]
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The lru_deactivate_fn should not move page which in on unevictable lru
into inactive list. Otherwise, we can meet BUG when we use
isolate_lru_pages as __isolate_lru_page could return -EINVAL.
Reported-by: Ying Han <yinghan@google.com>
Tested-by: Ying Han <yinghan@google.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Clean up code and remove duplicate code. Next patch will use
pagevec_lru_move_fn introduced here too.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
invalidate_mapping_pages is very big hint to reclaimer. It means user
doesn't want to use the page any more. So in order to prevent working set
page eviction, this patch move the page into tail of inactive list by
PG_reclaim.
Please, remember that pages in inactive list are working set as well as
active list. If we don't move pages into inactive list's tail, pages near
by tail of inactive list can be evicted although we have a big clue about
useless pages. It's totally bad.
Now PG_readahead/PG_reclaim is shared. fe3cba17 added ClearPageReclaim
into clear_page_dirty_for_io for preventing fast reclaiming readahead
marker page.
In this series, PG_reclaim is used by invalidated page, too. If VM find
the page is invalidated and it's dirty, it sets PG_reclaim to reclaim
asap. Then, when the dirty page will be writeback,
clear_page_dirty_for_io will clear PG_reclaim unconditionally. It
disturbs this serie's goal.
I think it's okay to clear PG_readahead when the page is dirty, not
writeback time. So this patch moves ClearPageReadahead. In v4,
ClearPageReadahead in set_page_dirty has a problem which is reported by
Steven Barrett. It's due to compound page. Some driver(ex, audio) calls
set_page_dirty with compound page which isn't on LRU. but my patch does
ClearPageRelcaim on compound page. In non-CONFIG_PAGEFLAGS_EXTENDED, it
breaks PageTail flag.
I think it doesn't affect THP and pass my test with THP enabling but Cced
Andrea for double check.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reported-by: Steven Barrett <damentz@liquorix.net>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The rotate_reclaimable_page function moves just written out pages, which
the VM wanted to reclaim, to the end of the inactive list. That way the
VM will find those pages first next time it needs to free memory.
This patch applies the rule in memcg. It can help to prevent unnecessary
working page eviction of memcg.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Recently, there are reported problem about thrashing.
(http://marc.info/?l=rsync&m=128885034930933&w=2) It happens by backup
workloads(ex, nightly rsync). That's because the workload makes just
use-once pages and touches pages twice. It promotes the page into active
list so that it results in working set page eviction.
Some app developer want to support POSIX_FADV_NOREUSE. But other OSes
don't support it, either.
(http://marc.info/?l=linux-mm&m=128928979512086&w=2)
By other approach, app developers use POSIX_FADV_DONTNEED. But it has a
problem. If kernel meets page is writing during invalidate_mapping_pages,
it can't work. It makes for application programmer to use it since they
always have to sync data before calling fadivse(..POSIX_FADV_DONTNEED) to
make sure the pages could be discardable. At last, they can't use
deferred write of kernel so that they could see performance loss.
(http://insights.oetiker.ch/linux/fadvise.html)
In fact, invalidation is very big hint to reclaimer. It means we don't
use the page any more. So let's move the writing page into inactive
list's head if we can't truncate it right now.
Why I move page to head of lru on this patch, Dirty/Writeback page would
be flushed sooner or later. It can prevent writeout of pageout which is
less effective than flusher's writeout.
Originally, I reused lru_demote of Peter with some change so added his
Signed-off-by.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reported-by: Ben Gamari <bgamari.foss@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit d8505dee1a87b8d41b9c4ee1325cd72258226fbc.
Chris Mason ended up chasing down some page allocation errors and pages
stuck waiting on the IO scheduler, and was able to narrow it down to two
commits: commit 744ed1442757 ("mm: batch activate_page() to reduce lock
contention") and d8505dee1a87 ("mm: simplify code of swap.c").
This reverts the second one.
Reported-and-debugged-by: Chris Mason <chris.mason@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 744ed1442757767ffede5008bb13e0805085902e.
Chris Mason ended up chasing down some page allocation errors and pages
stuck waiting on the IO scheduler, and was able to narrow it down to two
commits: commit 744ed1442757 ("mm: batch activate_page() to reduce lock
contention") and d8505dee1a87 ("mm: simplify code of swap.c").
This reverts the first of them.
Reported-and-debugged-by: Chris Mason <chris.mason@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The zone->lru_lock is heavily contented in workload where activate_page()
is frequently used. We could do batch activate_page() to reduce the lock
contention. The batched pages will be added into zone list when the pool
is full or page reclaim is trying to drain them.
For example, in a 4 socket 64 CPU system, create a sparse file and 64
processes, processes shared map to the file. Each process read access the
whole file and then exit. The process exit will do unmap_vmas() and cause
a lot of activate_page() call. In such workload, we saw about 58% total
time reduction with below patch. Other workloads with a lot of
activate_page also benefits a lot too.
I tested some microbenchmarks:
case-anon-cow-rand-mt 0.58%
case-anon-cow-rand -3.30%
case-anon-cow-seq-mt -0.51%
case-anon-cow-seq -5.68%
case-anon-r-rand-mt 0.23%
case-anon-r-rand 0.81%
case-anon-r-seq-mt -0.71%
case-anon-r-seq -1.99%
case-anon-rx-rand-mt 2.11%
case-anon-rx-seq-mt 3.46%
case-anon-w-rand-mt -0.03%
case-anon-w-rand -0.50%
case-anon-w-seq-mt -1.08%
case-anon-w-seq -0.12%
case-anon-wx-rand-mt -5.02%
case-anon-wx-seq-mt -1.43%
case-fork 1.65%
case-fork-sleep -0.07%
case-fork-withmem 1.39%
case-hugetlb -0.59%
case-lru-file-mmap-read-mt -0.54%
case-lru-file-mmap-read 0.61%
case-lru-file-mmap-read-rand -2.24%
case-lru-file-readonce -0.64%
case-lru-file-readtwice -11.69%
case-lru-memcg -1.35%
case-mmap-pread-rand-mt 1.88%
case-mmap-pread-rand -15.26%
case-mmap-pread-seq-mt 0.89%
case-mmap-pread-seq -69.72%
case-mmap-xread-rand-mt 0.71%
case-mmap-xread-seq-mt 0.38%
The most significent are:
case-lru-file-readtwice -11.69%
case-mmap-pread-rand -15.26%
case-mmap-pread-seq -69.72%
which use activate_page a lot. others are basically variations because
each run has slightly difference.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Clean up code and remove duplicate code. Next patch will use
pagevec_lru_move_fn introduced here too.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After releasing the compound_lock split_huge_page can still run and release the
page before put_page_testzero runs.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Alter compound get_page/put_page to keep references on subpages too, in
order to allow __split_huge_page_refcount to split an hugepage even while
subpages have been pinned by one of the get_user_pages() variants.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Replace iterated page_cache_release() with release_pages(), which is
faster and shorter.
Needs release_pages() to be exported to modules.
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is needed to enable moving pages into the page cache in fuse with
splice(..., SPLICE_F_MOVE).
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
free_hot_page() is just a wrapper around free_hot_cold_page() with
parameter 'cold = 0'. After adding a clear comment for
free_hot_cold_page(), it is reasonable to remove a level of call.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Li Hong <lihong.hi@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Sizing of memory allocations shouldn't depend on the number of physical
pages found in a system, as that generally includes (perhaps a huge amount
of) non-RAM pages. The amount of what actually is usable as storage
should instead be used as a basis here.
Some of the calculations (i.e. those not intending to use high memory)
should likely even use (totalram_pages - totalhigh_pages).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
page_is_file_cache() has been used for both boolean checks and LRU
arithmetic, which was always a bit weird.
Now that page_lru_base_type() exists for LRU arithmetic, make
page_is_file_cache() a real predicate function and adjust the
boolean-using callsites to drop those pesky double negations.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of abusing page_is_file_cache() for LRU list index arithmetic, add
another helper with a more appropriate name and convert the non-boolean
users of page_is_file_cache() accordingly.
This new helper gives the LRU base type a page is supposed to live on,
inactive anon or inactive file.
[hugh.dickins@tiscali.co.uk: convert del_page_from_lru() also]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The Committed_AS field can underflow in certain situations:
> # while true; do cat /proc/meminfo | grep _AS; sleep 1; done | uniq -c
> 1 Committed_AS: 18446744073709323392 kB
> 11 Committed_AS: 18446744073709455488 kB
> 6 Committed_AS: 35136 kB
> 5 Committed_AS: 18446744073709454400 kB
> 7 Committed_AS: 35904 kB
> 3 Committed_AS: 18446744073709453248 kB
> 2 Committed_AS: 34752 kB
> 9 Committed_AS: 18446744073709453248 kB
> 8 Committed_AS: 34752 kB
> 3 Committed_AS: 18446744073709320960 kB
> 7 Committed_AS: 18446744073709454080 kB
> 3 Committed_AS: 18446744073709320960 kB
> 5 Committed_AS: 18446744073709454080 kB
> 6 Committed_AS: 18446744073709320960 kB
Because NR_CPUS can be greater than 1000 and meminfo_proc_show() does
not check for underflow.
But NR_CPUS proportional isn't good calculation. In general,
possibility of lock contention is proportional to the number of online
cpus, not theorical maximum cpus (NR_CPUS).
The current kernel has generic percpu-counter stuff. using it is right
way. it makes code simplify and percpu_counter_read_positive() don't
make underflow issue.
Reported-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org> [All kernel versions]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Recruit a page flag to aid in cache management. The following extra flag is
defined:
(1) PG_fscache (PG_private_2)
The marked page is backed by a local cache and is pinning resources in the
cache driver.
If PG_fscache is set, then things that checked for PG_private will now also
check for that. This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
pagevec_swap_free() is now unused.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce mem_cgroup_per_zone::reclaim_stat member and its statics
collecting function.
Now, get_scan_ratio() can calculate correct value on memcg reclaim.
[hugh@veritas.com: avoid reclaim_stat oops when disabled]
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add zone_reclam_stat struct for later enhancement.
A later patch uses this. This patch doesn't any behavior change (yet).
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A big patch for changing memcg's LRU semantics.
Now,
- page_cgroup is linked to mem_cgroup's its own LRU (per zone).
- LRU of page_cgroup is not synchronous with global LRU.
- page and page_cgroup is one-to-one and statically allocated.
- To find page_cgroup is on what LRU, you have to check pc->mem_cgroup as
- lru = page_cgroup_zoneinfo(pc, nid_of_pc, zid_of_pc);
- SwapCache is handled.
And, when we handle LRU list of page_cgroup, we do following.
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc); .....................(1)
mz = page_cgroup_zoneinfo(pc);
spin_lock(&mz->lru_lock);
.....add to LRU
spin_unlock(&mz->lru_lock);
unlock_page_cgroup(pc);
But (1) is spin_lock and we have to be afraid of dead-lock with zone->lru_lock.
So, trylock() is used at (1), now. Without (1), we can't trust "mz" is correct.
This is a trial to remove this dirty nesting of locks.
This patch changes mz->lru_lock to be zone->lru_lock.
Then, above sequence will be written as
spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
mem_cgroup_add/remove/etc_lru() {
pc = lookup_page_cgroup(page);
mz = page_cgroup_zoneinfo(pc);
if (PageCgroupUsed(pc)) {
....add to LRU
}
spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
This is much simpler.
(*) We're safe even if we don't take lock_page_cgroup(pc). Because..
1. When pc->mem_cgroup can be modified.
- at charge.
- at account_move().
2. at charge
the PCG_USED bit is not set before pc->mem_cgroup is fixed.
3. at account_move()
the page is isolated and not on LRU.
Pros.
- easy for maintenance.
- memcg can make use of laziness of pagevec.
- we don't have to duplicated LRU/Active/Unevictable bit in page_cgroup.
- LRU status of memcg will be synchronized with global LRU's one.
- # of locks are reduced.
- account_move() is simplified very much.
Cons.
- may increase cost of LRU rotation.
(no impact if memcg is not configured.)
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
remove_exclusive_swap_page(): its problem is in living up to its name.
It doesn't matter if someone else has a reference to the page (raised
page_count); it doesn't matter if the page is mapped into userspace
(raised page_mapcount - though that hints it may be worth keeping the
swap): all that matters is that there be no more references to the swap
(and no writeback in progress).
swapoff (try_to_unuse) has been removing pages from swapcache for years,
with no concern for page count or page mapcount, and we used to have a
comment in lookup_swap_cache() recognizing that: if you go for a page of
swapcache, you'll get the right page, but it could have been removed from
swapcache by the time you get page lock.
So, give up asking for exclusivity: get rid of
remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and
remove_exclusive_swap_page_count() which were spawned for the recent LRU
work: replace them by the simpler try_to_free_swap() which just checks
page_swapcount().
Similarly, remove the page_count limitation from free_swap_and_count(),
but assume that it's worth holding on to the swap if page is mapped and
swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()?
It would be consistent, but I think we probably have enough for now.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
lru_cache_add_active_or_unevictable() and page_add_new_anon_rmap() always
appear together. Save some symbol table space and some jumping around by
removing lru_cache_add_active_or_unevictable(), folding its code into
page_add_new_anon_rmap(): like how we add file pages to lru just after
adding them to page cache.
Remove the nearby "TODO: is this safe?" comments (yes, it is safe), and
change page_add_new_anon_rmap()'s address BUG_ON to VM_BUG_ON as
originally intended.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
speculative page references patch (commit:
e286781d5f2e9c846e012a39653a166e9d31777d) removed last
pagevec_release_nonlru() caller.
So this function can be removed now.
This patch doesn't have any functional change.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, lru_add_drain_all() has two version.
(1) use schedule_on_each_cpu()
(2) don't use schedule_on_each_cpu()
Gerald Schaefer reported it doesn't work well on SMP (not NUMA) S390
machine.
offline_pages() calls lru_add_drain_all() followed by drain_all_pages().
While drain_all_pages() works on each cpu, lru_add_drain_all() only runs
on the current cpu for architectures w/o CONFIG_NUMA. This let us run
into the BUG_ON(!PageBuddy(page)) in __offline_isolated_pages() during
memory hotplug stress test on s390. The page in question was still on the
pcp list, because of a race with lru_add_drain_all() and drain_all_pages()
on different cpus.
Actually, Almost machine has CONFIG_UNEVICTABLE_LRU=y. Then almost machine use
(1) version lru_add_drain_all although the machine is UP.
Then this ifdef is not valueable.
simple removing is better.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Count the insertion of new pages in the statistics used to drive the
pageout scanning code. This should help the kernel quickly evict
streaming file IO.
We count on the fact that new file pages start on the inactive file LRU
and new anonymous pages start on the active anon list. This means
streaming file IO will increment the recent scanned file statistic, while
leaving the recent rotated file statistic alone, driving pageout scanning
to the file LRUs.
Pageout activity does its own list manipulation.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: Gene Heskett <gene.heskett@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In the fault paths that install new anonymous pages, check whether the
page is evictable or not using lru_cache_add_active_or_unevictable(). If
the page is evictable, just add it to the active lru list [via the pagevec
cache], else add it to the unevictable list.
This "proactive" culling in the fault path mimics the handling of mlocked
pages in Nick Piggin's series to keep mlocked pages off the lru lists.
Notes:
1) This patch is optional--e.g., if one is concerned about the
additional test in the fault path. We can defer the moving of
nonreclaimable pages until when vmscan [shrink_*_list()]
encounters them. Vmscan will only need to handle such pages
once, but if there are a lot of them it could impact system
performance.
2) The 'vma' argument to page_evictable() is require to notice that
we're faulting a page into an mlock()ed vma w/o having to scan the
page's rmap in the fault path. Culling mlock()ed anon pages is
currently the only reason for this patch.
3) We can't cull swap pages in read_swap_cache_async() because the
vma argument doesn't necessarily correspond to the swap cache
offset passed in by swapin_readahead(). This could [did!] result
in mlocking pages in non-VM_LOCKED vmas if [when] we tried to
cull in this path.
4) Move set_pte_at() to after where we add page to lru to keep it
hidden from other tasks that might walk the page table.
We already do it in this order in do_anonymous() page. And,
these are COW'd anon pages. Is this safe?
[riel@redhat.com: undo an overzealous code cleanup]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon"). The latter includes tmpfs.
The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.
This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists. The big
policy changes are in separate patches.
[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|