Age | Commit message (Collapse) | Author | Files | Lines |
|
Use arena_is_valid as a common routine for checking the validity of an
info block from both discover_arenas, and nd_btt_probe.
As a result, don't check for validity of the BTT's UUID, and lbasize.
The checksum in the BTT info block guarantees self-consistency, and when
we're called from nd_btt_probe, we don't have a valid uuid or lbasize
available to check against.
Also cleanup to return a bool instead of an int.
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Support multiple block sizes (sector + metadata) for nd_blk in the
same way as done for the BTT. Add the idea of an 'internal' lbasize,
which is properly aligned and padded, and store metadata in this space.
Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Support multiple block sizes (sector + metadata) using the blk integrity
framework. This registers a new integrity template that defines the
protection information tuple size based on the configured metadata size,
and simply acts as a passthrough for protection information generated by
another layer. The metadata is written to the storage as-is, and read back
with each sector.
Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
BTT stands for Block Translation Table, and is a way to provide power
fail sector atomicity semantics for block devices that have the ability
to perform byte granularity IO. It relies on the capability of libnvdimm
namespace devices to do byte aligned IO.
The BTT works as a stacked blocked device, and reserves a chunk of space
from the backing device for its accounting metadata. It is a bio-based
driver because all IO is done synchronously, and there is no queuing or
asynchronous completions at either the device or the driver level.
The BTT uses 'lanes' to index into various 'on-disk' data structures,
and lanes also act as a synchronization mechanism in case there are more
CPUs than available lanes. We did a comparison between two lane lock
strategies - first where we kept an atomic counter around that tracked
which was the last lane that was used, and 'our' lane was determined by
atomically incrementing that. That way, for the nr_cpus > nr_lanes case,
theoretically, no CPU would be blocked waiting for a lane. The other
strategy was to use the cpu number we're scheduled on to and hash it to
a lane number. Theoretically, this could block an IO that could've
otherwise run using a different, free lane. But some fio workloads
showed that the direct cpu -> lane hash performed faster than tracking
'last lane' - my reasoning is the cache thrash caused by moving the
atomic variable made that approach slower than simply waiting out the
in-progress IO. This supports the conclusion that the driver can be a
very simple bio-based one that does synchronous IOs instead of queuing.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Neil Brown <neilb@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
[jmoyer: fix nmi watchdog timeout in btt_map_init]
[jmoyer: move btt initialization to module load path]
[jmoyer: fix memory leak in the btt initialization path]
[jmoyer: Don't overwrite corrupted arenas]
Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
NVDIMM namespaces, in addition to accepting "struct bio" based requests,
also have the capability to perform byte-aligned accesses. By default
only the bio/block interface is used. However, if another driver can
make effective use of the byte-aligned capability it can claim namespace
interface and use the byte-aligned ->rw_bytes() interface.
The BTT driver is the initial first consumer of this mechanism to allow
adding atomic sector update semantics to a pmem or blk namespace. This
patch is the sysfs infrastructure to allow configuring a BTT instance
for a namespace. Enabling that BTT and performing i/o is in a
subsequent patch.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|