Age | Commit message (Collapse) | Author | Files | Lines |
|
Some DS13XX devices have "trickle chargers". Its configuration register
is at different locations, the setup is the same, though. Since the
configuration is board specific, introduce a platform_data to this driver.
Tested with a DS1339 on a custom board.
Signed-off-by: Wolfram Sang <w.sang@pengutronix.de>
Cc: Alessandro Zummo <alessandro.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently there is no generic way to get the RTC battery status within an
application. So add an ioctl to read the status bit. The idea is that
the bit is set once a low voltage is detected. It stays there until it is
reset using the RTC_VL_CLR ioctl.
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Using %ps in a printk format will sometimes fail silently and print the
empty string if the address passed in does not match a symbol that
kallsyms knows about. But using %pS will fall back to printing the full
address if kallsyms can't find the symbol. Make %ps act the same as %pS
by falling back to printing the address.
While we're here also make %ps print the module that a symbol comes from
so that it matches what %pS already does. Take this simple function for
example (in a module):
static void test_printk(void)
{
int test;
pr_info("with pS: %pS\n", &test);
pr_info("with ps: %ps\n", &test);
}
Before this patch:
with pS: 0xdff7df44
with ps:
After this patch:
with pS: 0xdff7df44
with ps: 0xdff7df44
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
max brightness is 127, so the range of brt_val should be from 0 to 127
Signed-off-by: Milo(Woogyom) Kim <milo.kim@ti.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Cc: Shreshtha Kumar SAHU <shreshthakumar.sahu@stericsson.com>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Bryan Wu <bryan.wu@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add a new field to led_classdev to save activattion state after activate
routine is successful. This saved state is used in deactivate routine to
do cleanup such as removing device files, and free memory allocated during
activation. Currently trigger_data not being null is used for this
purpose.
Existing triggers will need changes to use this new field.
Signed-off-by: Shuah Khan <shuahkhan@gmail.com>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Bryan Wu <bryan.wu@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
prototypes
Include the header to pickup the exported symbol prototype.
Quiets the sparse warning:
warning: symbol 'apple_bl_register' was not declared. Should it be static?
warning: symbol 'apple_bl_unregister' was not declared. Should it be static?
[akpm@linux-foundation.org: fix resulting build error]
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Richard Purdie <rpurdie@rpsys.net>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patchset adds early fb blank feature that a callback of lcd panel
driver is called prior to specific fb driver's one. In the case of
MIPI-DSI based video mode LCD Panel, for lcd power off, the power off
commands should be transferred to lcd panel with display and mipi-dsi
controller enabled because the commands is set to lcd panel at vsync porch
period. and in opposite case, the callback of fb driver should be called
prior to lcd panel driver's one because of same issue. Also if fb_blank
mode is changed to FB_BLANK_POWERDOWN then display controller would be
off(clock disable) but lcd panel would be still on. at this time, you
could see some issue like sparkling on lcd panel because video clock to be
delivered to ldi module of lcd panel was disabled. this issue could
occurs for all lcd panels.
The callback order is as the following:
at fb_blank function of fbmem.c
-> fb_notifier_call_chain(FB_EARLY_EVENT_BLANK)
-> lcd panel driver's early_set_power()
-> info->fbops->fb_blank()
-> spcefic fb driver's fb_blank()
-> fb_notifier_call_chain(FB_EVENT_BLANK)
-> lcd panel driver's set_power()
-> fb_notifier_call_chain(FB_R_EARLY_EVENT_BLANK) if
info->fops->fb_blank() was failed.
fb_notifier_call_chain(FB_R_EARLY_EVENT_BLANK) would be called to revert
the effects of previous FB_EARLY_EVENT_BLANK call. and note that if
early_set_power() of lcd_ops is NULL then early fb blank callback would be
ignored.
This patch:
Add early_set_power and r_early_set_power callbacks. early_set_power
callback is called prior to fb_blank() of fbmem.c and r_early_set_power
callback is called if fb_blank() was failed to revert the effects of the
early_set_power call of lcd panel driver.
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: Richard Purdie <rpurdie@rpsys.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add FB_EARLY_EVENT_BLANK and FB_R_EARLY_EVENT_BLANK event mode supports.
first, fb_notifier_call_chain() is called with FB_EARLY_EVENT_BLANK and
fb_blank() of specific fb driver is called and then
fb_notifier_call_chain() is called with FB_EVENT_BLANK again at
fb_blank(). and if fb_blank() was failed then fb_nitifier_call_chain()
would be called with FB_R_EARLY_EVENT_BLANK to revert the previous
effects.
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: Richard Purdie <rpurdie@rpsys.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We call the destroy function when a cgroup starts to be removed, such as
by a rmdir event.
However, because of our reference counters, some objects are still
inflight. Right now, we are decrementing the static_keys at destroy()
time, meaning that if we get rid of the last static_key reference, some
objects will still have charges, but the code to properly uncharge them
won't be run.
This becomes a problem specially if it is ever enabled again, because now
new charges will be added to the staled charges making keeping it pretty
much impossible.
We just need to be careful with the static branch activation: since there
is no particular preferred order of their activation, we need to make sure
that we only start using it after all call sites are active. This is
achieved by having a per-memcg flag that is only updated after
static_key_slow_inc() returns. At this time, we are sure all sites are
active.
This is made per-memcg, not global, for a reason: it also has the effect
of making socket accounting more consistent. The first memcg to be
limited will trigger static_key() activation, therefore, accounting. But
all the others will then be accounted no matter what. After this patch,
only limited memcgs will have its sockets accounted.
[akpm@linux-foundation.org: move enum sock_flag_bits into sock.h,
document enum sock_flag_bits,
convert memcg_proto_active() and memcg_proto_activated() to test_bit(),
redo tcp_update_limit() comment to 80 cols]
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and
del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to
its target functions.
This cleanup eliminates a swathe of cruft in memcontrol.c, including
mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and
mem_cgroup_lru_move_lists() - which never actually touched the lists.
In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously
a side-effect of add, and mem_cgroup_update_lru_size() to maintain the
lru_size stats.
Whilst these are simplifications in their own right, the goal is to bring
the evaluation of lruvec next to the spin_locking of the lrus, in
preparation for a future patch.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Konstantin just introduced mem_cgroup_get_lruvec_size() and
get_lruvec_size(), I'm about to add mem_cgroup_update_lru_size(): but
we're dealing with the same thing, lru_size[lru]. We ought to agree on
the naming, and I do think lru_size is the more correct: so rename his
ones to get_lru_size().
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since we will succeed with the allocation no matter what, there isn't a
need to use __must_check with it. It can very well be optional.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ying Han <yinghan@google.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When killing a res_counter which is a child of other counter, we need to
do
res_counter_uncharge(child, xxx)
res_counter_charge(parent, xxx)
This is not atomic and wastes CPU. This patch adds
res_counter_uncharge_until(). This function's uncharge propagates to
ancestors until specified res_counter.
res_counter_uncharge_until(child, parent, xxx)
Now the operation is atomic and efficient.
Signed-off-by: Frederic Weisbecker <fweisbec@redhat.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Cc: Glauber Costa <glommer@parallels.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Switch mem_cgroup_inactive_anon_is_low() to lruvec pointers,
mem_cgroup_get_lruvec_size() is more effective than
mem_cgroup_zone_nr_lru_pages()
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If memory cgroup is enabled we always use lruvecs which are embedded into
struct mem_cgroup_per_zone, so we can reach lru_size counters via
container_of().
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is the first stage of struct mem_cgroup_zone removal. Further
patches replace struct mem_cgroup_zone with a pointer to struct lruvec.
If CONFIG_CGROUP_MEM_RES_CTLR=n lruvec_zone() is just container_of().
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch kills mem_cgroup_lru_del(), we can use
mem_cgroup_lru_del_list() instead. On 0-order isolation we already have
right lru list id.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After patch "mm: forbid lumpy-reclaim in shrink_active_list()" we can
completely remove anon/file and active/inactive lru type filters from
__isolate_lru_page(), because isolation for 0-order reclaim always
isolates pages from right lru list. And pages-isolation for lumpy
shrink_inactive_list() or memory-compaction anyway allowed to isolate
pages from all evictable lru lists.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
GCC sometimes ignores "inline" directives even for small and simple functions.
This supposed to be fixed in gcc 4.7, but it was released only yesterday.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With mem_cgroup_disabled() now explicit, it becomes clear that the
zone_reclaim_stat structure actually belongs in lruvec, per-zone when
memcg is disabled but per-memcg per-zone when it's enabled.
We can delete mem_cgroup_get_reclaim_stat(), and change
update_page_reclaim_stat() to update just the one set of stats, the one
which get_scan_count() will actually use.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch changes memcg's behavior at task_move().
At task_move(), the kernel scans a task's page table and move the changes
for mapped pages from source cgroup to target cgroup. There has been a
bug at handling shared anonymous pages for a long time.
Before patch:
- The spec says 'shared anonymous pages are not moved.'
- The implementation was 'shared anonymoys pages may be moved'.
If page_mapcount <=2, shared anonymous pages's charge were moved.
After patch:
- The spec says 'all anonymous pages are moved'.
- The implementation is 'all anonymous pages are moved'.
Considering usage of memcg, this will not affect user's experience.
'shared anonymous' pages only exists between a tree of processes which
don't do exec(). Moving one of process without exec() seems not sane.
For example, libcgroup will not be affected by this change. (Anyway, no
one noticed the implementation for a long time...)
Below is a discussion log:
- current spec/implementation are complex
- Now, shared file caches are moved
- It adds unclear check as page_mapcount(). To do correct check,
we should check swap users, etc.
- No one notice this implementation behavior. So, no one get benefit
from the design.
- In general, once task is moved to a cgroup for running, it will not
be moved....
- Finally, we have control knob as memory.move_charge_at_immigrate.
Here is a patch to allow moving shared pages, completely. This makes
memcg simpler and fix current broken code.
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Transparent huge pages can change page->flags (PG_compound_lock) without
taking Slab lock. Since THP can not break slab pages we can safely access
compound page without taking compound lock.
Specifically this patch fixes a race between compound_unlock() and slab
functions which perform page-flags updates. This can occur when
get_page()/put_page() is called on a page from slab.
[akpm@linux-foundation.org: tweak comment text, fix comment layout, fix label indenting]
Reported-by: Amey Bhide <abhide@nicira.com>
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When holding the mmap_sem for reading, pmd_offset_map_lock should only
run on a pmd_t that has been read atomically from the pmdp pointer,
otherwise we may read only half of it leading to this crash.
PID: 11679 TASK: f06e8000 CPU: 3 COMMAND: "do_race_2_panic"
#0 [f06a9dd8] crash_kexec at c049b5ec
#1 [f06a9e2c] oops_end at c083d1c2
#2 [f06a9e40] no_context at c0433ded
#3 [f06a9e64] bad_area_nosemaphore at c043401a
#4 [f06a9e6c] __do_page_fault at c0434493
#5 [f06a9eec] do_page_fault at c083eb45
#6 [f06a9f04] error_code (via page_fault) at c083c5d5
EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP:
00000000
DS: 007b ESI: 9e201000 ES: 007b EDI: 01fb4700 GS: 00e0
CS: 0060 EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246
#7 [f06a9f38] _spin_lock at c083bc14
#8 [f06a9f44] sys_mincore at c0507b7d
#9 [f06a9fb0] system_call at c083becd
start len
EAX: ffffffda EBX: 9e200000 ECX: 00001000 EDX: 6228537f
DS: 007b ESI: 00000000 ES: 007b EDI: 003d0f00
SS: 007b ESP: 62285354 EBP: 62285388 GS: 0033
CS: 0073 EIP: 00291416 ERR: 000000da EFLAGS: 00000286
This should be a longstanding bug affecting x86 32bit PAE without THP.
Only archs with 64bit large pmd_t and 32bit unsigned long should be
affected.
With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad()
would partly hide the bug when the pmd transition from none to stable,
by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is
enabled a new set of problem arises by the fact could then transition
freely in any of the none, pmd_trans_huge or pmd_trans_stable states.
So making the barrier in pmd_none_or_trans_huge_or_clear_bad()
unconditional isn't good idea and it would be a flakey solution.
This should be fully fixed by introducing a pmd_read_atomic that reads
the pmd in order with THP disabled, or by reading the pmd atomically
with cmpxchg8b with THP enabled.
Luckily this new race condition only triggers in the places that must
already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix
is localized there but this bug is not related to THP.
NOTE: this can trigger on x86 32bit systems with PAE enabled with more
than 4G of ram, otherwise the high part of the pmd will never risk to be
truncated because it would be zero at all times, in turn so hiding the
SMP race.
This bug was discovered and fully debugged by Ulrich, quote:
----
[..]
pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and
eax.
496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd)
497 {
498 /* depend on compiler for an atomic pmd read */
499 pmd_t pmdval = *pmd;
// edi = pmd pointer
0xc0507a74 <sys_mincore+548>: mov 0x8(%esp),%edi
...
// edx = PTE page table high address
0xc0507a84 <sys_mincore+564>: mov 0x4(%edi),%edx
...
// eax = PTE page table low address
0xc0507a8e <sys_mincore+574>: mov (%edi),%eax
[..]
Please note that the PMD is not read atomically. These are two "mov"
instructions where the high order bits of the PMD entry are fetched
first. Hence, the above machine code is prone to the following race.
- The PMD entry {high|low} is 0x0000000000000000.
The "mov" at 0xc0507a84 loads 0x00000000 into edx.
- A page fault (on another CPU) sneaks in between the two "mov"
instructions and instantiates the PMD.
- The PMD entry {high|low} is now 0x00000003fda38067.
The "mov" at 0xc0507a8e loads 0xfda38067 into eax.
----
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Petr Matousek <pmatouse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The oom_score_adj scale ranges from -1000 to 1000 and represents the
proportion of memory available to the process at allocation time. This
means an oom_score_adj value of 300, for example, will bias a process as
though it was using an extra 30.0% of available memory and a value of
-350 will discount 35.0% of available memory from its usage.
The oom killer badness heuristic also uses this scale to report the oom
score for each eligible process in determining the "best" process to
kill. Thus, it can only differentiate each process's memory usage by
0.1% of system RAM.
On large systems, this can end up being a large amount of memory: 256MB
on 256GB systems, for example.
This can be fixed by having the badness heuristic to use the actual
memory usage in scoring threads and then normalizing it to the
oom_score_adj scale for userspace. This results in better comparison
between eligible threads for kill and no change from the userspace
perspective.
Suggested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: Dave Jones <davej@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove vmtruncate_range(), and remove the truncate_range method from
struct inode_operations: only tmpfs ever supported it, and tmpfs has now
converted over to using the fallocate method of file_operations.
Update Documentation accordingly, adding (setlease and) fallocate lines.
And while we're in mm.h, remove duplicate declarations of shmem_lock() and
shmem_file_setup(): everyone is now using the ones in shmem_fs.h.
Based-on-patch-by: Cong Wang <amwang@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Cong Wang <amwang@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The GMA500 GPU driver uses GEM shmem objects, but with a new twist: the
backing RAM has to be below 4GB. Not a problem while the boards
supported only 4GB: but now Intel's D2700MUD boards support 8GB, and
their GMA3600 is managed by the GMA500 driver.
shmem/tmpfs has never pretended to support hardware restrictions on the
backing memory, but it might have appeared to do so before v3.1, and
even now it works fine until a page is swapped out then back in. When
read_cache_page_gfp() supplied a freshly allocated page for copy, that
compensated for whatever choice might have been made by earlier swapin
readahead; but swapoff was likely to destroy the illusion.
We'd like to continue to support GMA500, so now add a new
shmem_should_replace_page() check on the zone when about to move a page
from swapcache to filecache (in swapin and swapoff cases), with
shmem_replace_page() to allocate and substitute a suitable page (given
gma500/gem.c's mapping_set_gfp_mask GFP_KERNEL | __GFP_DMA32).
This does involve a minor extension to mem_cgroup_replace_page_cache()
(the page may or may not have already been charged); and I've removed a
comment and call to mem_cgroup_uncharge_cache_page(), which in fact is
always a no-op while PageSwapCache.
Also removed optimization of an unlikely path in shmem_getpage_gfp(),
now that we need to check PageSwapCache more carefully (a racing caller
might already have made the copy). And at one point shmem_unuse_inode()
needs to use the hitherto private page_swapcount(), to guard against
racing with inode eviction.
It would make sense to extend shmem_should_replace_page(), to cover
cpuset and NUMA mempolicy restrictions too, but set that aside for now:
needs a cleanup of shmem mempolicy handling, and more testing, and ought
to handle swap faults in do_swap_page() as well as shmem.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Stephane Marchesin <marcheu@chromium.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Rob Clark <rob.clark@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type
pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an
allocation takes ownership of the block may take too long. The type of
the pageblock remains unchanged so the pageblock cannot be used as a
migration target during compaction.
Fix it by:
* Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and
COMPACT_SYNC) and then converting sync field in struct compact_control
to use it.
* Adding nr_pageblocks_skipped field to struct compact_control and
tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type.
If COMPACT_ASYNC_MOVABLE mode compaction ran fully in
try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a
suitable page for allocation. In this case then check how if there were
enough MIGRATE_UNMOVABLE pageblocks to try a second pass in
COMPACT_ASYNC_UNMOVABLE mode.
* Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and
COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on
finding PageBuddy pages, page_count(page) == 0 or PageLRU pages. If all
pages within the MIGRATE_UNMOVABLE pageblock are in one of those three
sets change the whole pageblock type to MIGRATE_MOVABLE.
My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means
131072 standard 4KiB pages in 'Normal' zone) is to:
- allocate 120000 pages for kernel's usage
- free every second page (60000 pages) of memory just allocated
- allocate and use 60000 pages from user space
- free remaining 60000 pages of kernel memory
(now we have fragmented memory occupied mostly by user space pages)
- try to allocate 100 order-9 (2048 KiB) pages for kernel's usage
The results:
- with compaction disabled I get 11 successful allocations
- with compaction enabled - 14 successful allocations
- with this patch I'm able to get all 100 successful allocations
NOTE: If we can make kswapd aware of order-0 request during compaction, we
can enhance kswapd with changing mode to COMPACT_ASYNC_FULL
(COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE). Please see the
following thread:
http://marc.info/?l=linux-mm&m=133552069417068&w=2
[minchan@kernel.org: minor cleanups]
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
alloc_bootmem_section() derives allocation area constraints from the
specified sparsemem section. This is a bit specific for a generic memory
allocator like bootmem, though, so move it over to sparsemem.
As __alloc_bootmem_node_nopanic() already retries failed allocations with
relaxed area constraints, the fallback code in sparsemem.c can be removed
and the code becomes a bit more compact overall.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When transparent_hugepage_enabled() is used outside mm/, such as in
arch/x86/xx/tlb.c:
+ if (!cpu_has_invlpg || vma->vm_flags & VM_HUGETLB
+ || transparent_hugepage_enabled(vma)) {
+ flush_tlb_mm(vma->vm_mm);
is_vma_temporary_stack() isn't referenced in huge_mm.h, so it has compile
errors:
arch/x86/mm/tlb.c: In function `flush_tlb_range':
arch/x86/mm/tlb.c:324:4: error: implicit declaration of function `is_vma_temporary_stack' [-Werror=implicit-function-declaration]
Since is_vma_temporay_stack() is just used in rmap.c and huge_memory.c, it
is better to move it to huge_mm.h from rmap.h to avoid such errors.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Programs using /proc/kpageflags need to know about the various flags. The
<linux/kernel-page-flags.h> provides them and the comments in the file
indicate that it is supposed to be used by user-level code. But the file
is not installed.
Install the headers and mark the unstable flags as out-of-bounds. The
page-type tool is also adjusted to not duplicate the definitions
Signed-off-by: Ulrich Drepper <drepper@gmail.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Even if CONFIG_DEBUG_VM=n gcc genereates code for some VM_BUG_ON()
for example VM_BUG_ON(!PageCompound(page) || !PageHead(page)); in
do_huge_pmd_wp_page() generates 114 bytes of code.
But they mostly disappears when I split this VM_BUG_ON into two:
-VM_BUG_ON(!PageCompound(page) || !PageHead(page));
+VM_BUG_ON(!PageCompound(page));
+VM_BUG_ON(!PageHead(page));
weird... but anyway after this patch code disappears completely.
add/remove: 0/0 grow/shrink: 7/97 up/down: 135/-1784 (-1649)
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Sometimes we want to check some expressions correctness at compile time.
"(void)(e);" or "if (e);" can be dangerous if the expression has
side-effects, and gcc sometimes generates a lot of code, even if the
expression has no effect.
This patch introduces macro BUILD_BUG_ON_INVALID() for such checks, it
forces a compilation error if expression is invalid without any extra
code.
[Cast to "long" required because sizeof does not work for bit-fields.]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The rmap walker checking page table references has historically ignored
references from VMAs that were not part of the memcg that was being
reclaimed during memcg hard limit reclaim.
When transitioning global reclaim to memcg hierarchy reclaim, I missed
that bit and now references from outside a memcg are ignored even during
global reclaim.
Reverting back to traditional behaviour - count all references during
global reclaim and only mind references of the memcg being reclaimed
during limit reclaim would be one option.
However, the more generic idea is to ignore references exactly then when
they are outside the hierarchy that is currently under reclaim; because
only then will their reclamation be of any use to help the pressure
situation. It makes no sense to ignore references from a sibling memcg
and then evict a page that will be immediately refaulted by that sibling
which contributes to the same usage of the common ancestor under
reclaim.
The solution: make the rmap walker ignore references from VMAs that are
not part of the hierarchy that is being reclaimed.
Flat limit reclaim will stay the same, hierarchical limit reclaim will
mind the references only to pages that the hierarchy owns. Global
reclaim, since it reclaims from all memcgs, will be fixed to regard all
references.
[akpm@linux-foundation.org: name the args in the declaration]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Konstantin Khlebnikov<khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
s/from_nodes/from and s/to_nodes/to/. The "_nodes" is redundant - it
duplicates the argument's type.
Done in a fit of irritation over 80-col issues :(
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <mkosaki@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is little motiviation for reclaim_mode_t once RECLAIM_MODE_[A]SYNC
and lumpy reclaim have been removed. This patch gets rid of
reclaim_mode_t as well and improves the documentation about what
reclaim/compaction is and when it is triggered.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch stops reclaim/compaction entering sync reclaim as this was
only intended for lumpy reclaim and an oversight. Page migration has
its own logic for stalling on writeback pages if necessary and memory
compaction is already using it.
Waiting on page writeback is bad for a number of reasons but the primary
one is that waiting on writeback to a slow device like USB can take a
considerable length of time. Page reclaim instead uses
wait_iff_congested() to throttle if too many dirty pages are being
scanned.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This series removes lumpy reclaim and some stalling logic that was
unintentionally being used by memory compaction. The end result is that
stalling on dirty pages during page reclaim now depends on
wait_iff_congested().
Four kernels were compared
3.3.0 vanilla
3.4.0-rc2 vanilla
3.4.0-rc2 lumpyremove-v2 is patch one from this series
3.4.0-rc2 nosync-v2r3 is the full series
Removing lumpy reclaim saves almost 900 bytes of text whereas the full
series removes 1200 bytes.
text data bss dec hex filename
6740375 1927944 2260992 10929311 a6c49f vmlinux-3.4.0-rc2-vanilla
6739479 1927944 2260992 10928415 a6c11f vmlinux-3.4.0-rc2-lumpyremove-v2
6739159 1927944 2260992 10928095 a6bfdf vmlinux-3.4.0-rc2-nosync-v2
There are behaviour changes in the series and so tests were run with
monitoring of ftrace events. This disrupts results so the performance
results are distorted but the new behaviour should be clearer.
fs-mark running in a threaded configuration showed little of interest as
it did not push reclaim aggressively
FS-Mark Multi Threaded
3.3.0-vanilla rc2-vanilla lumpyremove-v2r3 nosync-v2r3
Files/s min 3.20 ( 0.00%) 3.20 ( 0.00%) 3.20 ( 0.00%) 3.20 ( 0.00%)
Files/s mean 3.20 ( 0.00%) 3.20 ( 0.00%) 3.20 ( 0.00%) 3.20 ( 0.00%)
Files/s stddev 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%)
Files/s max 3.20 ( 0.00%) 3.20 ( 0.00%) 3.20 ( 0.00%) 3.20 ( 0.00%)
Overhead min 508667.00 ( 0.00%) 521350.00 (-2.49%) 544292.00 (-7.00%) 547168.00 (-7.57%)
Overhead mean 551185.00 ( 0.00%) 652690.73 (-18.42%) 991208.40 (-79.83%) 570130.53 (-3.44%)
Overhead stddev 18200.69 ( 0.00%) 331958.29 (-1723.88%) 1579579.43 (-8578.68%) 9576.81 (47.38%)
Overhead max 576775.00 ( 0.00%) 1846634.00 (-220.17%) 6901055.00 (-1096.49%) 585675.00 (-1.54%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 309.90 300.95 307.33 298.95
User+Sys Time Running Test (seconds) 319.32 309.67 315.69 307.51
Total Elapsed Time (seconds) 1187.85 1193.09 1191.98 1193.73
MMTests Statistics: vmstat
Page Ins 80532 82212 81420 79480
Page Outs 111434984 111456240 111437376 111582628
Swap Ins 0 0 0 0
Swap Outs 0 0 0 0
Direct pages scanned 44881 27889 27453 34843
Kswapd pages scanned 25841428 25860774 25861233 25843212
Kswapd pages reclaimed 25841393 25860741 25861199 25843179
Direct pages reclaimed 44881 27889 27453 34843
Kswapd efficiency 99% 99% 99% 99%
Kswapd velocity 21754.791 21675.460 21696.029 21649.127
Direct efficiency 100% 100% 100% 100%
Direct velocity 37.783 23.375 23.031 29.188
Percentage direct scans 0% 0% 0% 0%
ftrace showed that there was no stalling on writeback or pages submitted
for IO from reclaim context.
postmark was similar and while it was more interesting, it also did not
push reclaim heavily.
POSTMARK
3.3.0-vanilla rc2-vanilla lumpyremove-v2r3 nosync-v2r3
Transactions per second: 16.00 ( 0.00%) 20.00 (25.00%) 18.00 (12.50%) 17.00 ( 6.25%)
Data megabytes read per second: 18.80 ( 0.00%) 24.27 (29.10%) 22.26 (18.40%) 20.54 ( 9.26%)
Data megabytes written per second: 35.83 ( 0.00%) 46.25 (29.08%) 42.42 (18.39%) 39.14 ( 9.24%)
Files created alone per second: 28.00 ( 0.00%) 38.00 (35.71%) 34.00 (21.43%) 30.00 ( 7.14%)
Files create/transact per second: 8.00 ( 0.00%) 10.00 (25.00%) 9.00 (12.50%) 8.00 ( 0.00%)
Files deleted alone per second: 556.00 ( 0.00%) 1224.00 (120.14%) 3062.00 (450.72%) 6124.00 (1001.44%)
Files delete/transact per second: 8.00 ( 0.00%) 10.00 (25.00%) 9.00 (12.50%) 8.00 ( 0.00%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 113.34 107.99 109.73 108.72
User+Sys Time Running Test (seconds) 145.51 139.81 143.32 143.55
Total Elapsed Time (seconds) 1159.16 899.23 980.17 1062.27
MMTests Statistics: vmstat
Page Ins 13710192 13729032 13727944 13760136
Page Outs 43071140 42987228 42733684 42931624
Swap Ins 0 0 0 0
Swap Outs 0 0 0 0
Direct pages scanned 0 0 0 0
Kswapd pages scanned 9941613 9937443 9939085 9929154
Kswapd pages reclaimed 9940926 9936751 9938397 9928465
Direct pages reclaimed 0 0 0 0
Kswapd efficiency 99% 99% 99% 99%
Kswapd velocity 8576.567 11051.058 10140.164 9347.109
Direct efficiency 100% 100% 100% 100%
Direct velocity 0.000 0.000 0.000 0.000
It looks like here that the full series regresses performance but as
ftrace showed no usage of wait_iff_congested() or sync reclaim I am
assuming it's a disruption due to monitoring. Other data such as memory
usage, page IO, swap IO all looked similar.
Running a benchmark with a plain DD showed nothing very interesting.
The full series stalled in wait_iff_congested() slightly less but stall
times on vanilla kernels were marginal.
Running a benchmark that hammered on file-backed mappings showed stalls
due to congestion but not in sync writebacks
MICRO
3.3.0-vanilla rc2-vanilla lumpyremove-v2r3 nosync-v2r3
MMTests Statistics: duration
Sys Time Running Test (seconds) 308.13 294.50 298.75 299.53
User+Sys Time Running Test (seconds) 330.45 316.28 318.93 320.79
Total Elapsed Time (seconds) 1814.90 1833.88 1821.14 1832.91
MMTests Statistics: vmstat
Page Ins 108712 120708 97224 110344
Page Outs 155514576 156017404 155813676 156193256
Swap Ins 0 0 0 0
Swap Outs 0 0 0 0
Direct pages scanned 2599253 1550480 2512822 2414760
Kswapd pages scanned 69742364 71150694 68839041 69692533
Kswapd pages reclaimed 34824488 34773341 34796602 34799396
Direct pages reclaimed 53693 94750 61792 75205
Kswapd efficiency 49% 48% 50% 49%
Kswapd velocity 38427.662 38797.901 37799.972 38022.889
Direct efficiency 2% 6% 2% 3%
Direct velocity 1432.174 845.464 1379.807 1317.446
Percentage direct scans 3% 2% 3% 3%
Page writes by reclaim 0 0 0 0
Page writes file 0 0 0 0
Page writes anon 0 0 0 0
Page reclaim immediate 0 0 0 1218
Page rescued immediate 0 0 0 0
Slabs scanned 15360 16384 13312 16384
Direct inode steals 0 0 0 0
Kswapd inode steals 4340 4327 1630 4323
FTrace Reclaim Statistics: congestion_wait
Direct number congest waited 0 0 0 0
Direct time congest waited 0ms 0ms 0ms 0ms
Direct full congest waited 0 0 0 0
Direct number conditional waited 900 870 754 789
Direct time conditional waited 0ms 0ms 0ms 20ms
Direct full conditional waited 0 0 0 0
KSwapd number congest waited 2106 2308 2116 1915
KSwapd time congest waited 139924ms 157832ms 125652ms 132516ms
KSwapd full congest waited 1346 1530 1202 1278
KSwapd number conditional waited 12922 16320 10943 14670
KSwapd time conditional waited 0ms 0ms 0ms 0ms
KSwapd full conditional waited 0 0 0 0
Reclaim statistics are not radically changed. The stall times in kswapd
are massive but it is clear that it is due to calls to congestion_wait()
and that is almost certainly the call in balance_pgdat(). Otherwise
stalls due to dirty pages are non-existant.
I ran a benchmark that stressed high-order allocation. This is very
artifical load but was used in the past to evaluate lumpy reclaim and
compaction. Generally I look at allocation success rates and latency
figures.
STRESS-HIGHALLOC
3.3.0-vanilla rc2-vanilla lumpyremove-v2r3 nosync-v2r3
Pass 1 81.00 ( 0.00%) 28.00 (-53.00%) 24.00 (-57.00%) 28.00 (-53.00%)
Pass 2 82.00 ( 0.00%) 39.00 (-43.00%) 38.00 (-44.00%) 43.00 (-39.00%)
while Rested 88.00 ( 0.00%) 87.00 (-1.00%) 88.00 ( 0.00%) 88.00 ( 0.00%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 740.93 681.42 685.14 684.87
User+Sys Time Running Test (seconds) 2922.65 3269.52 3281.35 3279.44
Total Elapsed Time (seconds) 1161.73 1152.49 1159.55 1161.44
MMTests Statistics: vmstat
Page Ins 4486020 2807256 2855944 2876244
Page Outs 7261600 7973688 7975320 7986120
Swap Ins 31694 0 0 0
Swap Outs 98179 0 0 0
Direct pages scanned 53494 57731 34406 113015
Kswapd pages scanned 6271173 1287481 1278174 1219095
Kswapd pages reclaimed 2029240 1281025 1260708 1201583
Direct pages reclaimed 1468 14564 16649 92456
Kswapd efficiency 32% 99% 98% 98%
Kswapd velocity 5398.133 1117.130 1102.302 1049.641
Direct efficiency 2% 25% 48% 81%
Direct velocity 46.047 50.092 29.672 97.306
Percentage direct scans 0% 4% 2% 8%
Page writes by reclaim 1616049 0 0 0
Page writes file 1517870 0 0 0
Page writes anon 98179 0 0 0
Page reclaim immediate 103778 27339 9796 17831
Page rescued immediate 0 0 0 0
Slabs scanned 1096704 986112 980992 998400
Direct inode steals 223 215040 216736 247881
Kswapd inode steals 175331 61548 68444 63066
Kswapd skipped wait 21991 0 1 0
THP fault alloc 1 135 125 134
THP collapse alloc 393 311 228 236
THP splits 25 13 7 8
THP fault fallback 0 0 0 0
THP collapse fail 3 5 7 7
Compaction stalls 865 1270 1422 1518
Compaction success 370 401 353 383
Compaction failures 495 869 1069 1135
Compaction pages moved 870155 3828868 4036106 4423626
Compaction move failure 26429 23865 29742 27514
Success rates are completely hosed for 3.4-rc2 which is almost certainly
due to commit fe2c2a106663 ("vmscan: reclaim at order 0 when compaction
is enabled"). I expected this would happen for kswapd and impair
allocation success rates (https://lkml.org/lkml/2012/1/25/166) but I did
not anticipate this much a difference: 80% less scanning, 37% less
reclaim by kswapd
In comparison, reclaim/compaction is not aggressive and gives up easily
which is the intended behaviour. hugetlbfs uses __GFP_REPEAT and would
be much more aggressive about reclaim/compaction than THP allocations
are. The stress test above is allocating like neither THP or hugetlbfs
but is much closer to THP.
Mainline is now impaired in terms of high order allocation under heavy
load although I do not know to what degree as I did not test with
__GFP_REPEAT. Keep this in mind for bugs related to hugepage pool
resizing, THP allocation and high order atomic allocation failures from
network devices.
In terms of congestion throttling, I see the following for this test
FTrace Reclaim Statistics: congestion_wait
Direct number congest waited 3 0 0 0
Direct time congest waited 0ms 0ms 0ms 0ms
Direct full congest waited 0 0 0 0
Direct number conditional waited 957 512 1081 1075
Direct time conditional waited 0ms 0ms 0ms 0ms
Direct full conditional waited 0 0 0 0
KSwapd number congest waited 36 4 3 5
KSwapd time congest waited 3148ms 400ms 300ms 500ms
KSwapd full congest waited 30 4 3 5
KSwapd number conditional waited 88514 197 332 542
KSwapd time conditional waited 4980ms 0ms 0ms 0ms
KSwapd full conditional waited 49 0 0 0
The "conditional waited" times are the most interesting as this is
directly impacted by the number of dirty pages encountered during scan.
As lumpy reclaim is no longer scanning contiguous ranges, it is finding
fewer dirty pages. This brings wait times from about 5 seconds to 0.
kswapd itself is still calling congestion_wait() so it'll still stall but
it's a lot less.
In terms of the type of IO we were doing, I see this
FTrace Reclaim Statistics: mm_vmscan_writepage
Direct writes anon sync 0 0 0 0
Direct writes anon async 0 0 0 0
Direct writes file sync 0 0 0 0
Direct writes file async 0 0 0 0
Direct writes mixed sync 0 0 0 0
Direct writes mixed async 0 0 0 0
KSwapd writes anon sync 0 0 0 0
KSwapd writes anon async 91682 0 0 0
KSwapd writes file sync 0 0 0 0
KSwapd writes file async 822629 0 0 0
KSwapd writes mixed sync 0 0 0 0
KSwapd writes mixed async 0 0 0 0
In 3.2, kswapd was doing a bunch of async writes of pages but
reclaim/compaction was never reaching a point where it was doing sync
IO. This does not guarantee that reclaim/compaction was not calling
wait_on_page_writeback() but I would consider it unlikely. It indicates
that merging patches 2 and 3 to stop reclaim/compaction calling
wait_on_page_writeback() should be safe.
This patch:
Lumpy reclaim had a purpose but in the mind of some, it was to kick the
system so hard it trashed. For others the purpose was to complicate
vmscan.c. Over time it was giving softer shoes and a nicer attitude but
memory compaction needs to step up and replace it so this patch sends
lumpy reclaim to the farm.
The tracepoint format changes for isolating LRU pages with this patch
applied. Furthermore reclaim/compaction can no longer queue dirty pages
in pageout() if the underlying BDI is congested. Lumpy reclaim used
this logic and reclaim/compaction was using it in error.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The swap token code no longer fits in with the current VM model. It
does not play well with cgroups or the better NUMA placement code in
development, since we have only one swap token globally.
It also has the potential to mess with scalability of the system, by
increasing the number of non-reclaimable pages on the active and
inactive anon LRU lists.
Last but not least, the swap token code has been broken for a year
without complaints, as reported by Konstantin Khlebnikov. This suggests
we no longer have much use for it.
The days of sub-1G memory systems with heavy use of swap are over. If
we ever need thrashing reducing code in the future, we will have to
implement something that does scale.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Bob Picco <bpicco@meloft.net>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit f56f821feb7b ("mm: extend prefault helpers to fault in more than
PAGE_SIZE") added in the new functions: fault_in_multipages_writeable()
and fault_in_multipages_readable().
However, we currently see:
include/linux/pagemap.h:492: warning: 'ret' may be used uninitialized in this function
include/linux/pagemap.h:492: note: 'ret' was declared here
Unlike a lot of gcc nags, this one appears somewhat legit. i.e. passing
in an invalid negative value of "size" does make it look like all the
conditionals in there would be bypassed and the uninitialized value would
be returned.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6
Pull MFD changes from Samuel Ortiz:
"Besides the usual cleanups, this one brings:
* Support for 5 new chipsets: Intel's ICH LPC and SCH Centerton,
ST-E's STAX211, Samsung's MAX77693 and TI's LM3533.
* Device tree support for the twl6040, tps65910, da9502 and ab8500
drivers.
* Fairly big tps56910, ab8500 and db8500 updates.
* i2c support for mc13xxx.
* Our regular update for the wm8xxx driver from Mark."
Fix up various conflicts with other trees, largely due to ab5500 removal
etc.
* tag 'mfd-3.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6: (106 commits)
mfd: Fix build break of max77693 by adding REGMAP_I2C option
mfd: Fix twl6040 build failure
mfd: Fix max77693 build failure
mfd: ab8500-core should depend on MFD_DB8500_PRCMU
gpio: tps65910: dt: process gpio specific device node info
mfd: Remove the parsing of dt info for tps65910 gpio
mfd: Save device node parsed platform data for tps65910 sub devices
mfd: Add r_select to lm3533 platform data
gpio: Add Intel Centerton support to gpio-sch
mfd: Emulate active low IRQs as well as active high IRQs for wm831x
mfd: Mark two lm3533 zone registers as volatile
mfd: Fix return type of lm533 attribute is_visible
mfd: Enable Device Tree support in the ab8500-pwm driver
mfd: Enable Device Tree support in the ab8500-sysctrl driver
mfd: Add support for Device Tree to twl6040
mfd: Register the twl6040 child for the ASoC codec unconditionally
mfd: Allocate twl6040 IRQ numbers dynamically
mfd: twl6040 code cleanup in interrupt initialization part
mfd: Enable ab8500-gpadc driver for Device Tree
mfd: Prevent unassigned pointer from being used in ab8500-gpadc driver
...
|
|
Pull NFS client updates from Trond Myklebust:
"New features include:
- Rewrite the O_DIRECT code so that it can share the same coalescing
and pNFS functionality as the page cache code.
- Allow the server to provide hints as to when we should use pNFS,
and when it is more efficient to read and write through the
metadata server.
- NFS cache consistency updates:
* Use the ctime to emulate a change attribute for NFSv2/v3 so that
all NFS versions can share the same cache management code.
* New cache management code will only look at the change attribute
and size attribute when deciding whether or not our cached data
is still valid or not.
* Don't request NFSv4 post-op attributes on writes in cases such as
O_DIRECT, where we don't care about data cache consistency, or
when we have a write delegation, and know that our cache is still
consistent.
* Don't request NFSv4 post-op attributes on operations such as
COMMIT, where there are no expected metadata updates.
* Don't request NFSv4 directory post-op attributes in cases where
the operations themselves already return change attribute
updates: i.e. operations such as OPEN, CREATE, REMOVE, LINK and
RENAME.
- Speed up 'ls' and friends by using READDIR rather than READDIRPLUS
if we detect no attempts to lookup filenames.
- Improve the code sharing between NFSv2/v3 and v4 mounts
- NFSv4.1 state management efficiency improvements
- More patches in preparation for NFSv4/v4.1 migration functionality."
Fix trivial conflict in fs/nfs/nfs4proc.c that was due to the dcache
qstr name initialization changes (that made the length/hash a 64-bit
union)
* tag 'nfs-for-3.5-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (146 commits)
NFSv4: Add debugging printks to state manager
NFSv4: Map NFS4ERR_SHARE_DENIED into an EACCES error instead of EIO
NFSv4: update_changeattr does not need to set NFS_INO_REVAL_PAGECACHE
NFSv4.1: nfs4_reset_session should use nfs4_handle_reclaim_lease_error
NFSv4.1: Handle other occurrences of NFS4ERR_CONN_NOT_BOUND_TO_SESSION
NFSv4.1: Handle NFS4ERR_CONN_NOT_BOUND_TO_SESSION in the state manager
NFSv4.1: Handle errors in nfs4_bind_conn_to_session
NFSv4.1: nfs4_bind_conn_to_session should drain the session
NFSv4.1: Don't clobber the seqid if exchange_id returns a confirmed clientid
NFSv4.1: Add DESTROY_CLIENTID
NFSv4.1: Ensure we use the correct credentials for bind_conn_to_session
NFSv4.1: Ensure we use the correct credentials for session create/destroy
NFSv4.1: Move NFSPROC4_CLNT_BIND_CONN_TO_SESSION to the end of the operations
NFSv4.1: Handle NFS4ERR_SEQ_MISORDERED when confirming the lease
NFSv4: When purging the lease, we must clear NFS4CLNT_LEASE_CONFIRM
NFSv4: Clean up the error handling for nfs4_reclaim_lease
NFSv4.1: Exchange ID must use GFP_NOFS allocation mode
nfs41: Use BIND_CONN_TO_SESSION for CB_PATH_DOWN*
nfs4.1: add BIND_CONN_TO_SESSION operation
NFSv4.1 test the mdsthreshold hint parameters
...
|
|
Pull writeback tree from Wu Fengguang:
"Mainly from Jan Kara to avoid iput() in the flusher threads."
* tag 'writeback' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux:
writeback: Avoid iput() from flusher thread
vfs: Rename end_writeback() to clear_inode()
vfs: Move waiting for inode writeback from end_writeback() to evict_inode()
writeback: Refactor writeback_single_inode()
writeback: Remove wb->list_lock from writeback_single_inode()
writeback: Separate inode requeueing after writeback
writeback: Move I_DIRTY_PAGES handling
writeback: Move requeueing when I_SYNC set to writeback_sb_inodes()
writeback: Move clearing of I_SYNC into inode_sync_complete()
writeback: initialize global_dirty_limit
fs: remove 8 bytes of padding from struct writeback_control on 64 bit builds
mm: page-writeback.c: local functions should not be exposed globally
|
|
This makes <asm/word-at-a-time.h> actually live up to its promise of
allowing architectures to help tune the string functions that do their
work a word at a time.
David had already taken the x86 strncpy_from_user() function, modified
it to work on sparc, and then done the extra work to make it generically
useful. This then expands on that work by making x86 use that generic
version, completing the circle.
But more importantly, it fixes up the word-at-a-time interfaces so that
it's now easy to also support things like strnlen_user(), and pretty
much most random string functions.
David reports that it all works fine on sparc, and Jonas Bonn reported
that an earlier version of this worked on OpenRISC too. It's pretty
easy for architectures to add support for this and just replace their
private versions with the generic code.
* generic-string-functions:
sparc: use the new generic strnlen_user() function
x86: use the new generic strnlen_user() function
lib: add generic strnlen_user() function
word-at-a-time: make the interfaces truly generic
x86: use generic strncpy_from_user routine
|
|
Pull i2c-embedded changes from Wolfram Sang:
"Major changes:
- lots of devicetree additions for existing drivers. I tried hard to
make sure the bindings are proper. In more complicated cases, I
requested acks from people having more experience with them than
me. That took a bit of extra time and also some time went into
discussions with developers about what bindings are and what not.
I have the feeling that the workflow with bindings should be
improved to scale better. I will spend some more thought on
this...
- i2c-muxes are succesfully used meanwhile, so we dropped
EXPERIMENTAL for them and renamed the drivers to a standard pattern
to match the rest of the subsystem. They can also be used with
devicetree now.
- ixp2000 was removed since the whole platform goes away.
- cleanups (strlcpy instead of strcpy, NULL instead of 0)
- The rest is typical driver fixes I assume.
All patches have been in linux-next at least since v3.4-rc6."
Fixed up trivial conflict in arch/arm/mach-lpc32xx/common.c due to the
same patch already having come in through the arm/soc trees, with
additional patches on top of it.
* 'i2c-embedded/for-next' of git://git.pengutronix.de/git/wsa/linux: (35 commits)
i2c: davinci: Free requested IRQ in remove
i2c: ocores: register OF i2c devices
i2c: tegra: notify transfer-complete after clearing status.
I2C: xiic: Add OF binding support
i2c: Rename last mux driver to standard pattern
i2c: tegra: fix 10bit address configuration
i2c: muxes: rename first set of drivers to a standard pattern
of/i2c: implement of_find_i2c_adapter_by_node
i2c: implement i2c_verify_adapter
i2c-s3c2410: Add HDMIPHY quirk for S3C2440
i2c-s3c2410: Rework device type handling
i2c: muxes are not EXPERIMENTAL anymore
i2c/of: Automatically populate i2c mux busses from device tree data.
i2c: Add a struct device * parameter to i2c_add_mux_adapter()
of/i2c: call i2c_verify_client from of_find_i2c_device_by_node
i2c: designware: Add clk_{un}prepare() support
i2c: designware: add PM support
i2c: ixp2000: remove driver
i2c: pnx: add device tree support
i2c: imx: don't use strcpy but strlcpy
...
|
|
Pull arm-soc device tree conversions (part 2) from Olof Johansson:
"These continue the device tree work from part 1, this set is for the
tegra, mxs and imx platforms, all of which have dependencies on clock
or pinctrl changes submitted earlier."
Fix up trivial conflicts due to nearby changes in
drivers/{gpio/gpio,i2c/busses/i2c}-mxs.c
* tag 'dt2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (73 commits)
ARM: dt: tegra: invert status=disable vs status=okay
ARM: dt: tegra: consistent basic property ordering
ARM: dt: tegra: sort nodes based on bus order
ARM: dt: tegra: remove duplicate device_type property
ARM: dt: tegra: consistenly use lower-case for hex constants
ARM: dt: tegra: format regs properties consistently
ARM: dt: tegra: gpio comment cleanup
ARM: dt: tegra: remove unnecessary unit addresses
ARM: dt: tegra: whitespace cleanup
ARM: dt: tegra cardhu: fix typo in SDHCI node name
ARM: dt: tegra: cardhu: register core regulator tps62361
ARM: dt: tegra30.dtsi: Add SMMU node
ARM: dt: tegra20.dtsi: Add GART node
ARM: dt: tegra30.dtsi: Add Memory Controller(MC) nodes
ARM: dt: tegra20.dtsi: Add Memory Controller(MC) nodes
ARM: dt: tegra: Add device tree support for AHB
ARM: dts: enable audio support for imx28-evk
ARM: dts: enable i2c device for imx28-evk
i2c: mxs: add device tree probe support
ARM: dts: enable mmc for imx28-evk
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull arm-soc stmp-dev library code from Olof Johansson:
"A number of devices are using a common register layout, this adds
support code for it in lib/stmp_device.c so we do not need to
duplicate it in each driver."
Fix up trivial conflicts in drivers/i2c/busses/i2c-mxs.c and
lib/Makefile
* tag 'stmp-dev' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
i2c: mxs: use global reset function
lib: add support for stmp-style devices
|
|
Pull arm-soc clock driver changes from Olof Johansson:
"The new clock subsystem was merged in linux-3.4 without any users,
this now moves the first three platforms over to it: imx, mxs and
spear.
The series also contains the changes for the clock subsystem itself,
since Mike preferred to have it together with the platforms that
require these changes, in order to avoid interdependencies and
conflicts."
Fix up trivial conflicts in arch/arm/mach-kirkwood/common.c (code
removed in one branch, added OF support in another) and
drivers/dma/imx-sdma.c (independent changes next to each other).
* tag 'clock' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (97 commits)
clk: Fix CLK_SET_RATE_GATE flag validation in clk_set_rate().
clk: Provide dummy clk_unregister()
SPEAr: Update defconfigs
SPEAr: Add SMI NOR partition info in dts files
SPEAr: Switch to common clock framework
SPEAr: Call clk_prepare() before calling clk_enable
SPEAr: clk: Add General Purpose Timer Synthesizer clock
SPEAr: clk: Add Fractional Synthesizer clock
SPEAr: clk: Add Auxiliary Synthesizer clock
SPEAr: clk: Add VCO-PLL Synthesizer clock
SPEAr: Add DT bindings for SPEAr's timer
ARM i.MX: remove now unused clock files
ARM: i.MX6: implement clocks using common clock framework
ARM i.MX35: implement clocks using common clock framework
ARM i.MX5: implement clocks using common clock framework
ARM: Kirkwood: Replace clock gating
ARM: Orion: Audio: Add clk/clkdev support
ARM: Orion: PCIE: Add support for clk
ARM: Orion: XOR: Add support for clk
ARM: Orion: CESA: Add support for clk
...
|
|
This changes the interfaces in <asm/word-at-a-time.h> to be a bit more
complicated, but a lot more generic.
In particular, it allows us to really do the operations efficiently on
both little-endian and big-endian machines, pretty much regardless of
machine details. For example, if you can rely on a fast population
count instruction on your architecture, this will allow you to make your
optimized <asm/word-at-a-time.h> file with that.
NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is
not truly generic, it actually only works on big-endian. Why? Because
on little-endian the generic algorithms are wasteful, since you can
inevitably do better. The x86 implementation is an example of that.
(The only truly non-generic part of the asm-generic implementation is
the "find_zero()" function, and you could make a little-endian version
of it. And if the Kbuild infrastructure allowed us to pick a particular
header file, that would be lovely)
The <asm/word-at-a-time.h> functions are as follows:
- WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm
uses.
- has_zero(): take a word, and determine if it has a zero byte in it.
It gets the word, the pointer to the constant pool, and a pointer to
an intermediate "data" field it can set.
This is the "quick-and-dirty" zero tester: it's what is run inside
the hot loops.
- "prep_zero_mask()": take the word, the data that has_zero() produced,
and the constant pool, and generate an *exact* mask of which byte had
the first zero. This is run directly *outside* the loop, and allows
the "has_zero()" function to answer the "is there a zero byte"
question without necessarily getting exactly *which* byte is the
first one to contain a zero.
If you do multiple byte lookups concurrently (eg "hash_name()", which
looks for both NUL and '/' bytes), after you've done the prep_zero_mask()
phase, the result of those can be or'ed together to get the "either
or" case.
- The result from "prep_zero_mask()" can then be fed into "find_zero()"
(to find the byte offset of the first byte that was zero) or into
"zero_bytemask()" (to find the bytemask of the bytes preceding the
zero byte).
The existence of zero_bytemask() is optional, and is not necessary
for the normal string routines. But dentry name hashing needs it, so
if you enable DENTRY_WORD_AT_A_TIME you need to expose it.
This changes the generic strncpy_from_user() function and the dentry
hashing functions to use these modified word-at-a-time interfaces. This
gets us back to the optimized state of the x86 strncpy that we lost in
the previous commit when moving over to the generic version.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If the EXCHGID4_FLAG_CONFIRMED_R flag is set, the client is in theory
supposed to already know the correct value of the seqid, in which case
RFC5661 states that it should ignore the value returned.
Also ensure that if the sanity check in nfs4_check_cl_exchange_flags
fails, then we must not change the nfs_client fields.
Finally, clean up the code: we don't need to retest the value of
'status' unless it can change.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Ensure that we destroy our lease on last unmount
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|