summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_aops.h
AgeCommit message (Collapse)AuthorFilesLines
2016-07-20xfs: direct calls in the direct I/O pathChristoph Hellwig1-0/+3
We control both the callers and callees of ->direct_IO, so remove the indirect calls. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06xfs: optimize bio handling in the buffer writeback pathChristoph Hellwig1-10/+5
This patch implements two closely related changes: First it embeds a bio the ioend structure so that we don't have to allocate one separately. Second it uses the block layer bio chaining mechanism to chain additional bios off this first one if needed instead of manually accounting for multiple bio completions in the ioend structure. Together this removes a memory allocation per ioend and greatly simplifies the ioend setup and I/O completion path. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06xfs: don't release bios on completion immediatelyDave Chinner1-2/+3
Completion of an ioend requires us to walk the bufferhead list to end writback on all the bufferheads. This, in turn, is needed so that we can end writeback on all the pages we just did IO on. To remove our dependency on bufferheads in writeback, we need to turn this around the other way - we need to walk the pages we've just completed IO on, and then walk the buffers attached to the pages and complete their IO. In doing this, we remove the requirement for the ioend to track bufferheads directly. To enable IO completion to walk all the pages we've submitted IO on, we need to keep the bios that we used for IO around until the ioend has been completed. We can do this simply by chaining the bios to the ioend at completion time, and then walking their pages directly just before destroying the ioend. Signed-off-by: Dave Chinner <dchinner@redhat.com> [hch: changed the xfs_finish_page_writeback calling convention] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06xfs: build bios directly in xfs_add_to_ioendDave Chinner1-0/+1
Currently adding a buffer to the ioend and then building a bio from the buffer list are two separate operations. We don't build the bios and submit them until the ioend is submitted, and this places a fixed dependency on bufferhead chaining in the ioend. The first step to removing the bufferhead chaining in the ioend is on the IO submission side. We can build the bio directly as we add the buffers to the ioend chain, thereby removing the need for a latter "buffer-to-bio" submission loop. This allows us to submit bios on large ioends as soon as we cannot add more data to the bio. These bios then get captured by the active plug, and hence will be dispatched as soon as either the plug overflows or we schedule away from the writeback context. This will reduce submission latency for large IOs, but will also allow more timely request queue based writeback blocking when the device becomes congested. Signed-off-by: Dave Chinner <dchinner@redhat.com> [hch: various small updates] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-03-21Merge tag 'xfs-for-linus-4.6-rc1' of ↵Linus Torvalds1-1/+3
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs Pull xfs updates from Dave Chinner: "There's quite a lot in this request, and there's some cross-over with ext4, dax and quota code due to the nature of the changes being made. As for the rest of the XFS changes, there are lots of little things all over the place, which add up to a lot of changes in the end. The major changes are that we've reduced the size of the struct xfs_inode by ~100 bytes (gives an inode cache footprint reduction of >10%), the writepage code now only does a single set of mapping tree lockups so uses less CPU, delayed allocation reservations won't overrun under random write loads anymore, and we added compile time verification for on-disk structure sizes so we find out when a commit or platform/compiler change breaks the on disk structure as early as possible. Change summary: - error propagation for direct IO failures fixes for both XFS and ext4 - new quota interfaces and XFS implementation for iterating all the quota IDs in the filesystem - locking fixes for real-time device extent allocation - reduction of duplicate information in the xfs and vfs inode, saving roughly 100 bytes of memory per cached inode. - buffer flag cleanup - rework of the writepage code to use the generic write clustering mechanisms - several fixes for inode flag based DAX enablement - rework of remount option parsing - compile time verification of on-disk format structure sizes - delayed allocation reservation overrun fixes - lots of little error handling fixes - small memory leak fixes - enable xfsaild freezing again" * tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (66 commits) xfs: always set rvalp in xfs_dir2_node_trim_free xfs: ensure committed is initialized in xfs_trans_roll xfs: borrow indirect blocks from freed extent when available xfs: refactor delalloc indlen reservation split into helper xfs: update freeblocks counter after extent deletion xfs: debug mode forced buffered write failure xfs: remove impossible condition xfs: check sizes of XFS on-disk structures at compile time xfs: ioends require logically contiguous file offsets xfs: use named array initializers for log item dumping xfs: fix computation of inode btree maxlevels xfs: reinitialise per-AG structures if geometry changes during recovery xfs: remove xfs_trans_get_block_res xfs: fix up inode32/64 (re)mount handling xfs: fix format specifier , should be %llx and not %llu xfs: sanitize remount options xfs: convert mount option parsing to tokens xfs: fix two memory leaks in xfs_attr_list.c error paths xfs: XFS_DIFLAG2_DAX limited by PAGE_SIZE xfs: dynamically switch modes when XFS_DIFLAG2_DAX is set/cleared ...
2016-02-27dax: give DAX clearing code correct bdevRoss Zwisler1-0/+1
dax_clear_blocks() needs a valid struct block_device and previously it was using inode->i_sb->s_bdev in all cases. This is correct for normal inodes on mounted ext2, ext4 and XFS filesystems, but is incorrect for DAX raw block devices and for XFS real-time devices. Instead, rename dax_clear_blocks() to dax_clear_sectors(), and change its arguments to take a bdev and a sector instead of an inode and a block. This better reflects what the function does, and it allows the filesystem and raw block device code to pass in an appropriate struct block_device. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Al Viro <viro@ftp.linux.org.uk> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@fb.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-15xfs: don't chain ioends during writepage submissionDave Chinner1-1/+1
Currently we can build a long ioend chain during ->writepages that gets attached to the writepage context. IO submission only then occurs when we finish all the writepage processing. This means we can have many ioends allocated and pending, and this violates the mempool guarantees that we need to give about forwards progress. i.e. we really should only have one ioend being built at a time, otherwise we may drain the mempool trying to allocate a new ioend and that blocks submission, completion and freeing of ioends that are already in progress. To prevent this situation from happening, we need to submit ioends for IO as soon as they are ready for dispatch rather than queuing them for later submission. This means the ioends have bios built immediately and they get queued on any plug that is current active. Hence if we schedule away from writeback, the ioends that have been built will make forwards progress due to the plug flushing on context switch. This will also prevent context switches from creating unnecessary IO submission latency. We can't completely avoid having nested IO allocation - when we have a block size smaller than a page size, we still need to hold the ioend submission until after we have marked the current page dirty. Hence we may need multiple ioends to be held while the current page is completely mapped and made ready for IO dispatch. We cannot avoid this problem - the current code already has this ioend chaining within a page so we can mostly ignore that it occurs. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-15xfs: Introduce writeback context for writepagesDave Chinner1-0/+2
xfs_vm_writepages() calls generic_writepages to writeback a range of a file, but then xfs_vm_writepage() clusters pages itself as it does not have any context it can pass between->writepage calls from __write_cache_pages(). Introduce a writeback context for xfs_vm_writepages() and call __write_cache_pages directly with our own writepage callback so that we can pass that context to each writepage invocation. This encapsulates the current mapping, whether it is valid or not, the current ioend and it's IO type and the ioend chain being built. This requires us to move the ioend submission up to the level where the writepage context is declared. This does mean we do not submit IO until we packaged the entire writeback range, but with the block plugging in the writepages call this is the way IO is submitted, anyway. It also means that we need to handle discontiguous page ranges. If the pages sent down by write_cache_pages to the writepage callback are discontiguous, we need to detect this and put each discontiguous page range into individual ioends. This is needed to ensure that the ioend accurately represents the range of the file that it covers so that file size updates during IO completion set the size correctly. Failure to take into account the discontiguous ranges results in files being too small when writeback patterns are non-sequential. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03xfs: DAX does not use IO completion callbacksDave Chinner1-1/+0
For DAX, we are now doing block zeroing during allocation. This means we no longer need a special DAX fault IO completion callback to do unwritten extent conversion. Because mmap never extends the file size (it SEGVs the process) we don't need a callback to update the file size, either. Hence we can remove the completion callbacks from the __dax_fault and __dax_mkwrite calls. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03xfs: fix inode size update overflow in xfs_map_direct()Dave Chinner1-0/+2
Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: add DAX file operations supportDave Chinner1-1/+6
Add the initial support for DAX file operations to XFS. This includes the necessary block allocation and mmap page fault hooks for DAX to function. Note that there are changes to the splice interfaces to ensure that for DAX splice avoids direct page cache manipulations and instead takes the DAX IO paths for read/write operations. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-02xfs: don't allocate an ioend for direct I/O completionsChristoph Hellwig1-3/+0
Back in the days when the direct I/O ->end_io callback could be called from interrupt context for AIO we needed a structure to hand off to the workqueue, and reused the ioend structure for this purpose. These days ->end_io is always called from user or workqueue context, which allows us to avoid this memory allocation and simplify the code significantly. [dchinner: removed now unused xfs_finish_ioend_sync() function after Brian Foster did an initial review. ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2013-09-04direct-io: Implement generic deferred AIO completionsChristoph Hellwig1-3/+0
Add support to the core direct-io code to defer AIO completions to user context using a workqueue. This replaces opencoded and less efficient code in XFS and ext4 (we save a memory allocation for each direct IO) and will be needed to properly support O_(D)SYNC for AIO. The communication between the filesystem and the direct I/O code requires a new buffer head flag, which is a bit ugly but not avoidable until the direct I/O code stops abusing the buffer_head structure for communicating with the filesystems. Currently this creates a per-superblock unbound workqueue for these completions, which is taken from an earlier patch by Jan Kara. I'm not really convinced about this use and would prefer a "normal" global workqueue with a high concurrency limit, but this needs further discussion. JK: Fixed ext4 part, dynamic allocation of the workqueue. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-07-22Prefix IO_XX flags with XFS_IO_XX to avoid namespace colision.Alain Renaud1-7/+7
Add a XFS_ prefix to IO_DIRECT,XFS_IO_DELALLOC, XFS_IO_UNWRITTEN and XFS_IO_OVERWRITE. This to avoid namespace conflict with other modules. Signed-off-by: Alain Renaud <arenaud@sgi.com> Reviewed-by: Rich Johnston <rjohnston@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-03-13xfs: log file size updates at I/O completion timeChristoph Hellwig1-0/+2
Do not use unlogged metadata updates and the VFS dirty bit for updating the file size after writeback. In addition to causing various problems with updates getting delayed for far too long this also drags in the unscalable VFS dirty tracking, and is one of the few remaining unlogged metadata updates. Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-03-05xfs: use per-filesystem I/O completion workqueuesChristoph Hellwig1-2/+0
The new concurrency managed workqueues are cheap enough that we can create per-filesystem instead of global workqueues. This allows us to remove the trylock or defer scheme on the ilock, which is not helpful once we have outstanding log reservations until finishing a size update. Also allow the default concurrency on this workqueues so that I/O completions blocking on the ilock for one inode do not block process for another inode. Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2011-10-11xfs: remove i_iocountChristoph Hellwig1-3/+0
We now have an i_dio_count filed and surrounding infrastructure to wait for direct I/O completion instead of i_icount, and we have never needed to iocount waits for buffered I/O given that we only set the page uptodate after finishing all required work. Thus remove i_iocount, and replace the actually needed waits with calls to inode_dio_wait. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-10-11xfs: defer AIO/DIO completionsChristoph Hellwig1-0/+1
We really shouldn't complete AIO or DIO requests until we have finished the unwritten extent conversion and size update. This means fsync never has to pick up any ioends as all work has been completed when signalling I/O completion. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-08-12xfs: remove subdirectoriesChristoph Hellwig1-0/+68
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the annoying subdirectories in the XFS source code. Besides the large amount of file rename the only changes are to the Makefile, a few files including headers with the subdirectory prefix, and the binary sysctl compat code that includes a header under fs/xfs/ from kernel/. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>