Age | Commit message (Collapse) | Author | Files | Lines |
|
Pull IPMI update from Corey Minyard:
"Add limits on the number of users and messages, plus sysfs interfaces
to control those limits.
Other than that, little cleanups, use dev_xxx() insted of pr_xxx(),
create initializers for structures, fix a refcount leak, etc"
* tag 'for-linus-4.19-1' of https://github.com/cminyard/linux-ipmi:
ipmi:ipmb: Fix refcount leak in ipmi_ipmb_probe
ipmi: remove unnecessary type castings
ipmi: Make two logs unique
ipmi:si: Convert pr_debug() to dev_dbg()
ipmi: Convert pr_debug() to dev_dbg()
ipmi: Fix pr_fmt to avoid compilation issues
ipmi: Add an intializer for ipmi_recv_msg struct
ipmi: Add an intializer for ipmi_smi_msg struct
ipmi:ssif: Check for NULL msg when handling events and messages
ipmi: use simple i2c probe function
ipmi: Add a sysfs count of total outstanding messages for an interface
ipmi: Add a sysfs interface to view the number of users
ipmi: Limit the number of message a user may have outstanding
ipmi: Add a limit on the number of users that may use IPMI
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd
Pull tpm updates from Jarkko Sakkinen:
- Tightened validation of key hashes for SYSTEM_BLACKLIST_HASH_LIST. An
invalid hash format causes a compilation error. Previously, they got
included to the kernel binary but were silently ignored at run-time.
- Allow root user to append new hashes to the blacklist keyring.
- Trusted keys backed with Cryptographic Acceleration and Assurance
Module (CAAM), which part of some of the new NXP's SoC's. Now there
is total three hardware backends for trusted keys: TPM, ARM TEE and
CAAM.
- A scattered set of fixes and small improvements for the TPM driver.
* tag 'tpmdd-next-v5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd:
MAINTAINERS: add KEYS-TRUSTED-CAAM
doc: trusted-encrypted: describe new CAAM trust source
KEYS: trusted: Introduce support for NXP CAAM-based trusted keys
crypto: caam - add in-kernel interface for blob generator
crypto: caam - determine whether CAAM supports blob encap/decap
KEYS: trusted: allow use of kernel RNG for key material
KEYS: trusted: allow use of TEE as backend without TCG_TPM support
tpm: Add field upgrade mode support for Infineon TPM2 modules
tpm: Fix buffer access in tpm2_get_tpm_pt()
char: tpm: cr50_i2c: Suppress duplicated error message in .remove()
tpm: cr50: Add new device/vendor ID 0x504a6666
tpm: Remove read16/read32/write32 calls from tpm_tis_phy_ops
tpm: ibmvtpm: Correct the return value in tpm_ibmvtpm_probe()
tpm/tpm_ftpm_tee: Return true/false (not 1/0) from bool functions
certs: Explain the rationale to call panic()
certs: Allow root user to append signed hashes to the blacklist keyring
certs: Check that builtin blacklist hashes are valid
certs: Make blacklist_vet_description() more strict
certs: Factor out the blacklist hash creation
tools/certs: Add print-cert-tbs-hash.sh
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"These updates continue to refine the work began in 5.17 and 5.18 of
modernizing the RNG's crypto and streamlining and documenting its
code.
New for 5.19, the updates aim to improve entropy collection methods
and make some initial decisions regarding the "premature next" problem
and our threat model. The cloc utility now reports that random.c is
931 lines of code and 466 lines of comments, not that basic metrics
like that mean all that much, but at the very least it tells you that
this is very much a manageable driver now.
Here's a summary of the various updates:
- The random_get_entropy() function now always returns something at
least minimally useful. This is the primary entropy source in most
collectors, which in the best case expands to something like RDTSC,
but prior to this change, in the worst case it would just return 0,
contributing nothing. For 5.19, additional architectures are wired
up, and architectures that are entirely missing a cycle counter now
have a generic fallback path, which uses the highest resolution
clock available from the timekeeping subsystem.
Some of those clocks can actually be quite good, despite the CPU
not having a cycle counter of its own, and going off-core for a
stamp is generally thought to increase jitter, something positive
from the perspective of entropy gathering. Done very early on in
the development cycle, this has been sitting in next getting some
testing for a while now and has relevant acks from the archs, so it
should be pretty well tested and fine, but is nonetheless the thing
I'll be keeping my eye on most closely.
- Of particular note with the random_get_entropy() improvements is
MIPS, which, on CPUs that lack the c0 count register, will now
combine the high-speed but short-cycle c0 random register with the
lower-speed but long-cycle generic fallback path.
- With random_get_entropy() now always returning something useful,
the interrupt handler now collects entropy in a consistent
construction.
- Rather than comparing two samples of random_get_entropy() for the
jitter dance, the algorithm now tests many samples, and uses the
amount of differing ones to determine whether or not jitter entropy
is usable and how laborious it must be. The problem with comparing
only two samples was that if the cycle counter was extremely slow,
but just so happened to be on the cusp of a change, the slowness
wouldn't be detected. Taking many samples fixes that to some
degree.
This, combined with the other improvements to random_get_entropy(),
should make future unification of /dev/random and /dev/urandom
maybe more possible. At the very least, were we to attempt it again
today (we're not), it wouldn't break any of Guenter's test rigs
that broke when we tried it with 5.18. So, not today, but perhaps
down the road, that's something we can revisit.
- We attempt to reseed the RNG immediately upon waking up from system
suspend or hibernation, making use of the various timestamps about
suspend time and such available, as well as the usual inputs such
as RDRAND when available.
- Batched randomness now falls back to ordinary randomness before the
RNG is initialized. This provides more consistent guarantees to the
types of random numbers being returned by the various accessors.
- The "pre-init injection" code is now gone for good. I suspect you
in particular will be happy to read that, as I recall you
expressing your distaste for it a few months ago. Instead, to avoid
a "premature first" issue, while still allowing for maximal amount
of entropy availability during system boot, the first 128 bits of
estimated entropy are used immediately as it arrives, with the next
128 bits being buffered. And, as before, after the RNG has been
fully initialized, it winds up reseeding anyway a few seconds later
in most cases. This resulted in a pretty big simplification of the
initialization code and let us remove various ad-hoc mechanisms
like the ugly crng_pre_init_inject().
- The RNG no longer pretends to handle the "premature next" security
model, something that various academics and other RNG designs have
tried to care about in the past. After an interesting mailing list
thread, these issues are thought to be a) mainly academic and not
practical at all, and b) actively harming the real security of the
RNG by delaying new entropy additions after a potential compromise,
making a potentially bad situation even worse. As well, in the
first place, our RNG never even properly handled the premature next
issue, so removing an incomplete solution to a fake problem was
particularly nice.
This allowed for numerous other simplifications in the code, which
is a lot cleaner as a consequence. If you didn't see it before,
https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/ may be a
thread worth skimming through.
- While the interrupt handler received a separate code path years ago
that avoids locks by using per-cpu data structures and a faster
mixing algorithm, in order to reduce interrupt latency, input and
disk events that are triggered in hardirq handlers were still
hitting locks and more expensive algorithms. Those are now
redirected to use the faster per-cpu data structures.
- Rather than having the fake-crypto almost-siphash-based random32
implementation be used right and left, and in many places where
cryptographically secure randomness is desirable, the batched
entropy code is now fast enough to replace that.
- As usual, numerous code quality and documentation cleanups. For
example, the initialization state machine now uses enum symbolic
constants instead of just hard coding numbers everywhere.
- Since the RNG initializes once, and then is always initialized
thereafter, a pretty heavy amount of code used during that
initialization is never used again. It is now completely cordoned
off using static branches and it winds up in the .text.unlikely
section so that it doesn't reduce cache compactness after the RNG
is ready.
- A variety of functions meant for waiting on the RNG to be
initialized were only used by vsprintf, and in not a particularly
optimal way. Replacing that usage with a more ordinary setup made
it possible to remove those functions.
- A cleanup of how we warn userspace about the use of uninitialized
/dev/urandom and uninitialized get_random_bytes() usage.
Interestingly, with the change you merged for 5.18 that attempts to
use jitter (but does not block if it can't), the majority of users
should never see those warnings for /dev/urandom at all now, and
the one for in-kernel usage is mainly a debug thing.
- The file_operations struct for /dev/[u]random now implements
.read_iter and .write_iter instead of .read and .write, allowing it
to also implement .splice_read and .splice_write, which makes
splice(2) work again after it was broken here (and in many other
places in the tree) during the set_fs() removal. This was a bit of
a last minute arrival from Jens that hasn't had as much time to
bake, so I'll be keeping my eye on this as well, but it seems
fairly ordinary. Unfortunately, read_iter() is around 3% slower
than read() in my tests, which I'm not thrilled about. But Jens and
Al, spurred by this observation, seem to be making progress in
removing the bottlenecks on the iter paths in the VFS layer in
general, which should remove the performance gap for all drivers.
- Assorted other bug fixes, cleanups, and optimizations.
- A small SipHash cleanup"
* tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (49 commits)
random: check for signals after page of pool writes
random: wire up fops->splice_{read,write}_iter()
random: convert to using fops->write_iter()
random: convert to using fops->read_iter()
random: unify batched entropy implementations
random: move randomize_page() into mm where it belongs
random: remove mostly unused async readiness notifier
random: remove get_random_bytes_arch() and add rng_has_arch_random()
random: move initialization functions out of hot pages
random: make consistent use of buf and len
random: use proper return types on get_random_{int,long}_wait()
random: remove extern from functions in header
random: use static branch for crng_ready()
random: credit architectural init the exact amount
random: handle latent entropy and command line from random_init()
random: use proper jiffies comparison macro
random: remove ratelimiting for in-kernel unseeded randomness
random: move initialization out of reseeding hot path
random: avoid initializing twice in credit race
random: use symbolic constants for crng_init states
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
- decouple the PV interface from kernel internals in the Xen
scsifront/scsiback pv drivers
- harden the Xen scsifront PV driver against a malicious backend driver
- simplify Xen PV frontend driver ring page setup
- support Xen setups with multiple domains created at boot time to
tolerate Xenstore coming up late
- two small cleanup patches
* tag 'for-linus-5.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (29 commits)
xen: add support for initializing xenstore later as HVM domain
xen: sync xs_wire.h header with upstream xen
x86: xen: remove STACK_FRAME_NON_STANDARD from xen_cpuid
xen-blk{back,front}: Update contact points for buffer_squeeze_duration_ms and feature_persistent
xen/xenbus: eliminate xenbus_grant_ring()
xen/sndfront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/usbfront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/scsifront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/pcifront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/drmfront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/tpmfront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/netfront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/blkfront: use xenbus_setup_ring() and xenbus_teardown_ring()
xen/xenbus: add xenbus_setup_ring() service function
xen: update ring.h
xen/shbuf: switch xen-front-pgdir-shbuf to use INVALID_GRANT_REF
xen/dmabuf: switch gntdev-dmabuf to use INVALID_GRANT_REF
xen/sound: switch xen_snd_front to use INVALID_GRANT_REF
xen/drm: switch xen_drm_front to use INVALID_GRANT_REF
xen/usb: switch xen-hcd to use INVALID_GRANT_REF
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 updates from Borislav Petkov:
"A variety of fixes which don't fit any other tip bucket:
- Remove unnecessary function export
- Correct asm constraint
- Fix __setup handlers retval"
* tag 'x86_misc_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Cleanup the control_va_addr_alignment() __setup handler
x86: Fix return value of __setup handlers
x86/delay: Fix the wrong asm constraint in delay_loop()
x86/amd_nb: Unexport amd_cache_northbridges()
|
|
TPM2_GetCapability with a capability that has the property type value
of TPM_PT_TOTAL_COMMANDS returns a zero length list, when an Infineon
TPM2 is in field upgrade mode.
Since an Infineon TPM2.0 in field upgrade mode returns RC_SUCCESS on
TPM2_Startup, the field upgrade mode has to be detected by
TPM2_GetCapability.
Signed-off-by: Stefan Mahnke-Hartmann <stefan.mahnke-hartmann@infineon.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Under certain conditions uninitialized memory will be accessed.
As described by TCG Trusted Platform Module Library Specification,
rev. 1.59 (Part 3: Commands), if a TPM2_GetCapability is received,
requesting a capability, the TPM in field upgrade mode may return a
zero length list.
Check the property count in tpm2_get_tpm_pt().
Fixes: 2ab3241161b3 ("tpm: migrate tpm2_get_tpm_pt() to use struct tpm_buf")
Cc: stable@vger.kernel.org
Signed-off-by: Stefan Mahnke-Hartmann <stefan.mahnke-hartmann@infineon.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Returning an error value in an i2c remove callback results in an error
message being emitted by the i2c core, but otherwise it doesn't make a
difference. The device goes away anyhow and the devm cleanups are
called.
As tpm_cr50_i2c_remove() emits an error message already and the
additional error message by the i2c core doesn't add any useful
information, change the return value to zero to suppress this error
message.
Note that if i2c_clientdata is NULL, there is something really fishy.
Assuming no memory corruption happened (then all bets are lost anyhow),
tpm_cr50_i2c_remove() is only called after tpm_cr50_i2c_probe() returned
successfully. So there was a tpm chip registered before and after
tpm_cr50_i2c_remove() its privdata is freed but the associated character
device isn't removed. If after that happened userspace accesses the
character device it's likely that the freed memory is accessed. For that
reason the warning message is made a bit more frightening.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Accept one additional numerical value of DID:VID for next generation
Google TPM with new firmware, to be used in future Chromebooks.
The TPM with the new firmware has the code name TI50, and is going to
use the same interfaces.
Signed-off-by: Jes B. Klinke <jbk@chromium.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Only tpm_tis and tpm_tis_synquacer have a dedicated way to access
multiple bytes at once, every other driver will just fall back to
read_bytes/write_bytes. Therefore, remove the read16/read32/write32
calls and move their logic to read_bytes/write_bytes.
Suggested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Johannes Holland <johannes.holland@infineon.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Currently it returns zero when CRQ response timed out, it should return
an error code instead.
Fixes: d8d74ea3c002 ("tpm: ibmvtpm: Wait for buffer to be set before proceeding")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Return boolean values ("true" or "false") instead of 1 or 0 from bool
functions.
Signed-off-by: Haowen Bai <baihaowen@meizu.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
get_random_bytes_user() checks for signals after producing a PAGE_SIZE
worth of output, just like /dev/zero does. write_pool() is doing
basically the same work (actually, slightly more expensive), and so
should stop to check for signals in the same way. Let's also name it
write_pool_user() to match get_random_bytes_user(), so this won't be
misused in the future.
Before this patch, massive writes to /dev/urandom would tie up the
process for an extremely long time and make it unterminatable. After, it
can be successfully interrupted. The following test program can be used
to see this works as intended:
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
static unsigned char x[~0U];
static void handle(int) { }
int main(int argc, char *argv[])
{
pid_t pid = getpid(), child;
int fd;
signal(SIGUSR1, handle);
if (!(child = fork())) {
for (;;)
kill(pid, SIGUSR1);
}
fd = open("/dev/urandom", O_WRONLY);
pause();
printf("interrupted after writing %zd bytes\n", write(fd, x, sizeof(x)));
close(fd);
kill(child, SIGTERM);
return 0;
}
Result before: "interrupted after writing 2147479552 bytes"
Result after: "interrupted after writing 4096 bytes"
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Now that random/urandom is using {read,write}_iter, we can wire it up to
using the generic splice handlers.
Fixes: 36e2c7421f02 ("fs: don't allow splice read/write without explicit ops")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: added the splice_write path. Note that sendfile() and such still
does not work for read, though it does for write, because of a file
type restriction in splice_direct_to_actor(), which I'll address
separately.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Now that the read side has been converted to fix a regression with
splice, convert the write side as well to have some symmetry in the
interface used (and help deprecate ->write()).
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: cleaned up random_ioctl a bit, require full writes in
RNDADDENTROPY since it's crediting entropy, simplify control flow of
write_pool(), and incorporate suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This is a pre-requisite to wiring up splice() again for the random
and urandom drivers. It also allows us to remove the INT_MAX check in
getrandom(), because import_single_range() applies capping internally.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: rewrote get_random_bytes_user() to simplify and also incorporate
additional suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
omap_rom_rng_runtime_resume()
'ddata->clk' is enabled by clk_prepare_enable(), it should be disabled
by clk_disable_unprepare().
Fixes: 8d9d4bdc495f ("hwrng: omap3-rom - Use runtime PM instead of custom functions")
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Only CS7 and CS8 seem supported but CSIZE was not sanitized in termios
c_cflag. The driver sets 7 bits whenever data_bits is not 8 so default
to CS7 when CSIZE is not CS8.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20220519081808.3776-10-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
CMSPAR is defined by all architectures since commit 6bf08cb246b5
("[PATCH] Add CMSPAR to termbits.h for powerpc and alpha").
Reviewed-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20220513082906.11096-2-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There are currently two separate batched entropy implementations, for
u32 and u64, with nearly identical code, with the goal of avoiding
unaligned memory accesses and letting the buffers be used more
efficiently. Having to maintain these two functions independently is a
bit of a hassle though, considering that they always need to be kept in
sync.
This commit factors them out into a type-generic macro, so that the
expansion produces the same code as before, such that diffing the
assembly shows no differences. This will also make it easier in the
future to add u16 and u8 batches.
This was initially tested using an always_inline function and letting
gcc constant fold the type size in, but the code gen was less efficient,
and in general it was more verbose and harder to follow. So this patch
goes with the boring macro solution, similar to what's already done for
the _wait functions in random.h.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.
So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.
This commit contains no actual code changes.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
The register_random_ready_notifier() notifier is somewhat complicated,
and was already recently rewritten to use notifier blocks. It is only
used now by one consumer in the kernel, vsprintf.c, for which the async
mechanism is really overly complex for what it actually needs. This
commit removes register_random_ready_notifier() and unregister_random_
ready_notifier(), because it just adds complication with little utility,
and changes vsprintf.c to just check on `!rng_is_initialized() &&
!rng_has_arch_random()`, which will eventually be true. Performance-
wise, that code was already using a static branch, so there's basically
no overhead at all to this change.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Petr Mladek <pmladek@suse.com> # for vsprintf.c
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
The RNG incorporates RDRAND into its state at boot and every time it
reseeds, so there's no reason for callers to use it directly. The
hashing that the RNG does on it is preferable to using the bytes raw.
The only current use case of get_random_bytes_arch() is vsprintf's
siphash key for pointer hashing, which uses it to initialize the pointer
secret earlier than usual if RDRAND is available. In order to replace
this narrow use case, just expose whether RDRAND is mixed into the RNG,
with a new function called rng_has_arch_random(). With that taken care
of, there are no users of get_random_bytes_arch() left, so it can be
removed.
Later, if trust_cpu gets turned on by default (as most distros are
doing), this one use of rng_has_arch_random() can probably go away as
well.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Petr Mladek <pmladek@suse.com> # for vsprintf.c
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Much of random.c is devoted to initializing the rng and accounting for
when a sufficient amount of entropy has been added. In a perfect world,
this would all happen during init, and so we could mark these functions
as __init. But in reality, this isn't the case: sometimes the rng only
finishes initializing some seconds after system init is finished.
For this reason, at the moment, a whole host of functions that are only
used relatively close to system init and then never again are intermixed
with functions that are used in hot code all the time. This creates more
cache misses than necessary.
In order to pack the hot code closer together, this commit moves the
initialization functions that can't be marked as __init into
.text.unlikely by way of the __cold attribute.
Of particular note is moving credit_init_bits() into a macro wrapper
that inlines the crng_ready() static branch check. This avoids a
function call to a nop+ret, and most notably prevents extra entropy
arithmetic from being computed in mix_interrupt_randomness().
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
The current code was a mix of "nbytes", "count", "size", "buffer", "in",
and so forth. Instead, let's clean this up by naming input parameters
"buf" (or "ubuf") and "len", so that you always understand that you're
reading this variety of function argument.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Since crng_ready() is only false briefly during initialization and then
forever after becomes true, we don't need to evaluate it after, making
it a prime candidate for a static branch.
One complication, however, is that it changes state in a particular call
to credit_init_bits(), which might be made from atomic context, which
means we must kick off a workqueue to change the static key. Further
complicating things, credit_init_bits() may be called sufficiently early
on in system initialization such that system_wq is NULL.
Fortunately, there exists the nice function execute_in_process_context(),
which will immediately execute the function if !in_interrupt(), and
otherwise defer it to a workqueue. During early init, before workqueues
are available, in_interrupt() is always false, because interrupts
haven't even been enabled yet, which means the function in that case
executes immediately. Later on, after workqueues are available,
in_interrupt() might be true, but in that case, the work is queued in
system_wq and all goes well.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Simplify tpmfront's ring creation and removal via xenbus_setup_ring()
and xenbus_teardown_ring(), which are provided exactly for the use
pattern as seen in this driver.
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
RDRAND and RDSEED can fail sometimes, which is fine. We currently
initialize the RNG with 512 bits of RDRAND/RDSEED. We only need 256 bits
of those to succeed in order to initialize the RNG. Instead of the
current "all or nothing" approach, actually credit these contributions
the amount that is actually contributed.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Currently, start_kernel() adds latent entropy and the command line to
the entropy bool *after* the RNG has been initialized, deferring when
it's actually used by things like stack canaries until the next time
the pool is seeded. This surely is not intended.
Rather than splitting up which entropy gets added where and when between
start_kernel() and random_init(), just do everything in random_init(),
which should eliminate these kinds of bugs in the future.
While we're at it, rename the awkwardly titled "rand_initialize()" to
the more standard "random_init()" nomenclature.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This expands to exactly the same code that it replaces, but makes things
consistent by using the same macro for jiffy comparisons throughout.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
The CONFIG_WARN_ALL_UNSEEDED_RANDOM debug option controls whether the
kernel warns about all unseeded randomness or just the first instance.
There's some complicated rate limiting and comparison to the previous
caller, such that even with CONFIG_WARN_ALL_UNSEEDED_RANDOM enabled,
developers still don't see all the messages or even an accurate count of
how many were missed. This is the result of basically parallel
mechanisms aimed at accomplishing more or less the same thing, added at
different points in random.c history, which sort of compete with the
first-instance-only limiting we have now.
It turns out, however, that nobody cares about the first unseeded
randomness instance of in-kernel users. The same first user has been
there for ages now, and nobody is doing anything about it. It isn't even
clear that anybody _can_ do anything about it. Most places that can do
something about it have switched over to using get_random_bytes_wait()
or wait_for_random_bytes(), which is the right thing to do, but there is
still much code that needs randomness sometimes during init, and as a
geeneral rule, if you're not using one of the _wait functions or the
readiness notifier callback, you're bound to be doing it wrong just
based on that fact alone.
So warning about this same first user that can't easily change is simply
not an effective mechanism for anything at all. Users can't do anything
about it, as the Kconfig text points out -- the problem isn't in
userspace code -- and kernel developers don't or more often can't react
to it.
Instead, show the warning for all instances when CONFIG_WARN_ALL_UNSEEDED_RANDOM
is set, so that developers can debug things need be, or if it isn't set,
don't show a warning at all.
At the same time, CONFIG_WARN_ALL_UNSEEDED_RANDOM now implies setting
random.ratelimit_disable=1 on by default, since if you care about one
you probably care about the other too. And we can clean up usage around
the related urandom_warning ratelimiter as well (whose behavior isn't
changing), so that it properly counts missed messages after the 10
message threshold is reached.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Initialization happens once -- by way of credit_init_bits() -- and then
it never happens again. Therefore, it doesn't need to be in
crng_reseed(), which is a hot path that is called multiple times. It
also doesn't make sense to have there, as initialization activity is
better associated with initialization routines.
After the prior commit, crng_reseed() now won't be called by multiple
concurrent callers, which means that we can safely move the
"finialize_init" logic into crng_init_bits() unconditionally.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Since all changes of crng_init now go through credit_init_bits(), we can
fix a long standing race in which two concurrent callers of
credit_init_bits() have the new bit count >= some threshold, but are
doing so with crng_init as a lower threshold, checked outside of a lock,
resulting in crng_reseed() or similar being called twice.
In order to fix this, we can use the original cmpxchg value of the bit
count, and only change crng_init when the bit count transitions from
below a threshold to meeting the threshold.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
crng_init represents a state machine, with three states, and various
rules for transitions. For the longest time, we've been managing these
with "0", "1", and "2", and expecting people to figure it out. To make
the code more obvious, replace these with proper enum values
representing the transition, and then redocument what each of these
states mean.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
The SipHash family of permutations is currently used in three places:
- siphash.c itself, used in the ordinary way it was intended.
- random32.c, in a construction from an anonymous contributor.
- random.c, as part of its fast_mix function.
Each one of these places reinvents the wheel with the same C code, same
rotation constants, and same symmetry-breaking constants.
This commit tidies things up a bit by placing macros for the
permutations and constants into siphash.h, where each of the three .c
users can access them. It also leaves a note dissuading more users of
them from emerging.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Now that fast_mix() has more than one caller, gcc no longer inlines it.
That's fine. But it also doesn't handle the compound literal argument we
pass it very efficiently, nor does it handle the loop as well as it
could. So just expand the code to spell out this function so that it
generates the same code as it did before. Performance-wise, this now
behaves as it did before the last commit. The difference in actual code
size on x86 is 45 bytes, which is less than a cache line.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Years ago, a separate fast pool was added for interrupts, so that the
cost associated with taking the input pool spinlocks and mixing into it
would be avoided in places where latency is critical. However, one
oversight was that add_input_randomness() and add_disk_randomness()
still sometimes are called directly from the interrupt handler, rather
than being deferred to a thread. This means that some unlucky interrupts
will be caught doing a blake2s_compress() call and potentially spinning
on input_pool.lock, which can also be taken by unprivileged users by
writing into /dev/urandom.
In order to fix this, add_timer_randomness() now checks whether it is
being called from a hard IRQ and if so, just mixes into the per-cpu IRQ
fast pool using fast_mix(), which is much faster and can be done
lock-free. A nice consequence of this, as well, is that it means hard
IRQ context FPU support is likely no longer useful.
The entropy estimation algorithm used by add_timer_randomness() is also
somewhat different than the one used for add_interrupt_randomness(). The
former looks at deltas of deltas of deltas, while the latter just waits
for 64 interrupts for one bit or for one second since the last bit. In
order to bridge these, and since add_interrupt_randomness() runs after
an add_timer_randomness() that's called from hard IRQ, we add to the
fast pool credit the related amount, and then subtract one to account
for add_interrupt_randomness()'s contribution.
A downside of this, however, is that the num argument is potentially
attacker controlled, which puts a bit more pressure on the fast_mix()
sponge to do more than it's really intended to do. As a mitigating
factor, the first 96 bits of input aren't attacker controlled (a cycle
counter followed by zeros), which means it's essentially two rounds of
siphash rather than one, which is somewhat better. It's also not that
much different from add_interrupt_randomness()'s use of the irq stack
instruction pointer register.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Filipe Manana <fdmanana@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
We need the tty fixes in here as well, as we need to revert one of them :(
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There are no code changes here; this is just a reordering of functions,
so that in subsequent commits, the timer entropy functions can call into
the interrupt ones.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Per the thread linked below, "premature next" is not considered to be a
realistic threat model, and leads to more serious security problems.
"Premature next" is the scenario in which:
- Attacker compromises the current state of a fully initialized RNG via
some kind of infoleak.
- New bits of entropy are added directly to the key used to generate the
/dev/urandom stream, without any buffering or pooling.
- Attacker then, somehow having read access to /dev/urandom, samples RNG
output and brute forces the individual new bits that were added.
- Result: the RNG never "recovers" from the initial compromise, a
so-called violation of what academics term "post-compromise security".
The usual solutions to this involve some form of delaying when entropy
gets mixed into the crng. With Fortuna, this involves multiple input
buckets. With what the Linux RNG was trying to do prior, this involves
entropy estimation.
However, by delaying when entropy gets mixed in, it also means that RNG
compromises are extremely dangerous during the window of time before
the RNG has gathered enough entropy, during which time nonces may become
predictable (or repeated), ephemeral keys may not be secret, and so
forth. Moreover, it's unclear how realistic "premature next" is from an
attack perspective, if these attacks even make sense in practice.
Put together -- and discussed in more detail in the thread below --
these constitute grounds for just doing away with the current code that
pretends to handle premature next. I say "pretends" because it wasn't
doing an especially great job at it either; should we change our mind
about this direction, we would probably implement Fortuna to "fix" the
"problem", in which case, removing the pretend solution still makes
sense.
This also reduces the crng reseed period from 5 minutes down to 1
minute. The rationale from the thread might lead us toward reducing that
even further in the future (or even eliminating it), but that remains a
topic of a future commit.
At a high level, this patch changes semantics from:
Before: Seed for the first time after 256 "bits" of estimated
entropy have been accumulated since the system booted. Thereafter,
reseed once every five minutes, but only if 256 new "bits" have been
accumulated since the last reseeding.
After: Seed for the first time after 256 "bits" of estimated entropy
have been accumulated since the system booted. Thereafter, reseed
once every minute.
Most of this patch is renaming and removing: POOL_MIN_BITS becomes
POOL_INIT_BITS, credit_entropy_bits() becomes credit_init_bits(),
crng_reseed() loses its "force" parameter since it's now always true,
the drain_entropy() function no longer has any use so it's removed,
entropy estimation is skipped if we've already init'd, the various
notifiers for "low on entropy" are now only active prior to init, and
finally, some documentation comments are cleaned up here and there.
Link: https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Nadia Heninger <nadiah@cs.ucsd.edu>
Cc: Tom Ristenpart <ristenpart@cornell.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Before, the first 64 bytes of input, regardless of how entropic it was,
would be used to mutate the crng base key directly, and none of those
bytes would be credited as having entropy. Then 256 bits of credited
input would be accumulated, and only then would the rng transition from
the earlier "fast init" phase into being actually initialized.
The thinking was that by mixing and matching fast init and real init, an
attacker who compromised the fast init state, considered easy to do
given how little entropy might be in those first 64 bytes, would then be
able to bruteforce bits from the actual initialization. By keeping these
separate, bruteforcing became impossible.
However, by not crediting potentially creditable bits from those first 64
bytes of input, we delay initialization, and actually make the problem
worse, because it means the user is drawing worse random numbers for a
longer period of time.
Instead, we can take the first 128 bits as fast init, and allow them to
be credited, and then hold off on the next 128 bits until they've
accumulated. This is still a wide enough margin to prevent bruteforcing
the rng state, while still initializing much faster.
Then, rather than trying to piecemeal inject into the base crng key at
various points, instead just extract from the pool when we need it, for
the crng_init==0 phase. Performance may even be better for the various
inputs here, since there are likely more calls to mix_pool_bytes() then
there are to get_random_bytes() during this phase of system execution.
Since the preinit injection code is gone, bootloader randomness can then
do something significantly more straight forward, removing the weird
system_wq hack in hwgenerator randomness.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
It's too hard to keep the batches synchronized, and pointless anyway,
since in !crng_ready(), we're updating the base_crng key really often,
where batching only hurts. So instead, if the crng isn't ready, just
call into get_random_bytes(). At this stage nothing is performance
critical anyhow.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Since the RNG loses freshness with system suspend/hibernation, when we
resume, immediately reseed using whatever data we can, which for this
particular case is the various timestamps regarding system suspend time,
in addition to more generally the RDSEED/RDRAND/RDTSC values that happen
whenever the crng reseeds.
On systems that suspend and resume automatically all the time -- such as
Android -- we skip the reseeding on suspend resumption, since that could
wind up being far too busy. This is the same trade-off made in
WireGuard.
In addition to reseeding upon resumption always mix into the pool these
various stamps on every power notification event.
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Currently, we do the jitter dance if two consecutive reads to the cycle
counter return different values. If they do, then we consider the cycle
counter to be fast enough that one trip through the scheduler will yield
one "bit" of credited entropy. If those two reads return the same value,
then we assume the cycle counter is too slow to show meaningful
differences.
This methodology is flawed for a variety of reasons, one of which Eric
posted a patch to fix in [1]. The issue that patch solves is that on a
system with a slow counter, you might be [un]lucky and read the counter
_just_ before it changes, so that the second cycle counter you read
differs from the first, even though there's usually quite a large period
of time in between the two. For example:
| real time | cycle counter |
| --------- | ------------- |
| 3 | 5 |
| 4 | 5 |
| 5 | 5 |
| 6 | 5 |
| 7 | 5 | <--- a
| 8 | 6 | <--- b
| 9 | 6 | <--- c
If we read the counter at (a) and compare it to (b), we might be fooled
into thinking that it's a fast counter, when in reality it is not. The
solution in [1] is to also compare counter (b) to counter (c), on the
theory that if the counter is _actually_ slow, and (a)!=(b), then
certainly (b)==(c).
This helps solve this particular issue, in one sense, but in another
sense, it mostly functions to disallow jitter entropy on these systems,
rather than simply taking more samples in that case.
Instead, this patch takes a different approach. Right now we assume that
a difference in one set of consecutive samples means one "bit" of
credited entropy per scheduler trip. We can extend this so that a
difference in two sets of consecutive samples means one "bit" of
credited entropy per /two/ scheduler trips, and three for three, and
four for four. In other words, we can increase the amount of jitter
"work" we require for each "bit", depending on how slow the cycle
counter is.
So this patch takes whole bunch of samples, sees how many of them are
different, and divides to find the amount of work required per "bit",
and also requires that at least some minimum of them are different in
order to attempt any jitter entropy.
Note that this approach is still far from perfect. It's not a real
statistical estimate on how much these samples vary; it's not a
real-time analysis of the relevant input data. That remains a project
for another time. However, it makes the same (partly flawed) assumptions
as the code that's there now, so it's probably not worse than the status
quo, and it handles the issue Eric mentioned in [1]. But, again, it's
probably a far cry from whatever a really robust version of this would
be.
[1] https://lore.kernel.org/lkml/20220421233152.58522-1-ebiggers@kernel.org/
https://lore.kernel.org/lkml/20220421192939.250680-1-ebiggers@kernel.org/
Cc: Eric Biggers <ebiggers@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
All platforms are now guaranteed to provide some value for
random_get_entropy(). In case some bug leads to this not being so, we
print a warning, because that indicates that something is really very
wrong (and likely other things are impacted too). This should never be
hit, but it's a good and cheap way of finding out if something ever is
problematic.
Since we now have viable fallback code for random_get_entropy() on all
platforms, which is, in the worst case, not worse than jiffies, we can
count on getting the best possible value out of it. That means there's
no longer a use for using jiffies as entropy input. It also means we no
longer have a reason for doing the round-robin register flow in the IRQ
handler, which was always of fairly dubious value.
Instead we can greatly simplify the IRQ handler inputs and also unify
the construction between 64-bits and 32-bits. We now collect the cycle
counter and the return address, since those are the two things that
matter. Because the return address and the irq number are likely
related, to the extent we mix in the irq number, we can just xor it into
the top unchanging bytes of the return address, rather than the bottom
changing bytes of the cycle counter as before. Then, we can do a fixed 2
rounds of SipHash/HSipHash. Finally, we use the same construction of
hashing only half of the [H]SipHash state on 32-bit and 64-bit. We're
not actually discarding any entropy, since that entropy is carried
through until the next time. And more importantly, it lets us do the
same sponge-like construction everywhere.
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
Add missing of_node_put() to avoid refcount leak.
Fixes: 00d93611f002 ("ipmi:ipmb: Add the ability to have a separate slave and master device")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Message-Id: <20220512044445.3102-1-linmq006@gmail.com>
Cc: stable@vger.kernel.org # v5.17+
Signed-off-by: Corey Minyard <cminyard@mvista.com>
|
|
remove unnecessary void* type castings.
Signed-off-by: Yu Zhe <yuzhe@nfschina.com>
Message-Id: <20220421150941.7659-1-yuzhe@nfschina.com>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
|
|
There were two identical logs in two different places, so you couldn't
tell which one was being logged. Make them unique.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
|
|
A device is available, use it.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
|
|
A device is available at all debug points, use the right interface.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
|