Age | Commit message (Collapse) | Author | Files | Lines |
|
Split the test_int_hash function to keep its mainloop separate from
arch-specific chunks, which are only compiled as needed. This aims at
improving readability.
Link: https://lkml.kernel.org/r/20211208183711.390454-3-isabbasso@riseup.net
Reviewed-by: David Gow <davidgow@google.com>
Tested-by: David Gow <davidgow@google.com>
Signed-off-by: Isabella Basso <isabbasso@riseup.net>
Cc: Augusto Durães Camargo <augusto.duraes33@gmail.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: Enzo Ferreira <ferreiraenzoa@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: kernel test robot <lkp@intel.com>
Cc: Rodrigo Siqueira <rodrigosiqueiramelo@gmail.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "test_hash.c: refactor into KUnit", v3.
We refactored the lib/test_hash.c file into KUnit as part of the student
group LKCAMP [1] introductory hackathon for kernel development.
This test was pointed to our group by Daniel Latypov [2], so its full
conversion into a pure KUnit test was our goal in this patch series, but
we ran into many problems relating to it not being split as unit tests,
which complicated matters a bit, as the reasoning behind the original
tests is quite cryptic for those unfamiliar with hash implementations.
Some interesting developments we'd like to highlight are:
- In patch 1/5 we noticed that there was an unused define directive
that could be removed.
- In patch 4/5 we noticed how stringhash and hash tests are all under
the lib/test_hash.c file, which might cause some confusion, and we
also broke those kernel config entries up.
Overall KUnit developments have been made in the other patches in this
series:
In patches 2/5, 3/5 and 5/5 we refactored the lib/test_hash.c file so as
to make it more compatible with the KUnit style, whilst preserving the
original idea of the maintainer who designed it (i.e. George Spelvin),
which might be undesirable for unit tests, but we assume it is enough
for a first patch.
This patch (of 5):
Currently, there exist hash_32() and __hash_32() functions, which were
introduced in a patch [1] targeting architecture specific optimizations.
These functions can be overridden on a per-architecture basis to achieve
such optimizations. They must set their corresponding define directive
(HAVE_ARCH_HASH_32 and HAVE_ARCH__HASH_32, respectively) so that header
files can deal with these overrides properly.
As the supported 32-bit architectures that have their own hash function
implementation (i.e. m68k, Microblaze, H8/300, pa-risc) have only been
making use of the (more general) __hash_32() function (which only lacks
a right shift operation when compared to the hash_32() function), remove
the define directive corresponding to the arch-specific hash_32()
implementation.
[1] https://lore.kernel.org/lkml/20160525073311.5600.qmail@ns.sciencehorizons.net/
[akpm@linux-foundation.org: hash_32_generic() becomes hash_32()]
Link: https://lkml.kernel.org/r/20211208183711.390454-1-isabbasso@riseup.net
Link: https://lkml.kernel.org/r/20211208183711.390454-2-isabbasso@riseup.net
Reviewed-by: David Gow <davidgow@google.com>
Tested-by: David Gow <davidgow@google.com>
Co-developed-by: Augusto Durães Camargo <augusto.duraes33@gmail.com>
Signed-off-by: Augusto Durães Camargo <augusto.duraes33@gmail.com>
Co-developed-by: Enzo Ferreira <ferreiraenzoa@gmail.com>
Signed-off-by: Enzo Ferreira <ferreiraenzoa@gmail.com>
Signed-off-by: Isabella Basso <isabbasso@riseup.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Rodrigo Siqueira <rodrigosiqueiramelo@gmail.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, the entry->prev and entry->next are considered to be valid as
long as they are not LIST_POISON{1|2}. However, the memory may be
corrupted. The prev->next is invalid probably because 'prev' is
invalid, not because prev->next's content is illegal.
Unfortunately, the printk and its subfunctions will modify the registers
that hold the 'prev' and 'next', and we don't see this valuable
information in the BUG context.
So print the contents of 'entry->prev' and 'entry->next'.
Here's an example:
list_del corruption. prev->next should be c0ecbf74, but was c08410dc
kernel BUG at lib/list_debug.c:53!
... ...
PC is at __list_del_entry_valid+0x58/0x98
LR is at __list_del_entry_valid+0x58/0x98
psr: 60000093
sp : c0ecbf30 ip : 00000000 fp : 00000001
r10: c08410d0 r9 : 00000001 r8 : c0825e0c
r7 : 20000013 r6 : c08410d0 r5 : c0ecbf74 r4 : c0ecbf74
r3 : c0825d08 r2 : 00000000 r1 : df7ce6f4 r0 : 00000044
... ...
Stack: (0xc0ecbf30 to 0xc0ecc000)
bf20: c0ecbf74 c0164fd0 c0ecbf70 c0165170
bf40: c0eca000 c0840c00 c0840c00 c0824500 c0825e0c c0189bbc c088f404 60000013
bf60: 60000013 c0e85100 000004ec 00000000 c0ebcdc0 c0ecbf74 c0ecbf74 c0825d08
bf80: c0e807c0 c018965c 00000000 c013f2a0 c0e807c0 c013f154 00000000 00000000
bfa0: 00000000 00000000 00000000 c01001b0 00000000 00000000 00000000 00000000
bfc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
bfe0: 00000000 00000000 00000000 00000000 00000013 00000000 00000000 00000000
(__list_del_entry_valid) from (__list_del_entry+0xc/0x20)
(__list_del_entry) from (finish_swait+0x60/0x7c)
(finish_swait) from (rcu_gp_kthread+0x560/0xa20)
(rcu_gp_kthread) from (kthread+0x14c/0x15c)
(kthread) from (ret_from_fork+0x14/0x24)
At first, I thought prev->next was overwritten. Later, I carefully
analyzed the RCU code and the disassembly code. The error occurred when
deleting a node from the list rcu_state.gp_wq. The System.map shows
that the address of rcu_state is c0840c00. Then I use gdb to obtain the
offset of rcu_state.gp_wq.task_list.
(gdb) p &((struct rcu_state *)0)->gp_wq.task_list
$1 = (struct list_head *) 0x4dc
Again:
list_del corruption. prev->next should be c0ecbf74, but was c08410dc
c08410dc = c0840c00 + 0x4dc = &rcu_state.gp_wq.task_list
Because rcu_state.gp_wq has at most one node, so I can guess that "prev
= &rcu_state.gp_wq.task_list". But for other scenes, maybe I wasn't so
lucky, I cannot figure out the value of 'prev'.
Link: https://lkml.kernel.org/r/20211207025835.1909-1-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I've made a mistake of looking into lib/kstrtox.o code generation.
The only function remotely performance critical is _parse_integer()
(via /proc/*/map_files/*), everything else is not.
Uninline everything, shrink lib/kstrtox.o by ~20 % !
Space savings on x86_64:
add/remove: 0/0 grow/shrink: 0/23 up/down: 0/-1269 (-1269 !!!)
Function old new delta
kstrtoull 16 13 -3
kstrtouint 59 48 -11
kstrtou8 60 49 -11
kstrtou16 61 50 -11
_kstrtoul 46 35 -11
kstrtoull_from_user 95 83 -12
kstrtoul_from_user 95 83 -12
kstrtoll 93 80 -13
kstrtouint_from_user 124 83 -41
kstrtou8_from_user 125 83 -42
kstrtou16_from_user 126 83 -43
kstrtos8 101 50 -51
kstrtos16 102 51 -51
kstrtoint 100 49 -51
_kstrtol 93 35 -58
kstrtobool_from_user 156 75 -81
kstrtoll_from_user 165 83 -82
kstrtol_from_user 165 83 -82
kstrtoint_from_user 172 83 -89
kstrtos8_from_user 173 83 -90
kstrtos16_from_user 174 83 -91
_parse_integer 136 10 -126
_kstrtoull 308 101 -207
Total: Before=3421236, After=3419967, chg -0.04%
Link: https://lkml.kernel.org/r/YZDsFDhHst4m2Pnt@localhost.localdomain
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When kernel.h is used in the headers it adds a lot into dependency hell,
especially when there are circular dependencies are involved.
Replace kernel.h inclusion with the list of what is really being used.
The rest of the changes are induced by the above and may not be split.
Link: https://lkml.kernel.org/r/20211209123823.20425-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Arend van Spriel <arend.vanspriel@broadcom.com> [brcmfmac]
Acked-by: Kalle Valo <kvalo@kernel.org>
Cc: Arend van Spriel <aspriel@gmail.com>
Cc: Franky Lin <franky.lin@broadcom.com>
Cc: Hante Meuleman <hante.meuleman@broadcom.com>
Cc: Chi-hsien Lin <chi-hsien.lin@infineon.com>
Cc: Wright Feng <wright.feng@infineon.com>
Cc: Chung-hsien Hsu <chung-hsien.hsu@infineon.com>
Cc: Kalle Valo <kvalo@codeaurora.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Daniel Borkmann says:
====================
bpf 2021-12-08
We've added 12 non-merge commits during the last 22 day(s) which contain
a total of 29 files changed, 659 insertions(+), 80 deletions(-).
The main changes are:
1) Fix an off-by-two error in packet range markings and also add a batch of
new tests for coverage of these corner cases, from Maxim Mikityanskiy.
2) Fix a compilation issue on MIPS JIT for R10000 CPUs, from Johan Almbladh.
3) Fix two functional regressions and a build warning related to BTF kfunc
for modules, from Kumar Kartikeya Dwivedi.
4) Fix outdated code and docs regarding BPF's migrate_disable() use on non-
PREEMPT_RT kernels, from Sebastian Andrzej Siewior.
5) Add missing includes in order to be able to detangle cgroup vs bpf header
dependencies, from Jakub Kicinski.
6) Fix regression in BPF sockmap tests caused by missing detachment of progs
from sockets when they are removed from the map, from John Fastabend.
7) Fix a missing "no previous prototype" warning in x86 JIT caused by BPF
dispatcher, from Björn Töpel.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Add selftests to cover packet access corner cases
bpf: Fix the off-by-two error in range markings
treewide: Add missing includes masked by cgroup -> bpf dependency
tools/resolve_btfids: Skip unresolved symbol warning for empty BTF sets
bpf: Fix bpf_check_mod_kfunc_call for built-in modules
bpf: Make CONFIG_DEBUG_INFO_BTF depend upon CONFIG_BPF_SYSCALL
mips, bpf: Fix reference to non-existing Kconfig symbol
bpf: Make sure bpf_disable_instrumentation() is safe vs preemption.
Documentation/locking/locktypes: Update migrate_disable() bits.
bpf, sockmap: Re-evaluate proto ops when psock is removed from sockmap
bpf, sockmap: Attach map progs to psock early for feature probes
bpf, x86: Fix "no previous prototype" warning
====================
Link: https://lore.kernel.org/r/20211208155125.11826-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Vinicius Costa Gomes reported [0] that build fails when
CONFIG_DEBUG_INFO_BTF is enabled and CONFIG_BPF_SYSCALL is disabled.
This leads to btf.c not being compiled, and then no symbol being present
in vmlinux for the declarations in btf.h. Since BTF is not useful
without enabling BPF subsystem, disallow this combination.
However, theoretically disabling both now could still fail, as the
symbol for kfunc_btf_id_list variables is not available. This isn't a
problem as the compiler usually optimizes the whole register/unregister
call, but at lower optimization levels it can fail the build in linking
stage.
Fix that by adding dummy variables so that modules taking address of
them still work, but the whole thing is a noop.
[0]: https://lore.kernel.org/bpf/20211110205418.332403-1-vinicius.gomes@intel.com
Fixes: 14f267d95fe4 ("bpf: btf: Introduce helpers for dynamic BTF set registration")
Reported-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20211122144742.477787-2-memxor@gmail.com
|
|
On ARM v6 and later, we define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
because the ordinary load/store instructions (ldr, ldrh, ldrb) can
tolerate any misalignment of the memory address. However, load/store
double and load/store multiple instructions (ldrd, ldm) may still only
be used on memory addresses that are 32-bit aligned, and so we have to
use the CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS macro with care, or we
may end up with a severe performance hit due to alignment traps that
require fixups by the kernel. Testing shows that this currently happens
with clang-13 but not gcc-11. In theory, any compiler version can
produce this bug or other problems, as we are dealing with undefined
behavior in C99 even on architectures that support this in hardware,
see also https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100363.
Fortunately, the get_unaligned() accessors do the right thing: when
building for ARMv6 or later, the compiler will emit unaligned accesses
using the ordinary load/store instructions (but avoid the ones that
require 32-bit alignment). When building for older ARM, those accessors
will emit the appropriate sequence of ldrb/mov/orr instructions. And on
architectures that can truly tolerate any kind of misalignment, the
get_unaligned() accessors resolve to the leXX_to_cpup accessors that
operate on aligned addresses.
Since the compiler will in fact emit ldrd or ldm instructions when
building this code for ARM v6 or later, the solution is to use the
unaligned accessors unconditionally on architectures where this is
known to be fast. The _aligned version of the hash function is
however still needed to get the best performance on architectures
that cannot do any unaligned access in hardware.
This new version avoids the undefined behavior and should produce
the fastest hash on all architectures we support.
Link: https://lore.kernel.org/linux-arm-kernel/20181008211554.5355-4-ard.biesheuvel@linaro.org/
Link: https://lore.kernel.org/linux-crypto/CAK8P3a2KfmmGDbVHULWevB0hv71P2oi2ZCHEAqT=8dQfa0=cqQ@mail.gmail.com/
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Fixes: 2c956a60778c ("siphash: add cryptographically secure PRF")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
PA-RISC uses a much bigger frame size for functions than other
architectures. So increase it to 2048 for 32- and 64-bit kernels.
This fixes e.g. a warning in lib/xxhash.c.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
As done in commit d73dad4eb5ad ("kasan: test: bypass __alloc_size
checks") for __write_overflow warnings, also silence some more cases
that trip the __read_overflow warnings seen in 5.16-rc1[1]:
In file included from include/linux/string.h:253,
from include/linux/bitmap.h:10,
from include/linux/cpumask.h:12,
from include/linux/mm_types_task.h:14,
from include/linux/mm_types.h:5,
from include/linux/page-flags.h:13,
from arch/arm64/include/asm/mte.h:14,
from arch/arm64/include/asm/pgtable.h:12,
from include/linux/pgtable.h:6,
from include/linux/kasan.h:29,
from lib/test_kasan.c:10:
In function 'memcmp',
inlined from 'kasan_memcmp' at lib/test_kasan.c:897:2:
include/linux/fortify-string.h:263:25: error: call to '__read_overflow' declared with attribute error: detected read beyond size of object (1st parameter)
263 | __read_overflow();
| ^~~~~~~~~~~~~~~~~
In function 'memchr',
inlined from 'kasan_memchr' at lib/test_kasan.c:872:2:
include/linux/fortify-string.h:277:17: error: call to '__read_overflow' declared with attribute error: detected read beyond size of object (1st parameter)
277 | __read_overflow();
| ^~~~~~~~~~~~~~~~~
[1] http://kisskb.ellerman.id.au/kisskb/buildresult/14660585/log/
Link: https://lkml.kernel.org/r/20211116004111.3171781-1-keescook@chromium.org
Fixes: d73dad4eb5ad ("kasan: test: bypass __alloc_size checks")
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull zstd fixes from Nick Terrell:
"Fix stack usage on parisc & improve code size bloat
This contains three commits:
1. Fixes a minor unused variable warning reported by Kernel test
robot [0].
2. Improves the reported code bloat (-88KB / 374KB) [1] by outlining
some functions that are unlikely to be used in performance
sensitive workloads.
3. Fixes the reported excess stack usage on parisc [2] by removing
-O3 from zstd's compilation flags. -O3 triggered bugs in the
hppa-linux-gnu gcc-8 compiler. -O2 performance is acceptable:
neutral compression, about -1% decompression speed. We also reduce
code bloat (-105KB / 374KB).
After this our code bloat is cut from 374KB to 105KB with gcc-11. If
we wanted to cut the remaining 105KB we'd likely have to trade
signicant performance, so I want to say that this is enough for now.
We should be able to get further gains without sacrificing speed, but
that will take some significant optimization effort, and isn't
suitable for a quick fix. I've opened an upstream issue [3] to track
the code size, and try to avoid future regressions, and improve it in
the long term"
Link: https://lore.kernel.org/linux-mm/202111120312.833wII4i-lkp@intel.com/T/ [0]
Link: https://lkml.org/lkml/2021/11/15/710 [1]
Link: https://lkml.org/lkml/2021/11/14/189 [2]
Link: https://github.com/facebook/zstd/issues/2867 [3]
Link: https://lore.kernel.org/r/20211117014949.1169186-1-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-1-nickrterrell@gmail.com/
* tag 'zstd-for-linus-5.16-rc1' of git://github.com/terrelln/linux:
lib: zstd: Don't add -O3 to cflags
lib: zstd: Don't inline functions in zstd_opt.c
lib: zstd: Fix unused variable warning
|
|
After the update to zstd-1.4.10 passing -O3 is no longer necessary to
get good performance from zstd. Using the default optimization level -O2
is sufficient to get good performance.
I've measured no significant change to compression speed, and a ~1%
decompression speed loss, which is acceptable.
This fixes the reported parisc -Wframe-larger-than=1536 errors [0]. The
gcc-8-hppa-linux-gnu compiler performed very poorly with -O3, generating
stacks that are ~3KB. With -O2 these same functions generate stacks in
the < 100B, completely fixing the problem. Function size deltas are
listed below:
ZSTD_compressBlock_fast_extDict_generic: 3800 -> 68
ZSTD_compressBlock_fast: 2216 -> 40
ZSTD_compressBlock_fast_dictMatchState: 1848 -> 64
ZSTD_compressBlock_doubleFast_extDict_generic: 3744 -> 76
ZSTD_fillDoubleHashTable: 3252 -> 0
ZSTD_compressBlock_doubleFast: 5856 -> 36
ZSTD_compressBlock_doubleFast_dictMatchState: 5380 -> 84
ZSTD_copmressBlock_lazy2: 2420 -> 72
Additionally, this improves the reported code bloat [1]. With gcc-11
bloat-o-meter shows an 80KB code size improvement:
```
> ../scripts/bloat-o-meter vmlinux.old vmlinux
add/remove: 31/8 grow/shrink: 24/155 up/down: 25734/-107924 (-82190)
Total: Before=6418562, After=6336372, chg -1.28%
```
Compared to before the zstd-1.4.10 update we see a total code size
regression of 105KB, down from 374KB at v5.16-rc1:
```
> ../scripts/bloat-o-meter vmlinux.old vmlinux
add/remove: 292/62 grow/shrink: 56/88 up/down: 235009/-127487 (107522)
Total: Before=6228850, After=6336372, chg +1.73%
```
[0] https://lkml.org/lkml/2021/11/15/710
[1] https://lkml.org/lkml/2021/11/14/189
Link: https://lore.kernel.org/r/20211117014949.1169186-4-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-4-nickrterrell@gmail.com/
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Nick Terrell <terrelln@fb.com>
|
|
`zstd_opt.c` contains the match finder for the highest compression
levels. These levels are already very slow, and are unlikely to be used
in the kernel. If they are used, they shouldn't be used in latency
sensitive workloads, so slowing them down shouldn't be a big deal.
This saves 188 KB of the 288 KB regression reported by Geert Uytterhoeven [0].
I've also opened an issue upstream [1] so that we can properly tackle
the code size issue in `zstd_opt.c` for all users, and can hopefully
remove this hack in the next zstd version we import.
Bloat-o-meter output on x86-64:
```
> ../scripts/bloat-o-meter vmlinux.old vmlinux
add/remove: 6/5 grow/shrink: 1/9 up/down: 16673/-209939 (-193266)
Function old new delta
ZSTD_compressBlock_opt_generic.constprop - 7559 +7559
ZSTD_insertBtAndGetAllMatches - 6304 +6304
ZSTD_insertBt1 - 1731 +1731
ZSTD_storeSeq - 693 +693
ZSTD_BtGetAllMatches - 255 +255
ZSTD_updateRep - 128 +128
ZSTD_updateTree 96 99 +3
ZSTD_insertAndFindFirstIndexHash3 81 - -81
ZSTD_setBasePrices.constprop 98 - -98
ZSTD_litLengthPrice.constprop 138 - -138
ZSTD_count 362 181 -181
ZSTD_count_2segments 1407 938 -469
ZSTD_insertBt1.constprop 2689 - -2689
ZSTD_compressBlock_btultra2 19990 423 -19567
ZSTD_compressBlock_btultra 19633 15 -19618
ZSTD_initStats_ultra 19825 - -19825
ZSTD_compressBlock_btopt 20374 12 -20362
ZSTD_compressBlock_btopt_extDict 29984 12 -29972
ZSTD_compressBlock_btultra_extDict 30718 15 -30703
ZSTD_compressBlock_btopt_dictMatchState 32689 12 -32677
ZSTD_compressBlock_btultra_dictMatchState 33574 15 -33559
Total: Before=6611828, After=6418562, chg -2.92%
```
[0] https://lkml.org/lkml/2021/11/14/189
[1] https://github.com/facebook/zstd/issues/2862
Link: https://lore.kernel.org/r/20211117014949.1169186-3-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-3-nickrterrell@gmail.com/
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Nick Terrell <terrelln@fb.com>
|
|
The variable `litLengthSum` is only used by an `assert()`, so when
asserts are disabled the compiler doesn't see any usage and warns.
This issue is already fixed upstream by PR #2838 [0]. It was reported
by the Kernel test robot in [1].
Another approach would be to change zstd's disabled `assert()`
definition to use the argument in a disabled branch, instead of
ignoring the argument. I've avoided this approach because there are
some small changes necessary to get zstd to build, and I would
want to thoroughly re-test for performance, since that is slightly
changing the code in every function in zstd. It seems like a
trivial change, but some functions are pretty sensitive to small
changes. However, I think it is a valid approach that I would
like to see upstream take, so I've opened Issue #2868 to attempt
this upstream.
Lastly, I've chosen not to use __maybe_unused because all code
in lib/zstd/ must eventually be upstreamed. Upstream zstd can't
use __maybe_unused because it isn't portable across all compilers.
[0] https://github.com/facebook/zstd/pull/2838
[1] https://lore.kernel.org/linux-mm/202111120312.833wII4i-lkp@intel.com/T/
[2] https://github.com/facebook/zstd/issues/2868
Link: https://lore.kernel.org/r/20211117014949.1169186-2-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-2-nickrterrell@gmail.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Nick Terrell <terrelln@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk fixes from Petr Mladek:
- Try to flush backtraces from other CPUs also on the local one. This
was a regression caused by printk_safe buffers removal.
- Remove header dependency warning.
* tag 'printk-for-5.16-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux:
printk: Remove printk.h inclusion in percpu.h
printk: restore flushing of NMI buffers on remote CPUs after NMI backtraces
|
|
|
|
Pull zstd update from Nick Terrell:
"Update to zstd-1.4.10.
Add myself as the maintainer of zstd and update the zstd version in
the kernel, which is now 4 years out of date, to a much more recent
zstd release. This includes bug fixes, much more extensive fuzzing,
and performance improvements. And generates the kernel zstd
automatically from upstream zstd, so it is easier to keep the zstd
verison up to date, and we don't fall so far out of date again.
This includes 5 commits that update the zstd library version:
- Adds a new kernel-style wrapper around zstd.
This wrapper API is functionally equivalent to the subset of the
current zstd API that is currently used. The wrapper API changes to
be kernel style so that the symbols don't collide with zstd's
symbols. The update to zstd-1.4.10 maintains the same API and
preserves the semantics, so that none of the callers need to be
updated. All callers are updated in the commit, because there are
zero functional changes.
- Adds an indirection for `lib/decompress_unzstd.c` so it doesn't
depend on the layout of `lib/zstd/` to include every source file.
This allows the next patch to be automatically generated.
- Imports the zstd-1.4.10 source code. This commit is automatically
generated from upstream zstd (https://github.com/facebook/zstd).
- Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`.
- Fixes a newly added build warning for clang.
The discussion around this patchset has been pretty long, so I've
included a FAQ-style summary of the history of the patchset, and why
we are taking this approach.
Why do we need to update?
-------------------------
The zstd version in the kernel is based off of zstd-1.3.1, which is
was released August 20, 2017. Since then zstd has seen many bug fixes
and performance improvements. And, importantly, upstream zstd is
continuously fuzzed by OSS-Fuzz, and bug fixes aren't backported to
older versions. So the only way to sanely get these fixes is to keep
up to date with upstream zstd.
There are no known security issues that affect the kernel, but we need
to be able to update in case there are. And while there are no known
security issues, there are relevant bug fixes. For example the problem
with large kernel decompression has been fixed upstream for over 2
years [1]
Additionally the performance improvements for kernel use cases are
significant. Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz:
- BtrFS zstd compression at levels 1 and 3 is 5% faster
- BtrFS zstd decompression+read is 15% faster
- SquashFS zstd decompression+read is 15% faster
- F2FS zstd compression+write at level 3 is 8% faster
- F2FS zstd decompression+read is 20% faster
- ZRAM decompression+read is 30% faster
- Kernel zstd decompression is 35% faster
- Initramfs zstd decompression+build is 5% faster
On top of this, there are significant performance improvements coming
down the line in the next zstd release, and the new automated update
patch generation will allow us to pull them easily.
How is the update patch generated?
----------------------------------
The first two patches are preparation for updating the zstd version.
Then the 3rd patch in the series imports upstream zstd into the
kernel. This patch is automatically generated from upstream. A script
makes the necessary changes and imports it into the kernel. The
changes are:
- Replace all libc dependencies with kernel replacements and rewrite
includes.
- Remove unncessary portability macros like: #if defined(_MSC_VER).
- Use the kernel xxhash instead of bundling it.
This automation gets tested every commit by upstream's continuous
integration. When we cut a new zstd release, we will submit a patch to
the kernel to update the zstd version in the kernel.
The automated process makes it easy to keep the kernel version of zstd
up to date. The current zstd in the kernel shares the guts of the
code, but has a lot of API and minor changes to work in the kernel.
This is because at the time upstream zstd was not ready to be used in
the kernel envrionment as-is. But, since then upstream zstd has
evolved to support being used in the kernel as-is.
Why are we updating in one big patch?
-------------------------------------
The 3rd patch in the series is very large. This is because it is
restructuring the code, so it both deletes the existing zstd, and
re-adds the new structure. Future updates will be directly
proportional to the changes in upstream zstd since the last import.
They will admittidly be large, as zstd is an actively developed
project, and has hundreds of commits between every release. However,
there is no other great alternative.
One option ruled out is to replay every upstream zstd commit. This is
not feasible for several reasons:
- There are over 3500 upstream commits since the zstd version in the
kernel.
- The automation to automatically generate the kernel update was only
added recently, so older commits cannot easily be imported.
- Not every upstream zstd commit builds.
- Only zstd releases are "supported", and individual commits may have
bugs that were fixed before a release.
Another option to reduce the patch size would be to first reorganize
to the new file structure, and then apply the patch. However, the
current kernel zstd is formatted with clang-format to be more
"kernel-like". But, the new method imports zstd as-is, without
additional formatting, to allow for closer correlation with upstream,
and easier debugging. So the patch wouldn't be any smaller.
It also doesn't make sense to import upstream zstd commit by commit
going forward. Upstream zstd doesn't support production use cases
running of the development branch. We have a lot of post-commit
fuzzing that catches many bugs, so indiviudal commits may be buggy,
but fixed before a release. So going forward, I intend to import every
(important) zstd release into the Kernel.
So, while it isn't ideal, updating in one big patch is the only patch
I see forward.
Who is responsible for this code?
---------------------------------
I am. This patchset adds me as the maintainer for zstd. Previously,
there was no tree for zstd patches. Because of that, there were
several patches that either got ignored, or took a long time to merge,
since it wasn't clear which tree should pick them up. I'm officially
stepping up as maintainer, and setting up my tree as the path through
which zstd patches get merged. I'll make sure that patches to the
kernel zstd get ported upstream, so they aren't erased when the next
version update happens.
How is this code tested?
------------------------
I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS,
Kernel, InitRAMFS). I also tested Kernel & InitRAMFS on i386 and
aarch64. I checked both performance and correctness.
Also, thanks to many people in the community who have tested these
patches locally.
Lastly, this code will bake in linux-next before being merged into
v5.16.
Why update to zstd-1.4.10 when zstd-1.5.0 has been released?
------------------------------------------------------------
This patchset has been outstanding since 2020, and zstd-1.4.10 was the
latest release when it was created. Since the update patch is
automatically generated from upstream, I could generate it from
zstd-1.5.0.
However, there were some large stack usage regressions in zstd-1.5.0,
and are only fixed in the latest development branch. And the latest
development branch contains some new code that needs to bake in the
fuzzer before I would feel comfortable releasing to the kernel.
Once this patchset has been merged, and we've released zstd-1.5.1, we
can update the kernel to zstd-1.5.1, and exercise the update process.
You may notice that zstd-1.4.10 doesn't exist upstream. This release
is an artifical release based off of zstd-1.4.9, with some fixes for
the kernel backported from the development branch. I will tag the
zstd-1.4.10 release after this patchset is merged, so the Linux Kernel
is running a known version of zstd that can be debugged upstream.
Why was a wrapper API added?
----------------------------
The first versions of this patchset migrated the kernel to the
upstream zstd API. It first added a shim API that supported the new
upstream API with the old code, then updated callers to use the new
shim API, then transitioned to the new code and deleted the shim API.
However, Cristoph Hellwig suggested that we transition to a kernel
style API, and hide zstd's upstream API behind that. This is because
zstd's upstream API is supports many other use cases, and does not
follow the kernel style guide, while the kernel API is focused on the
kernel's use cases, and follows the kernel style guide.
Where is the previous discussion?
---------------------------------
Links for the discussions of the previous versions of the patch set
below. The largest changes in the design of the patchset are driven by
the discussions in v11, v5, and v1. Sorry for the mix of links, I
couldn't find most of the the threads on lkml.org"
Link: https://lkml.org/lkml/2020/9/29/27 [1]
Link: https://www.spinics.net/lists/linux-crypto/msg58189.html [v12]
Link: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/ [v11]
Link: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/ [v10]
Link: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/ [v9]
Link: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/ [v8]
Link: https://lkml.org/lkml/2020/12/3/1195 [v7]
Link: https://lkml.org/lkml/2020/12/2/1245 [v6]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v5]
Link: https://www.spinics.net/lists/linux-btrfs/msg105783.html [v4]
Link: https://lkml.org/lkml/2020/9/23/1074 [v3]
Link: https://www.spinics.net/lists/linux-btrfs/msg105505.html [v2]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v1]
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
* tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux:
lib: zstd: Add cast to silence clang's -Wbitwise-instead-of-logical
MAINTAINERS: Add maintainer entry for zstd
lib: zstd: Upgrade to latest upstream zstd version 1.4.10
lib: zstd: Add decompress_sources.h for decompress_unzstd
lib: zstd: Add kernel-specific API
|
|
MIGRATE_PFN_LOCKED is used to indicate to migrate_vma_prepare() that a
source page was already locked during migrate_vma_collect(). If it
wasn't then the a second attempt is made to lock the page. However if
the first attempt failed it's unlikely a second attempt will succeed,
and the retry adds complexity. So clean this up by removing the retry
and MIGRATE_PFN_LOCKED flag.
Destination pages are also meant to have the MIGRATE_PFN_LOCKED flag
set, but nothing actually checks that.
Link: https://lkml.kernel.org/r/20211025041608.289017-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
printk from NMI context relies on irq work being raised on the local CPU
to print to console. This can be a problem if the NMI was raised by a
lockup detector to print lockup stack and regs, because the CPU may not
enable irqs (because it is locked up).
Introduce printk_trigger_flush() that can be called another CPU to try
to get those messages to the console, call that where printk_safe_flush
was previously called.
Fixes: 93d102f094be ("printk: remove safe buffers")
Cc: stable@vger.kernel.org # 5.15
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20211107045116.1754411-1-npiggin@gmail.com
|
|
Merge more updates from Andrew Morton:
"87 patches.
Subsystems affected by this patch series: mm (pagecache and hugetlb),
procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs,
init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork,
sysvfs, kcov, gdb, resource, selftests, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits)
ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL
ipc: check checkpoint_restore_ns_capable() to modify C/R proc files
selftests/kselftest/runner/run_one(): allow running non-executable files
virtio-mem: disallow mapping virtio-mem memory via /dev/mem
kernel/resource: disallow access to exclusive system RAM regions
kernel/resource: clean up and optimize iomem_is_exclusive()
scripts/gdb: handle split debug for vmlinux
kcov: replace local_irq_save() with a local_lock_t
kcov: avoid enable+disable interrupts if !in_task()
kcov: allocate per-CPU memory on the relevant node
Documentation/kcov: define `ip' in the example
Documentation/kcov: include types.h in the example
sysv: use BUILD_BUG_ON instead of runtime check
kernel/fork.c: unshare(): use swap() to make code cleaner
seq_file: fix passing wrong private data
seq_file: move seq_escape() to a header
signal: remove duplicate include in signal.h
crash_dump: remove duplicate include in crash_dump.h
crash_dump: fix boolreturn.cocci warning
hfs/hfsplus: use WARN_ON for sanity check
...
|
|
sg_miter_stop() checks for disabled preemption before unmapping a page
via kunmap_atomic(). The kernel doc mentions under context that
preemption must be disabled if SG_MITER_ATOMIC is set.
There is no active requirement for the caller to have preemption
disabled before invoking sg_mitter_stop(). The sg_mitter_*()
implementation itself has no such requirement.
In fact, preemption is disabled by kmap_atomic() as part of
sg_miter_next() and remains disabled as long as there is an active
SG_MITER_ATOMIC mapping. This is a consequence of kmap_atomic() and not
a requirement for sg_mitter_*() itself.
The user chooses SG_MITER_ATOMIC because it uses the API in a context
where blocking is not possible or blocking is possible but he chooses a
lower weight mapping which is not available on all CPUs and so it might
need less overhead to setup at a price that now preemption will be
disabled.
The kmap_atomic() implementation on PREEMPT_RT does not disable
preemption. It simply disables CPU migration to ensure that the task
remains on the same CPU while the caller remains preemptible. This in
turn triggers the warning in sg_miter_stop() because preemption is
allowed.
The PREEMPT_RT and !PREEMPT_RT implementation of kmap_atomic() disable
pagefaults as a requirement. It is sufficient to check for this instead
of disabled preemption.
Check for disabled pagefault handler in the SG_MITER_ATOMIC case.
Remove the "preemption disabled" part from the kernel doc as the
sg_milter*() implementation does not care.
[bigeasy@linutronix.de: commit description]
Link: https://lkml.kernel.org/r/20211015211409.cqopacv3pxdwn2ty@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Codegen become bloated again after simple_strntoull() introduction
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-224 (-224)
Function old new delta
simple_strtoul 5 2 -3
simple_strtol 23 20 -3
simple_strtoull 119 15 -104
simple_strtoll 155 41 -114
Link: https://lkml.kernel.org/r/YVmlB9yY4lvbNKYt@localhost.localdomain
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Richard Fitzgerald <rf@opensource.cirrus.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To print stack entries into a buffer, users of stackdepot, first get a
list of stack entries using stack_depot_fetch and then print this list
into a buffer using stack_trace_snprint. Provide a helper in stackdepot
for this purpose. Also change above mentioned users to use this helper.
[imran.f.khan@oracle.com: fix build error]
Link: https://lkml.kernel.org/r/20210915175321.3472770-4-imran.f.khan@oracle.com
[imran.f.khan@oracle.com: export stack_depot_snprint() to modules]
Link: https://lkml.kernel.org/r/20210916133535.3592491-4-imran.f.khan@oracle.com
Link: https://lkml.kernel.org/r/20210915014806.3206938-4-imran.f.khan@oracle.com
Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jani Nikula <jani.nikula@intel.com> [i915]
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To print a stack entries, users of stackdepot, first use stack_depot_fetch
to get a list of stack entries and then use stack_trace_print to print
this list. Provide a helper in stackdepot to print stack entries based on
stackdepot handle. Also change above mentioned users to use this helper.
Link: https://lkml.kernel.org/r/20210915014806.3206938-3-imran.f.khan@oracle.com
Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "lib, stackdepot: check stackdepot handle before accessing slabs", v2.
PATCH-1: Checks validity of a stackdepot handle before proceeding to
access stackdepot slab/objects.
PATCH-2: Adds a helper in stackdepot, to allow users to print stack
entries just by specifying the stackdepot handle. It also changes such
users to use this new interface.
PATCH-3: Adds a helper in stackdepot, to allow users to print stack
entries into buffers just by specifying the stackdepot handle and
destination buffer. It also changes such users to use this new interface.
This patch (of 3):
stack_depot_save allocates slabs that will be used for storing objects in
future.If this slab allocation fails we may get to a situation where space
allocation for a new stack_record fails, causing stack_depot_save to
return 0 as handle. If user of this handle ends up invoking
stack_depot_fetch with this handle value, current implementation of
stack_depot_fetch will end up using slab from wrong index. To avoid this
check handle value at the beginning.
Link: https://lkml.kernel.org/r/20210915175321.3472770-1-imran.f.khan@oracle.com
Link: https://lkml.kernel.org/r/20210915014806.3206938-1-imran.f.khan@oracle.com
Link: https://lkml.kernel.org/r/20210915014806.3206938-2-imran.f.khan@oracle.com
Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A new warning in clang warns that there is an instance where boolean
expressions are being used with bitwise operators instead of logical
ones:
lib/zstd/decompress/huf_decompress.c:890:25: warning: use of bitwise '&' with boolean operands [-Wbitwise-instead-of-logical]
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
zstd does this frequently to help with performance, as logical operators
have branches whereas bitwise ones do not.
To fix this warning in other cases, the expressions were placed on
separate lines with the '&=' operator; however, this particular instance
was moved away from that so that it could be surrounded by LIKELY, which
is a macro for __builtin_expect(), to help with a performance
regression, according to upstream zstd pull #1973.
Aside from switching to logical operators, which is likely undesirable
in this instance, or disabling the warning outright, the solution is
casting one of the expressions to an integer type to make it clear to
clang that the author knows what they are doing. Add a cast to U32 to
silence the warning. The first U32 cast is to silence an instance of
-Wshorten-64-to-32 because __builtin_expect() returns long so it cannot
be moved.
Link: https://github.com/ClangBuiltLinux/linux/issues/1486
Link: https://github.com/facebook/zstd/pull/1973
Reported-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Nick Terrell <terrelln@fb.com>
|
|
Upgrade to the latest upstream zstd version 1.4.10.
This patch is 100% generated from upstream zstd commit 20821a46f412 [0].
This patch is very large because it is transitioning from the custom
kernel zstd to using upstream directly. The new zstd follows upstreams
file structure which is different. Future update patches will be much
smaller because they will only contain the changes from one upstream
zstd release.
As an aid for review I've created a commit [1] that shows the diff
between upstream zstd as-is (which doesn't compile), and the zstd
code imported in this patch. The verion of zstd in this patch is
generated from upstream with changes applied by automation to replace
upstreams libc dependencies, remove unnecessary portability macros,
replace `/**` comments with `/*` comments, and use the kernel's xxhash
instead of bundling it.
The benefits of this patch are as follows:
1. Using upstream directly with automated script to generate kernel
code. This allows us to update the kernel every upstream release, so
the kernel gets the latest bug fixes and performance improvements,
and doesn't get 3 years out of date again. The automation and the
translated code are tested every upstream commit to ensure it
continues to work.
2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years
of performance improvements and bug fixes. On x86_64 I've measured
15% faster BtrFS and SquashFS decompression+read speeds, 35% faster
kernel decompression, and 30% faster ZRAM decompression+read speeds.
3. Zstd-1.4.10 supports negative compression levels, which allow zstd to
match or subsume lzo's performance.
4. Maintains the same kernel-specific wrapper API, so no callers have to
be modified with zstd version updates.
One concern that was brought up was stack usage. Upstream zstd had
already removed most of its heavy stack usage functions, but I just
removed the last functions that allocate arrays on the stack. I've
measured the high water mark for both compression and decompression
before and after this patch. Decompression is approximately neutral,
using about 1.2KB of stack space. Compression levels up to 3 regressed
from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB
-> 2KB. We've added unit tests upstream to prevent further regression.
I believe that this is a reasonable increase, and if it does end up
causing problems, this commit can be cleanly reverted, because it only
touches zstd.
I chose the bulk update instead of replaying upstream commits because
there have been ~3500 upstream commits since the 1.3.1 release, zstd
wasn't ready to be used in the kernel as-is before a month ago, and not
all upstream zstd commits build. The bulk update preserves bisectablity
because bugs can be bisected to the zstd version update. At that point
the update can be reverted, and we can work with upstream to find and
fix the bug.
Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a
staging branch at 20821a46f412 [0] and will apply any changes requested
to the staging branch. Once we're ready to merge this update I will cut
a zstd release at the commit we merge, so we have a known zstd release
in the kernel.
The implementation of the kernel API is contained in
zstd_compress_module.c and zstd_decompress_module.c.
[0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9
[1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
|
|
Adds decompress_sources.h which includes every .c file necessary for
zstd decompression. This is used in decompress_unzstd.c so the internal
structure of the library isn't exposed.
This allows us to upgrade the zstd library version without modifying any
callers. Instead we just need to update decompress_sources.h.
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
|
|
This patch:
- Moves `include/linux/zstd.h` -> `include/linux/zstd_lib.h`
- Updates modified zstd headers to yearless copyright
- Adds a new API in `include/linux/zstd.h` that is functionally
equivalent to the in-use subset of the current API. Functions are
renamed to avoid symbol collisions with zstd, to make it clear it is
not the upstream zstd API, and to follow the kernel style guide.
- Updates all callers to use the new API.
There are no functional changes in this patch. Since there are no
functional change, I felt it was okay to update all the callers in a
single patch. Once the API is approved, the callers are mechanically
changed.
This patch is preparing for the 3rd patch in this series, which updates
zstd to version 1.4.10. Since the upstream zstd API is no longer exposed
to callers, the update can happen transparently.
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Remove the global -isystem compiler flag, which was made possible by
the introduction of <linux/stdarg.h>
- Improve the Kconfig help to print the location in the top menu level
- Fix "FORCE prerequisite is missing" build warning for sparc
- Add new build targets, tarzst-pkg and perf-tarzst-src-pkg, which
generate a zstd-compressed tarball
- Prevent gen_init_cpio tool from generating a corrupted cpio when
KBUILD_BUILD_TIMESTAMP is set to 2106-02-07 or later
- Misc cleanups
* tag 'kbuild-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (28 commits)
kbuild: use more subdir- for visiting subdirectories while cleaning
sh: remove meaningless archclean line
initramfs: Check timestamp to prevent broken cpio archive
kbuild: split DEBUG_CFLAGS out to scripts/Makefile.debug
gen_init_cpio: add static const qualifiers
kbuild: Add make tarzst-pkg build option
scripts: update the comments of kallsyms support
sparc: Add missing "FORCE" target when using if_changed
kconfig: refactor conf_touch_dep()
kconfig: refactor conf_write_dep()
kconfig: refactor conf_write_autoconf()
kconfig: add conf_get_autoheader_name()
kconfig: move sym_escape_string_value() to confdata.c
kconfig: refactor listnewconfig code
kconfig: refactor conf_write_symbol()
kconfig: refactor conf_write_heading()
kconfig: remove 'const' from the return type of sym_escape_string_value()
kconfig: rename a variable in the lexer to a clearer name
kconfig: narrow the scope of variables in the lexer
kconfig: Create links to main menu items in search
...
|
|
Merge misc updates from Andrew Morton:
"257 patches.
Subsystems affected by this patch series: scripts, ocfs2, vfs, and
mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
cleanups, kfence, and damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
mm/damon: remove return value from before_terminate callback
mm/damon: fix a few spelling mistakes in comments and a pr_debug message
mm/damon: simplify stop mechanism
Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
Docs/admin-guide/mm/damon/start: simplify the content
Docs/admin-guide/mm/damon/start: fix a wrong link
Docs/admin-guide/mm/damon/start: fix wrong example commands
mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
mm/damon: remove unnecessary variable initialization
Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
selftests/damon: support watermarks
mm/damon/dbgfs: support watermarks
mm/damon/schemes: activate schemes based on a watermarks mechanism
tools/selftests/damon: update for regions prioritization of schemes
mm/damon/dbgfs: support prioritization weights
mm/damon/vaddr,paddr: support pageout prioritization
mm/damon/schemes: prioritize regions within the quotas
mm/damon/selftests: support schemes quotas
mm/damon/dbgfs: support quotas of schemes
...
|
|
We have observed that on very large machines with newer CPUs, the static
key/branch switching delay is on the order of milliseconds. This is due
to the required broadcast IPIs, which simply does not scale well to
hundreds of CPUs (cores). If done too frequently, this can adversely
affect tail latencies of various workloads.
One workaround is to increase the sample interval to several seconds,
while decreasing sampled allocation coverage, but the problem still
exists and could still increase tail latencies.
As already noted in the Kconfig help text, there are trade-offs: at
lower sample intervals the dynamic branch results in better performance;
however, at very large sample intervals, the static keys mode can result
in better performance -- careful benchmarking is recommended.
Our initial benchmarking showed that with large enough sample intervals
and workloads stressing the allocator, the static keys mode was slightly
better. Evaluating and observing the possible system-wide side-effects
of the static-key-switching induced broadcast IPIs, however, was a blind
spot (in particular on large machines with 100s of cores).
Therefore, a major downside of the static keys mode is, unfortunately,
that it is hard to predict performance on new system architectures and
topologies, but also making conclusions about performance of new
workloads based on a limited set of benchmarks.
Most distributions will simply select the defaults, while targeting a
large variety of different workloads and system architectures. As such,
the better default is CONFIG_KFENCE_STATIC_KEYS=n, and re-enabling it is
only recommended after careful evaluation.
For reference, on x86-64 the condition in kfence_alloc() generates
exactly
2 instructions in the kmem_cache_alloc() fast-path:
| ...
| cmpl $0x0,0x1a8021c(%rip) # ffffffff82d560d0 <kfence_allocation_gate>
| je ffffffff812d6003 <kmem_cache_alloc+0x243>
| ...
which, given kfence_allocation_gate is infrequently modified, should be
well predicted by most CPUs.
Link: https://lkml.kernel.org/r/20211019102524.2807208-2-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
filter_irq_stacks() has little to do with the stackdepot implementation,
except that it is usually used by users (such as KASAN) of stackdepot to
reduce the stack trace.
However, filter_irq_stacks() itself is not useful without a stack trace
as obtained by stack_trace_save() and friends.
Therefore, move filter_irq_stacks() to kernel/stacktrace.c, so that new
users of filter_irq_stacks() do not have to start depending on
STACKDEPOT only for filter_irq_stacks().
Link: https://lkml.kernel.org/r/20210923104803.2620285-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CONFIG_MEMORY_HOTPLUG depends on CONFIG_SPARSEMEM, so there is no need for
CONFIG_MEMORY_HOTPLUG_SPARSE anymore; adjust all instances to use
CONFIG_MEMORY_HOTPLUG and remove CONFIG_MEMORY_HOTPLUG_SPARSE.
Link: https://lkml.kernel.org/r/20210929143600.49379-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Shuah Khan <skhan@linuxfoundation.org> [kselftest]
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename memblock_free_ptr() to memblock_free() and use memblock_free()
when freeing a virtual pointer so that memblock_free() will be a
counterpart of memblock_alloc()
The callers are updated with the below semantic patch and manual
addition of (void *) casting to pointers that are represented by
unsigned long variables.
@@
identifier vaddr;
expression size;
@@
(
- memblock_phys_free(__pa(vaddr), size);
+ memblock_free(vaddr, size);
|
- memblock_free_ptr(vaddr, size);
+ memblock_free(vaddr, size);
)
[sfr@canb.auug.org.au: fixup]
Link: https://lkml.kernel.org/r/20211018192940.3d1d532f@canb.auug.org.au
Link: https://lkml.kernel.org/r/20210930185031.18648-7-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Juergen Gross <jgross@suse.com>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since memblock_free() operates on a physical range, make its name
reflect it and rename it to memblock_phys_free(), so it will be a
logical counterpart to memblock_phys_alloc().
The callers are updated with the below semantic patch:
@@
expression addr;
expression size;
@@
- memblock_free(addr, size);
+ memblock_phys_free(addr, size);
Link: https://lkml.kernel.org/r/20210930185031.18648-6-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Juergen Gross <jgross@suse.com>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
memblock_free_early_nid() is unused and memblock_free_early() is an
alias for memblock_free().
Replace calls to memblock_free_early() with calls to memblock_free() and
remove memblock_free_early() and memblock_free_early_nid().
Link: https://lkml.kernel.org/r/20210930185031.18648-4-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Juergen Gross <jgross@suse.com>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use swap() in order to make code cleaner. Issue found by coccinelle.
Link: https://lkml.kernel.org/r/20211028111443.15744-1-deng.changcheng@zte.com.cn
Signed-off-by: Changcheng Deng <deng.changcheng@zte.com.cn>
Reported-by: Zeal Robot <zealci@zte.com.cn>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Intentional overflows, as performed by the KASAN tests, are detected at
compile time[1] (instead of only at run-time) with the addition of
__alloc_size. Fix this by forcing the compiler into not being able to
trust the size used following the kmalloc()s.
[1] https://lore.kernel.org/lkml/20211005184717.65c6d8eb39350395e387b71f@linux-foundation.org
Link: https://lkml.kernel.org/r/20211006181544.1670992-1-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With HW tag-based KASAN, error checks are performed implicitly by the
load and store instructions in the memcpy implementation. A failed
check results in tag checks being disabled and execution will keep
going. As a result, under HW tag-based KASAN, prior to commit
1b0668be62cf ("kasan: test: disable kmalloc_memmove_invalid_size for
HW_TAGS"), this memcpy would end up corrupting memory until it hits an
inaccessible page and causes a kernel panic.
This is a pre-existing issue that was revealed by commit 285133040e6c
("arm64: Import latest memcpy()/memmove() implementation") which changed
the memcpy implementation from using signed comparisons (incorrectly,
resulting in the memcpy being terminated early for negative sizes) to
using unsigned comparisons.
It is unclear how this could be handled by memcpy itself in a reasonable
way. One possibility would be to add an exception handler that would
force memcpy to return if a tag check fault is detected -- this would
make the behavior roughly similar to generic and SW tag-based KASAN.
However, this wouldn't solve the problem for asynchronous mode and also
makes memcpy behavior inconsistent with manually copying data.
This test was added as a part of a series that taught KASAN to detect
negative sizes in memory operations, see commit 8cceeff48f23 ("kasan:
detect negative size in memory operation function"). Therefore we
should keep testing for negative sizes with generic and SW tag-based
KASAN. But there is some value in testing small memcpy overflows, so
let's add another test with memcpy that does not destabilize the kernel
by performing out-of-bounds writes, and run it in all modes.
Link: https://linux-review.googlesource.com/id/I048d1e6a9aff766c4a53f989fb0c83de68923882
Link: https://lkml.kernel.org/r/20210910211356.3603758-1-pcc@google.com
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add __stack_depot_save(), which provides more fine-grained control over
stackdepot's memory allocation behaviour, in case stackdepot runs out of
"stack slabs".
Normally stackdepot uses alloc_pages() in case it runs out of space;
passing can_alloc==false to __stack_depot_save() prohibits this, at the
cost of more likely failure to record a stack trace.
Link: https://lkml.kernel.org/r/20210913112609.2651084-4-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Taras Madan <tarasmadan@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
alloc_flags in depot_alloc_stack() is no longer used; remove it.
Link: https://lkml.kernel.org/r/20210913112609.2651084-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Taras Madan <tarasmadan@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the big set of driver core changes for 5.16-rc1.
All of these have been in linux-next for a while now with no reported
problems.
Included in here are:
- big update and cleanup of the sysfs abi documentation files and
scripts from Mauro. We are almost at the place where we can
properly check that the running kernel's sysfs abi is documented
fully.
- firmware loader updates
- dyndbg updates
- kernfs cleanups and fixes from Christoph
- device property updates
- component fix
- other minor driver core cleanups and fixes"
* tag 'driver-core-5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (122 commits)
device property: Drop redundant NULL checks
x86/build: Tuck away built-in firmware under FW_LOADER
vmlinux.lds.h: wrap built-in firmware support under FW_LOADER
firmware_loader: move struct builtin_fw to the only place used
x86/microcode: Use the firmware_loader built-in API
firmware_loader: remove old DECLARE_BUILTIN_FIRMWARE()
firmware_loader: formalize built-in firmware API
component: do not leave master devres group open after bind
dyndbg: refine verbosity 1-4 summary-detail
gpiolib: acpi: Replace custom code with device_match_acpi_handle()
i2c: acpi: Replace custom function with device_match_acpi_handle()
driver core: Provide device_match_acpi_handle() helper
dyndbg: fix spurious vNpr_info change
dyndbg: no vpr-info on empty queries
dyndbg: vpr-info on remove-module complete, not starting
device property: Add missed header in fwnode.h
Documentation: dyndbg: Improve cli param examples
dyndbg: Remove support for ddebug_query param
dyndbg: make dyndbg a known cli param
dyndbg: show module in vpr-info in dd-exec-queries
...
|
|
When building m68k:allmodconfig, recent versions of gcc generate the
following error if the length of UTS_RELEASE is less than 8 bytes.
In function 'memcpy_and_pad',
inlined from 'nvmet_execute_disc_identify' at
drivers/nvme/target/discovery.c:268:2: arch/m68k/include/asm/string.h:72:25: error:
'__builtin_memcpy' reading 8 bytes from a region of size 7
Discussions around the problem suggest that this only happens if an
architecture does not provide strlen(), if -ffreestanding is provided as
compiler option, and if CONFIG_FORTIFY_SOURCE=n. All of this is the case
for m68k. The exact reasons are unknown, but seem to be related to the
ability of the compiler to evaluate the return value of strlen() and
the resulting execution flow in memcpy_and_pad(). It would be possible
to work around the problem by using sizeof(UTS_RELEASE) instead of
strlen(UTS_RELEASE), but that would only postpone the problem until the
function is called in a similar way. Uninline memcpy_and_pad() instead
to solve the problem for good.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Andy Shevchenko <andriy.shevchenko@intel.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull KUnit updates from Shuah Khan:
"Several enhancements and fixes:
- ability to run each test suite and test separately
- support for timing test run
- several fixes and improvements"
* tag 'linux-kselftest-kunit-5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest:
kunit: tool: fix typecheck errors about loading qemu configs
kunit: tool: continue past invalid utf-8 output
kunit: Reset suite count after running tests
kunit: tool: improve compatibility of kunit_parser with KTAP specification
kunit: tool: yield output from run_kernel in real time
kunit: tool: support running each suite/test separately
kunit: tool: actually track how long it took to run tests
kunit: tool: factor exec + parse steps into a function
kunit: add 'kunit.action' param to allow listing out tests
kunit: tool: show list of valid --arch options when invalid
kunit: tool: misc fixes (unused vars, imports, leaked files)
kunit: fix too small allocation when using suite-only kunit.filter_glob
kunit: tool: allow filtering test cases via glob
kunit: drop assumption in kunit-log-test about current suite
|
|
Pull drm updates from Dave Airlie:
"Summary below. i915 starts to add support for DG2 GPUs, enables DG1
and ADL-S support by default, lots of work to enable DisplayPort 2.0
across drivers. Lots of documentation updates and fixes across the
board.
core:
- improve dma_fence, lease and resv documentation
- shmem-helpers: allocate WC pages on x86, use vmf_insert_pin
- sched fixes/improvements
- allow empty drm leases
- add dma resv iterator
- add more DP 2.0 headers
- DP MST helper improvements for DP2.0
dma-buf:
- avoid warnings, remove fence trace macros
bridge:
- new helper to get rid of panels
- probe improvements for it66121
- enable DSI EOTP for anx7625
fbdev:
- efifb: release runtime PM on destroy
ttm:
- kerneldoc switch
- helper to clear all DMA mappings
- pool shrinker optimizaton
- remove ttm_tt_destroy_common
- update ttm_move_memcpy for async use
panel:
- add new panel-edp driver
amdgpu:
- Initial DP 2.0 support
- Initial USB4 DP tunnelling support
- Aldebaran MCE support
- Modifier support for DCC image stores for GFX 10.3
- Display rework for better FP code handling
- Yellow Carp/Cyan Skillfish updates
- Cyan Skillfish display support
- convert vega/navi to IP discovery asic enumeration
- validate IP discovery table
- RAS improvements
- Lots of fixes
i915:
- DG1 PCI IDs + LMEM discovery/placement
- DG1 GuC submission by default
- ADL-S PCI IDs updated + enabled by default
- ADL-P (XE_LPD) fixed and updates
- DG2 display fixes
- PXP protected object support for Gen12 integrated
- expose multi-LRC submission interface for GuC
- export logical engine instance to user
- Disable engine bonding on Gen12+
- PSR cleanup
- PSR2 selective fetch by default
- DP 2.0 prep work
- VESA vendor block + MSO use of it
- FBC refactor
- try again to fix fast-narrow vs slow-wide eDP training
- use THP when IOMMU enabled
- LMEM backup/restore for suspend/resume
- locking simplification
- GuC major reworking
- async flip VT-D workaround changes
- DP link training improvements
- misc display refactorings
bochs:
- new PCI ID
rcar-du:
- Non-contiguious buffer import support for rcar-du
- r8a779a0 support prep
omapdrm:
- COMPILE_TEST fixes
sti:
- COMPILE_TEST fixes
msm:
- fence ordering improvements
- eDP support in DP sub-driver
- dpu irq handling cleanup
- CRC support for making igt happy
- NO_CONNECTOR bridge support
- dsi: 14nm phy support for msm8953
- mdp5: msm8x53, sdm450, sdm632 support
stm:
- layer alpha + zpo support
v3d:
- fix Vulkan CTS failure
- support multiple sync objects
gud:
- add R8/RGB332/RGB888 pixel formats
vc4:
- convert to new bridge helpers
vgem:
- use shmem helpers
virtio:
- support mapping exported vram
zte:
- remove obsolete driver
rockchip:
- use bridge attach no connector for LVDS/RGB"
* tag 'drm-next-2021-11-03' of git://anongit.freedesktop.org/drm/drm: (1259 commits)
drm/amdgpu/gmc6: fix DMA mask from 44 to 40 bits
drm/amd/display: MST support for DPIA
drm/amdgpu: Fix even more out of bound writes from debugfs
drm/amdgpu/discovery: add SDMA IP instance info for soc15 parts
drm/amdgpu/discovery: add UVD/VCN IP instance info for soc15 parts
drm/amdgpu/UAPI: rearrange header to better align related items
drm/amd/display: Enable dpia in dmub only for DCN31 B0
drm/amd/display: Fix USB4 hot plug crash issue
drm/amd/display: Fix deadlock when falling back to v2 from v3
drm/amd/display: Fallback to clocks which meet requested voltage on DCN31
drm/amd/display: move FPU associated DCN301 code to DML folder
drm/amd/display: fix link training regression for 1 or 2 lane
drm/amd/display: add two lane settings training options
drm/amd/display: decouple hw_lane_settings from dpcd_lane_settings
drm/amd/display: implement decide lane settings
drm/amd/display: adopt DP2.0 LT SCR revision 8
drm/amd/display: FEC configuration for dpia links in MST mode
drm/amd/display: FEC configuration for dpia links
drm/amd/display: Add workaround flag for EDID read on certain docks
drm/amd/display: Set phy_mux_sel bit in dmub scratch register
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2
Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher:
"Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock.
In the most basic deadlock scenario, that buffer will not be resident
and it will be mapped to the same file. Accessing the buffer will
trigger a page fault, and gfs2 will deadlock trying to take the same
inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled"
* tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2:
gfs2: Fix mmap + page fault deadlocks for direct I/O
iov_iter: Introduce nofault flag to disable page faults
gup: Introduce FOLL_NOFAULT flag to disable page faults
iomap: Add done_before argument to iomap_dio_rw
iomap: Support partial direct I/O on user copy failures
iomap: Fix iomap_dio_rw return value for user copies
gfs2: Fix mmap + page fault deadlocks for buffered I/O
gfs2: Eliminate ip->i_gh
gfs2: Move the inode glock locking to gfs2_file_buffered_write
gfs2: Introduce flag for glock holder auto-demotion
gfs2: Clean up function may_grant
gfs2: Add wrapper for iomap_file_buffered_write
iov_iter: Introduce fault_in_iov_iter_writeable
iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable
gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable}
powerpc/kvm: Fix kvm_use_magic_page
iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk updates from Petr Mladek:
- Extend %pGp print format to print hex value of the page flags
- Use kvmalloc instead of kmalloc to allocate devkmsg buffers
- Misc cleanup and warning fixes
* tag 'printk-for-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux:
vsprintf: Update %pGp documentation about that it prints hex value
lib/vsprintf.c: Amend static asserts for format specifier flags
vsprintf: Make %pGp print the hex value
test_printf: Append strings more efficiently
test_printf: Remove custom appending of '|'
test_printf: Remove separate page_flags variable
test_printf: Make pft array const
ia64: don't do IA64_CMPXCHG_DEBUG without CONFIG_PRINTK
printk: use gnu_printf format attribute for printk_sprint()
printk: avoid -Wsometimes-uninitialized warning
printk: use kvmalloc instead of kmalloc for devkmsg_user
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core:
- Remove socket skb caches
- Add a SO_RESERVE_MEM socket op to forward allocate buffer space and
avoid memory accounting overhead on each message sent
- Introduce managed neighbor entries - added by control plane and
resolved by the kernel for use in acceleration paths (BPF / XDP
right now, HW offload users will benefit as well)
- Make neighbor eviction on link down controllable by userspace to
work around WiFi networks with bad roaming implementations
- vrf: Rework interaction with netfilter/conntrack
- fq_codel: implement L4S style ce_threshold_ect1 marking
- sch: Eliminate unnecessary RCU waits in mini_qdisc_pair_swap()
BPF:
- Add support for new btf kind BTF_KIND_TAG, arbitrary type tagging
as implemented in LLVM14
- Introduce bpf_get_branch_snapshot() to capture Last Branch Records
- Implement variadic trace_printk helper
- Add a new Bloomfilter map type
- Track <8-byte scalar spill and refill
- Access hw timestamp through BPF's __sk_buff
- Disallow unprivileged BPF by default
- Document BPF licensing
Netfilter:
- Introduce egress hook for looking at raw outgoing packets
- Allow matching on and modifying inner headers / payload data
- Add NFT_META_IFTYPE to match on the interface type either from
ingress or egress
Protocols:
- Multi-Path TCP:
- increase default max additional subflows to 2
- rework forward memory allocation
- add getsockopts: MPTCP_INFO, MPTCP_TCPINFO, MPTCP_SUBFLOW_ADDRS
- MCTP flow support allowing lower layer drivers to configure msg
muxing as needed
- Automatic Multicast Tunneling (AMT) driver based on RFC7450
- HSR support the redbox supervision frames (IEC-62439-3:2018)
- Support for the ip6ip6 encapsulation of IOAM
- Netlink interface for CAN-FD's Transmitter Delay Compensation
- Support SMC-Rv2 eliminating the current same-subnet restriction, by
exploiting the UDP encapsulation feature of RoCE adapters
- TLS: add SM4 GCM/CCM crypto support
- Bluetooth: initial support for link quality and audio/codec offload
Driver APIs:
- Add a batched interface for RX buffer allocation in AF_XDP buffer
pool
- ethtool: Add ability to control transceiver modules' power mode
- phy: Introduce supported interfaces bitmap to express MAC
capabilities and simplify PHY code
- Drop rtnl_lock from DSA .port_fdb_{add,del} callbacks
New drivers:
- WiFi driver for Realtek 8852AE 802.11ax devices (rtw89)
- Ethernet driver for ASIX AX88796C SPI device (x88796c)
Drivers:
- Broadcom PHYs
- support 72165, 7712 16nm PHYs
- support IDDQ-SR for additional power savings
- PHY support for QCA8081, QCA9561 PHYs
- NXP DPAA2: support for IRQ coalescing
- NXP Ethernet (enetc): support for software TCP segmentation
- Renesas Ethernet (ravb) - support DMAC and EMAC blocks of
Gigabit-capable IP found on RZ/G2L SoC
- Intel 100G Ethernet
- support for eswitch offload of TC/OvS flow API, including
offload of GRE, VxLAN, Geneve tunneling
- support application device queues - ability to assign Rx and Tx
queues to application threads
- PTP and PPS (pulse-per-second) extensions
- Broadcom Ethernet (bnxt)
- devlink health reporting and device reload extensions
- Mellanox Ethernet (mlx5)
- offload macvlan interfaces
- support HW offload of TC rules involving OVS internal ports
- support HW-GRO and header/data split
- support application device queues
- Marvell OcteonTx2:
- add XDP support for PF
- add PTP support for VF
- Qualcomm Ethernet switch (qca8k): support for QCA8328
- Realtek Ethernet DSA switch (rtl8366rb)
- support bridge offload
- support STP, fast aging, disabling address learning
- support for Realtek RTL8365MB-VC, a 4+1 port 10M/100M/1GE switch
- Mellanox Ethernet/IB switch (mlxsw)
- multi-level qdisc hierarchy offload (e.g. RED, prio and shaping)
- offload root TBF qdisc as port shaper
- support multiple routing interface MAC address prefixes
- support for IP-in-IP with IPv6 underlay
- MediaTek WiFi (mt76)
- mt7921 - ASPM, 6GHz, SDIO and testmode support
- mt7915 - LED and TWT support
- Qualcomm WiFi (ath11k)
- include channel rx and tx time in survey dump statistics
- support for 80P80 and 160 MHz bandwidths
- support channel 2 in 6 GHz band
- spectral scan support for QCN9074
- support for rx decapsulation offload (data frames in 802.3
format)
- Qualcomm phone SoC WiFi (wcn36xx)
- enable Idle Mode Power Save (IMPS) to reduce power consumption
during idle
- Bluetooth driver support for MediaTek MT7922 and MT7921
- Enable support for AOSP Bluetooth extension in Qualcomm WCN399x and
Realtek 8822C/8852A
- Microsoft vNIC driver (mana)
- support hibernation and kexec
- Google vNIC driver (gve)
- support for jumbo frames
- implement Rx page reuse
Refactor:
- Make all writes to netdev->dev_addr go thru helpers, so that we can
add this address to the address rbtree and handle the updates
- Various TCP cleanups and optimizations including improvements to
CPU cache use
- Simplify the gnet_stats, Qdisc stats' handling and remove
qdisc->running sequence counter
- Driver changes and API updates to address devlink locking
deficiencies"
* tag 'net-next-for-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2122 commits)
Revert "net: avoid double accounting for pure zerocopy skbs"
selftests: net: add arp_ndisc_evict_nocarrier
net: ndisc: introduce ndisc_evict_nocarrier sysctl parameter
net: arp: introduce arp_evict_nocarrier sysctl parameter
libbpf: Deprecate AF_XDP support
kbuild: Unify options for BTF generation for vmlinux and modules
selftests/bpf: Add a testcase for 64-bit bounds propagation issue.
bpf: Fix propagation of signed bounds from 64-bit min/max into 32-bit.
bpf: Fix propagation of bounds from 64-bit min/max into 32-bit and var_off.
net: vmxnet3: remove multiple false checks in vmxnet3_ethtool.c
net: avoid double accounting for pure zerocopy skbs
tcp: rename sk_wmem_free_skb
netdevsim: fix uninit value in nsim_drv_configure_vfs()
selftests/bpf: Fix also no-alu32 strobemeta selftest
bpf: Add missing map_delete_elem method to bloom filter map
selftests/bpf: Add bloom map success test for userspace calls
bpf: Add alignment padding for "map_extra" + consolidate holes
bpf: Bloom filter map naming fixups
selftests/bpf: Add test cases for struct_ops prog
bpf: Add dummy BPF STRUCT_OPS for test purpose
...
|
|
|