Age | Commit message (Collapse) | Author | Files | Lines |
|
dm_stats_account_io()'s STAT_PRECISE_TIMESTAMPS support doesn't handle
the fact that with commit b879f915bc48 ("dm: properly fix redundant
bio-based IO accounting") io->start_time _may_ be in the past (meaning
the start_io_acct() was deferred until later).
Add a new dm_stats_recalc_precise_timestamps() helper that will
set/clear a new 'precise_timestamps' flag in the dm_stats struct based
on whether any configured stats enable STAT_PRECISE_TIMESTAMPS.
And update DM core's alloc_io() to use dm_stats_record_start() to set
stats_aux.duration_ns if stats->precise_timestamps is true.
Also, remove unused 'last_sector' and 'last_rw' members from the
dm_stats struct.
Fixes: b879f915bc48 ("dm: properly fix redundant bio-based IO accounting")
Cc: stable@vger.kernel.org
Co-developed-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
DM handles a flush with data by first issuing an empty flush and then
once it completes the REQ_PREFLUSH flag is removed and the payload is
issued. The problem fixed by this commit is that both the empty flush
bio and the data payload will account the full extent of the data
payload.
Fix this by factoring out dm_io_acct() and having it wrap all IO
accounting to set the size of bio with REQ_PREFLUSH to 0, account the
IO, and then restore the original size.
Cc: stable@vger.kernel.org
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct dm_stat {
...
struct dm_stat_shared stat_shared[0];
};
Make use of the struct_size() helper instead of an open-coded version
in order to avoid any potential type mistakes.
So, replace the following form:
sizeof(struct dm_stat) + (size_t)n_entries * sizeof(struct dm_stat_shared)
with:
struct_size(s, stat_shared, n_entries)
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
totalram_pages and totalhigh_pages are made static inline function.
Main motivation was that managed_page_count_lock handling was complicating
things. It was discussed in length here,
https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes
better to remove the lock and convert variables to atomic, with preventing
poteintial store-to-read tearing as a bonus.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
kmalloc(a * b, gfp)
with:
kmalloc_array(a * b, gfp)
as well as handling cases of:
kmalloc(a * b * c, gfp)
with:
kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Conflicts:
include/linux/compiler-clang.h
include/linux/compiler-gcc.h
include/linux/compiler-intel.h
include/uapi/linux/stddef.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Patch series "kvmalloc", v5.
There are many open coded kmalloc with vmalloc fallback instances in the
tree. Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.
As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.
Most callers, I could find, have been converted to use the helper
instead. This is patch 6. There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.
[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com
This patch (of 9):
Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code. Yet we do not have any common helper
for that and so users have invented their own helpers. Some of them are
really creative when doing so. Let's just add kv[mz]alloc and make sure
it is implemented properly. This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures. This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.
This patch also changes some existing users and removes helpers which
are specific for them. In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL). Those need to be
fixed separately.
While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers. Existing ones would have to die
slowly.
[sfr@canb.auug.org.au: f2fs fixup]
Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fixes: dfcfac3e4cd9 ("dm stats: collect and report histogram of IO latencies")
Cc: stable@vger.kernel.org # v4.2+
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Add some seperation between bio-based and request-based DM core code.
'struct mapped_device' and other DM core only structures and functions
have been moved to dm-core.h and all relevant DM core .c files have been
updated to include dm-core.h rather than dm.h
DM targets should _never_ include dm-core.h!
[block core merge conflict resolution from Stephen Rothwell]
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
|
|
It looks like dm stats cares about the data direction
(READ vs WRITE) and does not need the bio/request flags.
Commands like REQ_FLUSH, REQ_DISCARD and REQ_WRITE_SAME
are currently always set with REQ_WRITE, so the extra check for
REQ_DISCARD in dm_stats_account_io is not needed.
This patch has it use the bio and request data_dir helpers
instead of accessing the bi_rw/cmd_flags directly. This makes
the next patches that remove the operation from the cmd_flags
and bi_rw easier, because we will no longer have the REQ_WRITE
bit set for operations like discards.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
If the user selected the precise_timestamps or histogram options, report
it in the @stats_list message output.
If the user didn't select these options, no extra tokens are reported,
thus it is backward compatible with old software that doesn't know about
precise timestamps and histogram.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 4.2
|
|
This makes it possible to use dm stats with DM multipath.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Add an option to dm statistics to collect and report a histogram of
IO latencies.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Make it possible to use precise timestamps with nanosecond granularity
in dm statistics.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
If the number_of_areas argument was zero the kernel would crash on
div-by-zero. Add better input validation.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # v3.12+
|
|
Use kvfree() instead of open-coding it.
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull device mapper updates from Mike Snitzer:
- Significant DM thin-provisioning performance improvements to meet
performance requirements that were requested by the Gluster
distributed filesystem.
Specifically, dm-thinp now takes care to aggregate IO that will be
issued to the same thinp block before issuing IO to the underlying
devices. This really helps improve performance on HW RAID6 devices
that have a writeback cache because it avoids RMW in the HW RAID
controller.
- Some stable fixes: fix leak in DM bufio if integrity profiles were
enabled, use memzero_explicit in DM crypt to avoid any potential for
information leak, and a DM cache fix to properly mark a cache block
dirty if it was promoted to the cache via the overwrite optimization.
- A few simple DM persistent data library fixes
- DM cache multiqueue policy block promotion improvements.
- DM cache discard improvements that take advantage of range
(multiblock) discard support in the DM bio-prison. This allows for
much more efficient bulk discard processing (e.g. when mkfs.xfs
discards the entire device).
- Some small optimizations in DM core and RCU deference cleanups
- DM core changes to suspend/resume code to introduce the new internal
suspend/resume interface that the DM thin-pool target now uses to
suspend/resume active thin devices when the thin-pool must
suspend/resume.
This avoids forcing userspace to track all active thin volumes in a
thin-pool when the thin-pool is suspended for the purposes of
metadata or data space resize.
* tag 'dm-3.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (49 commits)
dm crypt: use memzero_explicit for on-stack buffer
dm space map metadata: fix sm_bootstrap_get_count()
dm space map metadata: fix sm_bootstrap_get_nr_blocks()
dm bufio: fix memleak when using a dm_buffer's inline bio
dm cache: fix spurious cell_defer when dealing with partial block at end of device
dm cache: dirty flag was mistakenly being cleared when promoting via overwrite
dm cache: only use overwrite optimisation for promotion when in writeback mode
dm cache: discard block size must be a multiple of cache block size
dm cache: fix a harmless race when working out if a block is discarded
dm cache: when reloading a discard bitset allow for a different discard block size
dm cache: fix some issues with the new discard range support
dm array: if resizing the array is a noop set the new root to the old one
dm: use rcu_dereference_protected instead of rcu_dereference
dm thin: fix pool_io_hints to avoid looking at max_hw_sectors
dm thin: suspend/resume active thin devices when reloading thin-pool
dm: enhance internal suspend and resume interface
dm thin: do not allow thin device activation while pool is suspended
dm: add presuspend_undo hook to target_type
dm: return earlier from dm_blk_ioctl if target doesn't implement .ioctl
dm thin: remove stale 'trim' message in block comment above pool_message
...
|
|
Rename dm_internal_{suspend,resume} to dm_internal_{suspend,resume}_fast
-- dm-stats will continue using these methods to avoid all the extra
suspend/resume logic that is not needed in order to quickly flush IO.
Introduce dm_internal_suspend_noflush() variant that actually calls the
mapped_device's target callbacks -- otherwise target-specific hooks are
avoided (e.g. dm-thin's thin_presuspend and thin_postsuspend). Common
code between dm_internal_{suspend_noflush,resume} and
dm_{suspend,resume} was factored out as __dm_{suspend,resume}.
Update dm_internal_{suspend_noflush,resume} to always take and release
the mapped_device's suspend_lock. Also update dm_{suspend,resume} to be
aware of potential for DM_INTERNAL_SUSPEND_FLAG to be set and respond
accordingly by interruptibly waiting for the DM_INTERNAL_SUSPEND_FLAG to
be cleared. Add lockdep annotation to dm_suspend() and dm_resume().
The existing DM_SUSPEND_FLAG remains unchanged.
DM_INTERNAL_SUSPEND_FLAG is set by dm_internal_suspend_noflush() and
cleared by dm_internal_resume().
Both DM_SUSPEND_FLAG and DM_INTERNAL_SUSPEND_FLAG may be set if a device
was already suspended when dm_internal_suspend_noflush() was called --
this can be thought of as a "nested suspend". A "nested suspend" can
occur with legacy userspace dm-thin code that might suspend all active
thin volumes before suspending the pool for resize.
But otherwise, in the normal dm-thin-pool suspend case moving forward:
the thin-pool will have DM_SUSPEND_FLAG set and all active thins from
that thin-pool will have DM_INTERNAL_SUSPEND_FLAG set.
Also add DM_INTERNAL_SUSPEND_FLAG to status report. This new
DM_INTERNAL_SUSPEND_FLAG state is being reported to assist with
debugging (e.g. 'dmsetup info' will report an internally suspended
device accordingly).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
|
|
__this_cpu_ptr is being phased out.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
The module parameter stats_current_allocated_bytes in dm-mod is
read-only. This parameter informs the user about memory
consumption. It is not supposed to be changed by the user.
However, despite being read-only, this parameter can be set on
modprobe or insmod command line:
modprobe dm-mod stats_current_allocated_bytes=12345
The kernel doesn't expect that this variable can be non-zero at module
initialization and if the user sets it, it results in warning.
This patch initializes the variable in the module init routine, so
that user-supplied value is ignored.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 3.12+
|
|
There was a deliberate race condition in dm_stat_for_entry() to avoid the
overhead of disabling and enabling interrupts. The race could result in
some events not being counted on 64-bit architectures.
However, on 32-bit architectures, operations on long long variables are
not atomic, so the race condition could cause the counter to jump by 2^32.
Such jumps could be disruptive, so we need to do proper locking on 32-bit
architectures.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Alasdair G. Kergon <agk@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Support the collection of I/O statistics on user-defined regions of
a DM device. If no regions are defined no statistics are collected so
there isn't any performance impact. Only bio-based DM devices are
currently supported.
Each user-defined region specifies a starting sector, length and step.
Individual statistics will be collected for each step-sized area within
the range specified.
The I/O statistics counters for each step-sized area of a region are
in the same format as /sys/block/*/stat or /proc/diskstats but extra
counters (12 and 13) are provided: total time spent reading and
writing in milliseconds. All these counters may be accessed by sending
the @stats_print message to the appropriate DM device via dmsetup.
The creation of DM statistics will allocate memory via kmalloc or
fallback to using vmalloc space. At most, 1/4 of the overall system
memory may be allocated by DM statistics. The admin can see how much
memory is used by reading
/sys/module/dm_mod/parameters/stats_current_allocated_bytes
See Documentation/device-mapper/statistics.txt for more details.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
|