summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm
AgeCommit message (Collapse)AuthorFilesLines
2019-04-16KVM: x86: avoid misreporting level-triggered irqs as edge-triggered in tracingVitaly Kuznetsov1-2/+2
In __apic_accept_irq() interface trig_mode is int and actually on some code paths it is set above u8: kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to (1 << 15) & e->msi.data kvm_apic_local_deliver sets it to reg & (1 << 15). Fix the immediate issue by making 'tm' into u16. We may also want to adjust __apic_accept_irq() interface and use proper sizes for vector, level, trig_mode but this is not urgent. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: fix spectrev1 gadgetsPaolo Bonzini1-1/+3
These were found with smatch, and then generalized when applicable. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: fix warning Using plain integer as NULL pointerHariprasad Kelam1-1/+1
Changed passing argument as "0 to NULL" which resolves below sparse warning arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernelsSean Christopherson2-4/+16
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest, trigger a WARN, and/or lead to a buffer overrun in the host, e.g. rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64. KVM allows userspace to report long mode support via CPUID, even though the guest is all but guaranteed to crash if it actually tries to enable long mode. But, a pure 32-bit guest that is ignorant of long mode will happily plod along. SMM complicates things as 64-bit CPUs use a different SMRAM save state area. KVM handles this correctly for 64-bit kernels, e.g. uses the legacy save state map if userspace has hid long mode from the guest, but doesn't fare well when userspace reports long mode support on a 32-bit host kernel (32-bit KVM doesn't support 64-bit guests). Since the alternative is to crash the guest, e.g. by not loading state or explicitly requesting shutdown, unconditionally use the legacy SMRAM save state map for 32-bit KVM. If a guest has managed to get far enough to handle SMIs when running under a weird/buggy userspace hypervisor, then don't deliberately crash the guest since there are no downsides (from KVM's perspective) to allow it to continue running. Fixes: 660a5d517aaab ("KVM: x86: save/load state on SMM switch") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Don't clear EFER during SMM transitions for 32-bit vCPUSean Christopherson1-10/+11
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save state area, i.e. don't save/restore EFER across SMM transitions. KVM somewhat models this, e.g. doesn't clear EFER on entry to SMM if the guest doesn't support long mode. But during RSM, KVM unconditionally clears EFER so that it can get back to pure 32-bit mode in order to start loading CRs with their actual non-SMM values. Clear EFER only when it will be written when loading the non-SMM state so as to preserve bits that can theoretically be set on 32-bit vCPUs, e.g. KVM always emulates EFER_SCE. And because CR4.PAE is cleared only to play nice with EFER, wrap that code in the long mode check as well. Note, this may result in a compiler warning about cr4 being consumed uninitialized. Re-read CR4 even though it's technically unnecessary, as doing so allows for more readable code and RSM emulation is not a performance critical path. Fixes: 660a5d517aaab ("KVM: x86: save/load state on SMM switch") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: clear SMM flags before loading state while leaving SMMSean Christopherson3-16/+10
RSM emulation is currently broken on VMX when the interrupted guest has CR4.VMXE=1. Stop dancing around the issue of HF_SMM_MASK being set when loading SMSTATE into architectural state, e.g. by toggling it for problematic flows, and simply clear HF_SMM_MASK prior to loading architectural state (from SMRAM save state area). Reported-by: Jon Doron <arilou@gmail.com> Cc: Jim Mattson <jmattson@google.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Fixes: 5bea5123cbf0 ("KVM: VMX: check nested state and CR4.VMXE against SMM") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Open code kvm_set_hflagsSean Christopherson2-18/+18
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM save state map, i.e. kvm_smm_changed() needs to be called after state has been loaded and so cannot be done automatically when setting hflags from RSM. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Load SMRAM in a single shot when leaving SMMSean Christopherson4-90/+86
RSM emulation is currently broken on VMX when the interrupted guest has CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set when loading SMSTATE into architectural state, ideally RSM emulation itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM architectural state. Ostensibly, the only motivation for having HF_SMM_MASK set throughout the loading of state from the SMRAM save state area is so that the memory accesses from GET_SMSTATE() are tagged with role.smm. Load all of the SMRAM save state area from guest memory at the beginning of RSM emulation, and load state from the buffer instead of reading guest memory one-by-one. This paves the way for clearing HF_SMM_MASK prior to loading state, and also aligns RSM with the enter_smm() behavior, which fills a buffer and writes SMRAM save state in a single go. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: nVMX: Expose RDPMC-exiting only when guest supports PMULiran Alon1-0/+25
Issue was discovered when running kvm-unit-tests on KVM running as L1 on top of Hyper-V. When vmx_instruction_intercept unit-test attempts to run RDPMC to test RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU. Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC. The reason vmx_instruction_intercept unit-test attempts to run RDPMC even though Hyper-V doesn't support PMU is because L1 expose to L2 support for RDPMC-exiting. Which is reasonable to assume that is supported only in case CPU supports PMU to being with. Above issue can easily be simulated by modifying vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with "-cpu host,+vmx,-pmu" and run unit-test. To handle issue, change KVM to expose RDPMC-exiting only when guest supports PMU. Reported-by: Saar Amar <saaramar@microsoft.com> Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Raise #GP when guest vCPU do not support PMULiran Alon1-0/+4
Before this change, reading a VMware pseduo PMC will succeed even when PMU is not supported by guest. This can easily be seen by running kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option. Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16x86/kvm: move kvm_load/put_guest_xcr0 into atomic contextWANG Chao4-6/+12
guest xcr0 could leak into host when MCE happens in guest mode. Because do_machine_check() could schedule out at a few places. For example: kvm_load_guest_xcr0 ... kvm_x86_ops->run(vcpu) { vmx_vcpu_run vmx_complete_atomic_exit kvm_machine_check do_machine_check do_memory_failure memory_failure lock_page In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule out, host cpu has guest xcr0 loaded (0xff). In __switch_to { switch_fpu_finish copy_kernel_to_fpregs XRSTORS If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in and tries to reinitialize fpu by restoring init fpu state. Same story as last #GP, except we get DOUBLE FAULT this time. Cc: stable@vger.kernel.org Signed-off-by: WANG Chao <chao.wang@ucloud.cn> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: svm: make sure NMI is injected after nmi_singlestepVitaly Kuznetsov1-0/+3
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P, the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing shows that we're sometimes able to deliver a few but never all. When we're trying to inject an NMI we may fail to do so immediately for various reasons, however, we still need to inject it so enable_nmi_window() arms nmi_singlestep mode. #DB occurs as expected, but we're not checking for pending NMIs before entering the guest and unless there's a different event to process, the NMI will never get delivered. Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure pending NMIs are checked and possibly injected. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16svm/avic: Fix invalidate logical APIC id entrySuthikulpanit, Suravee1-1/+2
Only clear the valid bit when invalidate logical APIC id entry. The current logic clear the valid bit, but also set the rest of the bits (including reserved bits) to 1. Fixes: 98d90582be2e ('svm: Fix AVIC DFR and LDR handling') Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16Revert "svm: Fix AVIC incomplete IPI emulation"Suthikulpanit, Suravee1-4/+15
This reverts commit bb218fbcfaaa3b115d4cd7a43c0ca164f3a96e57. As Oren Twaig pointed out the old discussion: https://patchwork.kernel.org/patch/8292231/ that the change coud potentially cause an extra IPI to be sent to the destination vcpu because the AVIC hardware already set the IRR bit before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running). Since writting to ICR and ICR2 will also set the IRR. If something triggers the destination vcpu to get scheduled before the emulation finishes, then this could result in an additional IPI. Also, the issue mentioned in the commit bb218fbcfaaa was misdiagnosed. Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Reported-by: Oren Twaig <oren@scalemp.com> Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16kvm: mmu: Fix overflow on kvm mmu page limit calculationBen Gardon3-10/+9
KVM bases its memory usage limits on the total number of guest pages across all memslots. However, those limits, and the calculations to produce them, use 32 bit unsigned integers. This can result in overflow if a VM has more guest pages that can be represented by a u32. As a result of this overflow, KVM can use a low limit on the number of MMU pages it will allocate. This makes KVM unable to map all of guest memory at once, prompting spurious faults. Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: nVMX: always use early vmcs check when EPT is disabledPaolo Bonzini1-2/+20
The remaining failures of vmx.flat when EPT is disabled are caused by incorrectly reflecting VMfails to the L1 hypervisor. What happens is that nested_vmx_restore_host_state corrupts the guest CR3, reloading it with the host's shadow CR3 instead, because it blindly loads GUEST_CR3 from the vmcs01. For simplicity let's just always use hardware VMCS checks when EPT is disabled. This way, nested_vmx_restore_host_state is not reached at all (or at least shouldn't be reached). Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: nVMX: allow tests to use bad virtual-APIC page addressPaolo Bonzini3-10/+19
As mentioned in the comment, there are some special cases where we can simply clear the TPR shadow bit from the CPU-based execution controls in the vmcs02. Handle them so that we can remove some XFAILs from vmx.flat. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-15KVM: x86/mmu: Fix an inverted list_empty() check when zapping sptesSean Christopherson1-1/+1
A recently introduced helper for handling zap vs. remote flush incorrectly bails early, effectively leaking defunct shadow pages. Manifests as a slab BUG when exiting KVM due to the shadow pages being alive when their associated cache is destroyed. ========================================================================== BUG kvm_mmu_page_header: Objects remaining in kvm_mmu_page_header on ... -------------------------------------------------------------------------- Disabling lock debugging due to kernel taint INFO: Slab 0x00000000fc436387 objects=26 used=23 fp=0x00000000d023caee ... CPU: 6 PID: 4315 Comm: rmmod Tainted: G B 5.1.0-rc2+ #19 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x46/0x5b slab_err+0xad/0xd0 ? on_each_cpu_mask+0x3c/0x50 ? ksm_migrate_page+0x60/0x60 ? on_each_cpu_cond_mask+0x7c/0xa0 ? __kmalloc+0x1ca/0x1e0 __kmem_cache_shutdown+0x13a/0x310 shutdown_cache+0xf/0x130 kmem_cache_destroy+0x1d5/0x200 kvm_mmu_module_exit+0xa/0x30 [kvm] kvm_arch_exit+0x45/0x60 [kvm] kvm_exit+0x6f/0x80 [kvm] vmx_exit+0x1a/0x50 [kvm_intel] __x64_sys_delete_module+0x153/0x1f0 ? exit_to_usermode_loop+0x88/0xc0 do_syscall_64+0x4f/0x100 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: a21136345cb6f ("KVM: x86/mmu: Split remote_flush+zap case out of kvm_mmu_flush_or_zap()") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05KVM: x86: nVMX: fix x2APIC VTPR read interceptMarc Orr1-1/+1
Referring to the "VIRTUALIZING MSR-BASED APIC ACCESSES" chapter of the SDM, when "virtualize x2APIC mode" is 1 and "APIC-register virtualization" is 0, a RDMSR of 808H should return the VTPR from the virtual APIC page. However, for nested, KVM currently fails to disable the read intercept for this MSR. This means that a RDMSR exit takes precedence over "virtualize x2APIC mode", and KVM passes through L1's TPR to L2, instead of sourcing the value from L2's virtual APIC page. This patch fixes the issue by disabling the read intercept, in VMCS02, for the VTPR when "APIC-register virtualization" is 0. The issue described above and fix prescribed here, were verified with a related patch in kvm-unit-tests titled "Test VMX's virtualize x2APIC mode w/ nested". Signed-off-by: Marc Orr <marcorr@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Fixes: c992384bde84f ("KVM: vmx: speed up MSR bitmap merge") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05KVM: x86: nVMX: close leak of L0's x2APIC MSRs (CVE-2019-3887)Marc Orr1-28/+44
The nested_vmx_prepare_msr_bitmap() function doesn't directly guard the x2APIC MSR intercepts with the "virtualize x2APIC mode" MSR. As a result, we discovered the potential for a buggy or malicious L1 to get access to L0's x2APIC MSRs, via an L2, as follows. 1. L1 executes WRMSR(IA32_SPEC_CTRL, 1). This causes the spec_ctrl variable, in nested_vmx_prepare_msr_bitmap() to become true. 2. L1 disables "virtualize x2APIC mode" in VMCS12. 3. L1 enables "APIC-register virtualization" in VMCS12. Now, KVM will set VMCS02's x2APIC MSR intercepts from VMCS12, and then set "virtualize x2APIC mode" to 0 in VMCS02. Oops. This patch closes the leak by explicitly guarding VMCS02's x2APIC MSR intercepts with VMCS12's "virtualize x2APIC mode" control. The scenario outlined above and fix prescribed here, were verified with a related patch in kvm-unit-tests titled "Add leak scenario to virt_x2apic_mode_test". Note, it looks like this issue may have been introduced inadvertently during a merge---see 15303ba5d1cd. Signed-off-by: Marc Orr <marcorr@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05KVM: SVM: prevent DBG_DECRYPT and DBG_ENCRYPT overflowDavid Rientjes1-3/+9
This ensures that the address and length provided to DBG_DECRYPT and DBG_ENCRYPT do not cause an overflow. At the same time, pass the actual number of pages pinned in memory to sev_unpin_memory() as a cleanup. Reported-by: Cfir Cohen <cfir@google.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05kvm: svm: fix potential get_num_contig_pages overflowDavid Rientjes1-5/+5
get_num_contig_pages() could potentially overflow int so make its type consistent with its usage. Reported-by: Cfir Cohen <cfir@google.com> Cc: stable@vger.kernel.org Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: x86: update %rip after emulating IOSean Christopherson1-10/+26
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g. OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM that it is doing a reset, e.g. Qemu jams vCPU state and resumes running. To avoid corruping %rip after such a reset, commit 0967b7bf1c22 ("KVM: Skip pio instruction when it is emulated, not executed") changed the behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the instruction prior to exiting to userspace. Full emulation doesn't need such tricks becase re-emulating the instruction will naturally handle %rip being changed to point at the reset vector. Updating %rip prior to executing to userspace has several drawbacks: - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation fails it will likely yell about the wrong address. - Single step exits to userspace for are effectively dropped as KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO. - Behavior of PIO emulation is different depending on whether it goes down the fast path or the slow path. Rather than skip the PIO instruction before exiting to userspace, snapshot the linear %rip and cancel PIO completion if the current value does not match the snapshot. For a 64-bit vCPU, i.e. the most common scenario, the snapshot and comparison has negligible overhead as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra VMREAD in this case. All other alternatives to snapshotting the linear %rip that don't rely on an explicit reset announcenment suffer from one corner case or another. For example, canceling PIO completion on any write to %rip fails if userspace does a save/restore of %rip, and attempting to avoid that issue by canceling PIO only if %rip changed then fails if PIO collides with the reset %rip. Attempting to zero in on the exact reset vector won't work for APs, which means adding more hooks such as the vCPU's MP_STATE, and so on and so forth. Checking for a linear %rip match technically suffers from corner cases, e.g. userspace could theoretically rewrite the underlying code page and expect a different instruction to execute, or the guest hardcodes a PIO reset at 0xfffffff0, but those are far, far outside of what can be considered normal operation. Fixes: 432baf60eee3 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O") Cc: <stable@vger.kernel.org> Reported-by: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28x86/kvm/hyper-v: avoid spurious pending stimer on vCPU initVitaly Kuznetsov1-2/+7
When userspace initializes guest vCPUs it may want to zero all supported MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/ HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d89a ("kvm/x86: Update SynIC timers on guest entry only") we began doing stimer_mark_pending() unconditionally on every config change. The issue I'm observing manifests itself as following: - Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER; - kvm_hv_has_stimer_pending() starts returning true; - kvm_vcpu_has_events() starts returning true; - kvm_arch_vcpu_runnable() starts returning true; - when kvm_arch_vcpu_ioctl_run() gets into (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case: - kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns immediately, avoiding normal wait path; - -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing userspace to retry. So instead of normal wait path we get a busy loop on all secondary vCPUs before they get INIT signal. This seems to be undesirable, especially given that this happens even when Hyper-V extensions are not used. Generally, it seems to be pointless to mark an stimer as pending in stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing kvm_hv_process_stimers() will do is clear the corresponding bit. We may just not mark disabled timers as pending instead. Fixes: f3b138c5d89a ("kvm/x86: Update SynIC timers on guest entry only") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrsXiaoyao Li1-1/+2
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if host doesn't suppot it. We should move it to array emulated_msrs from arry msrs_to_save, to report to userspace that guest support this msr. Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hostsSean Christopherson3-14/+12
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91a0df4 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28kvm: mmu: Used range based flushing in slot_handle_level_rangeBen Gardon1-2/+5
Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address in slot_handle_level_range. When range based flushes are not enabled kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs. This changes the behavior of many functions that indirectly use slot_handle_level_range, iff the range based flushes are enabled. The only potential problem I see with this is that kvm->tlbs_dirty will be cleared less often, however the only caller of slot_handle_level_range that checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which checks it and does a kvm_flush_remote_tlbs after calling kvm_unmap_hva_range anyway. Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and without this patch. The patch introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()Wei Yang2-7/+3
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is non-zero. * nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages() never return zero. Based on these two reasons, we can merge the two *if* clause and use the return value from kvm_mmu_calculate_mmu_pages() directly. This simplify the code and also eliminate the possibility for reader to believe nr_mmu_pages would be zero. Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28kvm: nVMX: Add a vmentry check for HOST_SYSENTER_ESP and HOST_SYSENTER_EIP ↵Krish Sadhukhan1-0/+5
fields According to section "Checks on VMX Controls" in Intel SDM vol 3C, the following check is performed on vmentry of L2 guests: On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address. Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)Singh, Brijesh3-3/+43
Errata#1096: On a nested data page fault when CR.SMAP=1 and the guest data read generates a SMAP violation, GuestInstrBytes field of the VMCB on a VMEXIT will incorrectly return 0h instead the correct guest instruction bytes . Recommend Workaround: To determine what instruction the guest was executing the hypervisor will have to decode the instruction at the instruction pointer. The recommended workaround can not be implemented for the SEV guest because guest memory is encrypted with the guest specific key, and instruction decoder will not be able to decode the instruction bytes. If we hit this errata in the SEV guest then log the message and request a guest shutdown. Reported-by: Venkatesh Srinivas <venkateshs@google.com> Cc: Jim Mattson <jmattson@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'Sean Christopherson2-16/+26
The cr4_pae flag is a bit of a misnomer, its purpose is really to track whether the guest PTE that is being shadowed is a 4-byte entry or an 8-byte entry. Prior to supporting nested EPT, the size of the gpte was reflected purely by CR4.PAE. KVM fudged things a bit for direct sptes, but it was mostly harmless since the size of the gpte never mattered. Now that a spte may be tracking an indirect EPT entry, relying on CR4.PAE is wrong and ill-named. For direct shadow pages, force the gpte_size to '1' as they are always 8-byte entries; EPT entries can only be 8-bytes and KVM always uses 8-byte entries for NPT and its identity map (when running with EPT but not unrestricted guest). Likewise, nested EPT entries are always 8-bytes. Nested EPT presents a unique scenario as the size of the entries are not dictated by CR4.PAE, but neither is the shadow page a direct map. To handle this scenario, set cr0_wp=1 and smap_andnot_wp=1, an otherwise impossible combination, to denote a nested EPT shadow page. Use the information to avoid incorrectly zapping an unsync'd indirect page in __kvm_sync_page(). Providing a consistent and accurate gpte_size fixes a bug reported by Vitaly where fast_cr3_switch() always fails when switching from L2 to L1 as kvm_mmu_get_page() would force role.cr4_pae=0 for direct pages, whereas kvm_calc_mmu_role_common() would set it according to CR4.PAE. Fixes: 7dcd575520082 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed") Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: nVMX: Do not inherit quadrant and invalid for the root shadow EPTSean Christopherson1-4/+9
Explicitly zero out quadrant and invalid instead of inheriting them from the root_mmu. Functionally, this patch is a nop as we (should) never set quadrant for a direct mapped (EPT) root_mmu and nested EPT is only allowed if EPT is used for L1, and the root_mmu will never be invalid at this point. Explicitly setting flags sets the stage for repurposing the legacy paging bits in role, e.g. nxe, cr0_wp, and sm{a,e}p_andnot_wp, at which point 'smm' would be the only flag to be inherited from root_mmu. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds18-574/+618
Pull KVM updates from Paolo Bonzini: "ARM: - some cleanups - direct physical timer assignment - cache sanitization for 32-bit guests s390: - interrupt cleanup - introduction of the Guest Information Block - preparation for processor subfunctions in cpu models PPC: - bug fixes and improvements, especially related to machine checks and protection keys x86: - many, many cleanups, including removing a bunch of MMU code for unnecessary optimizations - AVIC fixes Generic: - memcg accounting" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits) kvm: vmx: fix formatting of a comment KVM: doc: Document the life cycle of a VM and its resources MAINTAINERS: Add KVM selftests to existing KVM entry Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()" KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char() KVM: PPC: Fix compilation when KVM is not enabled KVM: Minor cleanups for kvm_main.c KVM: s390: add debug logging for cpu model subfunctions KVM: s390: implement subfunction processor calls arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2 KVM: arm/arm64: Remove unused timer variable KVM: PPC: Book3S: Improve KVM reference counting KVM: PPC: Book3S HV: Fix build failure without IOMMU support Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()" x86: kvmguest: use TSC clocksource if invariant TSC is exposed KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes() KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children ...
2019-03-15kvm: vmx: fix formatting of a commentPaolo Bonzini1-5/+5
Eliminate a gratuitous conflict with 5.0. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-15Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"Ben Gardon1-13/+3
This reverts commit 71883a62fcd6c70639fa12cda733378b4d997409. The above commit contains an optimization to kvm_zap_gfn_range which uses gfn-limited TLB flushes, if enabled. If using these limited flushes, kvm_zap_gfn_range passes lock_flush_tlb=false to slot_handle_level_range which creates a race when the function unlocks to call cond_resched. See an example of this race below: CPU 0 CPU 1 CPU 3 // zap_direct_gfn_range mmu_lock() // *ptep == pte_1 *ptep = 0 if (lock_flush_tlb) flush_tlbs() mmu_unlock() // In invalidate range // MMU notifier mmu_lock() if (pte != 0) *ptep = 0 flush = true if (flush) flush_remote_tlbs() mmu_unlock() return // Host MM reallocates // page previously // backing guest memory. // Guest accesses // invalid page // through pte_1 // in its TLB!! Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and without this patch. The patch introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22KVM: MMU: record maximum physical address width in kvm_mmu_extended_roleYu Zhang1-0/+1
Previously, commit 7dcd57552008 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed") offered some optimization to avoid the unnecessary reconfiguration. Yet one scenario is broken - when cpuid changes VM's maximum physical address width, reconfiguration is needed to reset the reserved bits. Also, the TDP may need to reset its shadow_root_level when this value is changed. To fix this, a new field, maxphyaddr, is introduced in the extended role structure to keep track of the configured guest physical address width. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22kvm: x86: Return LA57 feature based on hardware capabilityYu Zhang1-0/+4
Previously, 'commit 372fddf70904 ("x86/mm: Introduce the 'no5lvl' kernel parameter")' cleared X86_FEATURE_LA57 in boot_cpu_data, if Linux chooses to not run in 5-level paging mode. Yet boot_cpu_data is queried by do_cpuid_ent() as the host capability later when creating vcpus, and Qemu will not be able to detect this feature and create VMs with LA57 feature. As discussed earlier, VMs can still benefit from extended linear address width, e.g. to enhance features like ASLR. So we would like to fix this, by return the true hardware capability when Qemu queries. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22x86/kvm/mmu: fix switch between root and guest MMUsVitaly Kuznetsov1-4/+13
Commit 14c07ad89f4d ("x86/kvm/mmu: introduce guest_mmu") brought one subtle change: previously, when switching back from L2 to L1, we were resetting MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context() when we re-target vcpu->arch.mmu pointer. The change itself looks logical: if nested_ept_init_mmu_context() changes something than nested_ept_uninit_mmu_context() restores it back. There is, however, one thing: the following call chain: nested_vmx_load_cr3() kvm_mmu_new_cr3() __kvm_mmu_new_cr3() fast_cr3_switch() cached_root_available() now happens with MMU hooks pointing to the new MMU (root MMU in our case) while previously it was happening with the old one. cached_root_available() tries to stash current root but it is incorrect to read current CR3 with mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this is a non-issue because we don't switch MMU). While we could've tried to guess that we're switching between MMUs and call the right ->get_cr3() from cached_root_available() this seems to be overly complicated. Instead, just stash the corresponding CR3 when setting root_hpa and make cached_root_available() use the stashed value. Fixes: 14c07ad89f4d ("x86/kvm/mmu: introduce guest_mmu") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()Sean Christopherson1-23/+10
...via a new helper, __kvm_mmu_zap_all(). An alternative to passing a 'bool mmio_only' would be to pass a callback function to filter the shadow page, i.e. to make __kvm_mmu_zap_all() generic and reusable, but zapping all shadow pages is a last resort, i.e. making the helper less extensible is a feature of sorts. And the explicit MMIO parameter makes it easy to preserve the WARN_ON_ONCE() if a restart is triggered when zapping MMIO sptes. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping childrenSean Christopherson1-2/+5
Paolo expressed a concern that kvm_mmu_zap_mmio_sptes() could have a quadratic runtime[1], i.e. restarting the spte walk while zapping only MMIO sptes could result in re-walking large portions of the list over and over due to the non-MMIO sptes encountered before the restart not being removed. At the time, the concern was legitimate as the walk was restarted when any spte was zapped. But that is no longer the case as the walk is now restarted iff one or more children have been zapped, which is necessary because zapping children makes the active_mmu_pages list unstable. Furthermore, it should be impossible for an MMIO spte to have children, i.e. zapping an MMIO spte should never result in zapping children. In other words, kvm_mmu_zap_mmio_sptes() should never restart its walk, and so should always execute in linear time. WARN if this assertion fails. Although it should never be needed, leave the restart logic in place. In normal operation, the cost is at worst an extra CMP+Jcc, and if for some reason the list does become unstable, not restarting would likely crash KVM, or worse, the kernel. [1] https://patchwork.kernel.org/patch/10756589/#22452085 Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86/mmu: Differentiate between nr zapped and list unstableSean Christopherson1-10/+26
The return value of kvm_mmu_prepare_zap_page() has evolved to become overloaded to convey two separate pieces of information. 1) was at least one page zapped and 2) has the list of MMU pages become unstable. In it's original incarnation (as kvm_mmu_zap_page()), there was no return value at all. Commit 0738541396be ("KVM: MMU: awareness of new kvm_mmu_zap_page behaviour") added a return value in preparation for commit 4731d4c7a077 ("KVM: MMU: out of sync shadow core"). Although the return value was of type 'int', it was actually used as a boolean to indicate whether or not active_mmu_pages may have become unstable due to zapping children. Walking a list with list_for_each_entry_safe() only protects against deleting/moving the current entry, i.e. zapping a child page would break iteration due to modifying any number of entries. Later, commit 60c8aec6e2c9 ("KVM: MMU: use page array in unsync walk") modified mmu_zap_unsync_children() to return an approximation of the number of children zapped. This was not intentional, it was simply a side effect of how the code was written. The unintented side affect was then morphed into an actual feature by commit 77662e0028c7 ("KVM: MMU: fix kvm_mmu_zap_page() and its calling path"), which modified kvm_mmu_change_mmu_pages() to use the number of zapped pages when determining the number of MMU pages in use by the VM. Finally, commit 54a4f0239f2e ("KVM: MMU: make kvm_mmu_zap_page() return the number of pages it actually freed") added the initial page to the return value to make its behavior more consistent with what most users would expect. Incorporating the initial parent page in the return value of kvm_mmu_zap_page() breaks the original usage of restarting a list walk on a non-zero return value to handle a potentially unstable list, i.e. walks will unnecessarily restart when any page is zapped. Fix this by restoring the original behavior of kvm_mmu_zap_page(), i.e. return a boolean to indicate that the list may be unstable and move the number of zapped children to a dedicated parameter. Since the majority of callers to kvm_mmu_prepare_zap_page() don't care about either return value, preserve the current definition of kvm_mmu_prepare_zap_page() by making it a wrapper of a new helper, __kvm_mmu_prepare_zap_page(). This avoids having to update every call site and also provides cleaner code for functions that only care about the number of pages zapped. Fixes: 54a4f0239f2e ("KVM: MMU: make kvm_mmu_zap_page() return the number of pages it actually freed") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: MMU: fast invalidate all pages"Sean Christopherson2-98/+1
Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches from the original series[1], now that all users of the fast invalidate mechanism are gone. This reverts commit 5304b8d37c2a5ebca48330f5e7868d240eafbed1. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86/mmu: Voluntarily reschedule as needed when zapping all sptesSean Christopherson1-1/+2
Call cond_resched_lock() when zapping all sptes to reschedule if needed or to release and reacquire mmu_lock in case of contention. There is no need to flush or zap when temporarily dropping mmu_lock as zapping all sptes is done only when the owning userspace VMM has exited or when the VM is being destroyed, i.e. there is no interplay with memslots or MMIO generations to worry about. Be paranoid and restart the walk if mmu_lock is dropped to avoid any potential issues with consuming a stale iterator. The overhead in doing so is negligible as at worst there will be a few root shadow pages at the head of the list, i.e. the iterator is essentially the head of the list already. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86/mmu: skip over invalid root pages when zapping all sptesSean Christopherson1-1/+4
...to guarantee forward progress. When zapped, root pages are marked invalid and moved to the head of the active pages list until they are explicitly freed. Theoretically, having unzappable root pages at the head of the list could prevent kvm_mmu_zap_all() from making forward progress were a future patch to add a loop restart after processing a page, e.g. to drop mmu_lock on contention. Although kvm_mmu_prepare_zap_page() can theoretically take action on invalid pages, e.g. to zap unsync children, functionally it's not necessary (root pages will be re-zapped when freed) and practically speaking the odds of e.g. @unsync or @unsync_children becoming %true while zapping all pages is basically nil. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: x86: use the fast way to invalidate all pages"Sean Christopherson2-1/+16
Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all(). Flushing all shadow entries is only done during VM teardown, i.e. kvm_arch_flush_shadow_all() is only called when the associated MM struct is being released or when the VM instance is being freed. Although the performance of teardown itself isn't critical, KVM should still voluntarily schedule to play nice with the rest of the kernel; but that can be done without the fast invalidate mechanism in a future patch. This reverts commit 6ca18b6950f8dee29361722f28f69847724b276f. Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: MMU: show mmu_valid_gen in shadow page related tracepoints"Sean Christopherson1-12/+9
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit 2248b023219251908aedda0621251cffc548f258. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: MMU: add tracepoint for kvm_mmu_invalidate_all_pages"Sean Christopherson2-22/+0
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit 35006126f024f68727c67001b9cb703c38f69268. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: MMU: zap pages in batch"Sean Christopherson1-11/+24
Unwinding optimizations related to obsolete pages is a step towards removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit e7d11c7a894986a13817c1c001e1e7668c5c4eb4. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: MMU: collapse TLB flushes when zap all pages"Sean Christopherson1-28/+3
Unwinding optimizations related to obsolete pages is a step towards removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit f34d251d66ba263c077ed9d2bbd1874339a4c887. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: MMU: reclaim the zapped-obsolete page first"Sean Christopherson2-18/+4
Unwinding optimizations related to obsolete pages is a step towards removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit 365c886860c4ba670d245e762b23987c912c129a. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>