diff options
author | Mark Brown <broonie@kernel.org> | 2018-08-10 17:31:24 +0100 |
---|---|---|
committer | Mark Brown <broonie@kernel.org> | 2018-08-10 17:31:24 +0100 |
commit | d22d59362b7b2c749245f1269d447011c76ca41d (patch) | |
tree | b3fc0673f62394dc5ed417eac6bad485a28baf25 /Documentation | |
parent | a8afa92ec0d9312b23fd291aa8db95da266f2d5f (diff) | |
parent | 46fc033eba42f5a4fb583b2ab53f0a9918468452 (diff) | |
download | linux-d22d59362b7b2c749245f1269d447011c76ca41d.tar.bz2 |
Merge branch 'regulator-4.19' into regulator-next
Diffstat (limited to 'Documentation')
8 files changed, 493 insertions, 9 deletions
diff --git a/Documentation/ABI/testing/sysfs-driver-bd9571mwv-regulator b/Documentation/ABI/testing/sysfs-driver-bd9571mwv-regulator new file mode 100644 index 000000000000..4d63a7904b94 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-driver-bd9571mwv-regulator @@ -0,0 +1,27 @@ +What: /sys/bus/i2c/devices/.../bd9571mwv-regulator.*.auto/backup_mode +Date: Jul 2018 +KernelVersion: 4.19 +Contact: Geert Uytterhoeven <geert+renesas@glider.be> +Description: Read/write the current state of DDR Backup Mode, which controls + if DDR power rails will be kept powered during system suspend. + ("on"/"1" = enabled, "off"/"0" = disabled). + Two types of power switches (or control signals) can be used: + A. With a momentary power switch (or pulse signal), DDR + Backup Mode is enabled by default when available, as the + PMIC will be configured only during system suspend. + B. With a toggle power switch (or level signal), the + following steps must be followed exactly: + 1. Configure PMIC for backup mode, to change the role of + the accessory power switch from a power switch to a + wake-up switch, + 2. Switch accessory power switch off, to prepare for + system suspend, which is a manual step not controlled + by software, + 3. Suspend system, + 4. Switch accessory power switch on, to resume the + system. + DDR Backup Mode must be explicitly enabled by the user, + to invoke step 1. + See also Documentation/devicetree/bindings/mfd/bd9571mwv.txt. +Users: User space applications for embedded boards equipped with a + BD9571MWV PMIC. diff --git a/Documentation/devicetree/bindings/arm/msm/qcom,llcc.txt b/Documentation/devicetree/bindings/arm/msm/qcom,llcc.txt new file mode 100644 index 000000000000..5e85749262ae --- /dev/null +++ b/Documentation/devicetree/bindings/arm/msm/qcom,llcc.txt @@ -0,0 +1,26 @@ +== Introduction== + +LLCC (Last Level Cache Controller) provides last level of cache memory in SOC, +that can be shared by multiple clients. Clients here are different cores in the +SOC, the idea is to minimize the local caches at the clients and migrate to +common pool of memory. Cache memory is divided into partitions called slices +which are assigned to clients. Clients can query the slice details, activate +and deactivate them. + +Properties: +- compatible: + Usage: required + Value type: <string> + Definition: must be "qcom,sdm845-llcc" + +- reg: + Usage: required + Value Type: <prop-encoded-array> + Definition: Start address and the the size of the register region. + +Example: + + cache-controller@1100000 { + compatible = "qcom,sdm845-llcc"; + reg = <0x1100000 0x250000>; + }; diff --git a/Documentation/devicetree/bindings/regulator/cpcap-regulator.txt b/Documentation/devicetree/bindings/regulator/cpcap-regulator.txt index 675f4437ce92..36f5e2f5cc0f 100644 --- a/Documentation/devicetree/bindings/regulator/cpcap-regulator.txt +++ b/Documentation/devicetree/bindings/regulator/cpcap-regulator.txt @@ -5,6 +5,7 @@ Requires node properties: - "compatible" value one of: "motorola,cpcap-regulator" "motorola,mapphone-cpcap-regulator" + "motorola,xoom-cpcap-regulator" Required regulator properties: - "regulator-name" diff --git a/Documentation/devicetree/bindings/regulator/pfuze100.txt b/Documentation/devicetree/bindings/regulator/pfuze100.txt index f0ada3b14d70..c7610718adff 100644 --- a/Documentation/devicetree/bindings/regulator/pfuze100.txt +++ b/Documentation/devicetree/bindings/regulator/pfuze100.txt @@ -1,9 +1,18 @@ PFUZE100 family of regulators Required properties: -- compatible: "fsl,pfuze100", "fsl,pfuze200", "fsl,pfuze3000" +- compatible: "fsl,pfuze100", "fsl,pfuze200", "fsl,pfuze3000", "fsl,pfuze3001" - reg: I2C slave address +Optional properties: +- fsl,pfuze-support-disable-sw: Boolean, if present disable all unused switch + regulators to save power consumption. Attention, ensure that all important + regulators (e.g. DDR ref, DDR supply) has set the "regulator-always-on" + property. If not present, the switched regualtors are always on and can't be + disabled. This binding is a workaround to keep backward compatibility with + old dtb's which rely on the fact that the switched regulators are always on + and don't mark them explicit as "regulator-always-on". + Required child node: - regulators: This is the list of child nodes that specify the regulator initialization data for defined regulators. Please refer to below doc @@ -16,6 +25,8 @@ Required child node: sw1ab,sw2,sw3a,sw3b,swbst,vsnvs,vrefddr,vgen1~vgen6,coin --PFUZE3000 sw1a,sw1b,sw2,sw3,swbst,vsnvs,vrefddr,vldo1,vldo2,vccsd,v33,vldo3,vldo4 + --PFUZE3001 + sw1,sw2,sw3,vsnvs,vldo1,vldo2,vccsd,v33,vldo3,vldo4 Each regulator is defined using the standard binding for regulators. @@ -303,3 +314,76 @@ Example 3: PFUZE3000 }; }; }; + +Example 4: PFUZE 3001 + + pfuze3001: pmic@8 { + compatible = "fsl,pfuze3001"; + reg = <0x08>; + + regulators { + sw1_reg: sw1 { + regulator-min-microvolt = <700000>; + regulator-max-microvolt = <3300000>; + regulator-boot-on; + regulator-always-on; + }; + + sw2_reg: sw2 { + regulator-min-microvolt = <1500000>; + regulator-max-microvolt = <3300000>; + regulator-boot-on; + regulator-always-on; + }; + + sw3_reg: sw3 { + regulator-min-microvolt = <900000>; + regulator-max-microvolt = <1650000>; + regulator-boot-on; + regulator-always-on; + }; + + snvs_reg: vsnvs { + regulator-min-microvolt = <1000000>; + regulator-max-microvolt = <3000000>; + regulator-boot-on; + regulator-always-on; + }; + + vgen1_reg: vldo1 { + regulator-min-microvolt = <1800000>; + regulator-max-microvolt = <3300000>; + regulator-always-on; + }; + + vgen2_reg: vldo2 { + regulator-min-microvolt = <800000>; + regulator-max-microvolt = <1550000>; + regulator-always-on; + }; + + vgen3_reg: vccsd { + regulator-min-microvolt = <2850000>; + regulator-max-microvolt = <3300000>; + regulator-always-on; + }; + + vgen4_reg: v33 { + regulator-min-microvolt = <2850000>; + regulator-max-microvolt = <3300000>; + regulator-always-on; + }; + + vgen5_reg: vldo3 { + regulator-min-microvolt = <1800000>; + regulator-max-microvolt = <3300000>; + regulator-always-on; + }; + + vgen6_reg: vldo4 { + regulator-min-microvolt = <1800000>; + regulator-max-microvolt = <3300000>; + regulator-always-on; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt new file mode 100644 index 000000000000..7ef2dbe48e8a --- /dev/null +++ b/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt @@ -0,0 +1,160 @@ +Qualcomm Technologies, Inc. RPMh Regulators + +rpmh-regulator devices support PMIC regulator management via the Voltage +Regulator Manager (VRM) and Oscillator Buffer (XOB) RPMh accelerators. The APPS +processor communicates with these hardware blocks via a Resource State +Coordinator (RSC) using command packets. The VRM allows changing three +parameters for a given regulator: enable state, output voltage, and operating +mode. The XOB allows changing only a single parameter for a given regulator: +its enable state. Despite its name, the XOB is capable of controlling the +enable state of any PMIC peripheral. It is used for clock buffers, low-voltage +switches, and LDO/SMPS regulators which have a fixed voltage and mode. + +======================= +Required Node Structure +======================= + +RPMh regulators must be described in two levels of device nodes. The first +level describes the PMIC containing the regulators and must reside within an +RPMh device node. The second level describes each regulator within the PMIC +which is to be used on the board. Each of these regulators maps to a single +RPMh resource. + +The names used for regulator nodes must match those supported by a given PMIC. +Supported regulator node names: + PM8998: smps1 - smps13, ldo1 - ldo28, lvs1 - lvs2 + PMI8998: bob + PM8005: smps1 - smps4 + +======================== +First Level Nodes - PMIC +======================== + +- compatible + Usage: required + Value type: <string> + Definition: Must be one of: "qcom,pm8998-rpmh-regulators", + "qcom,pmi8998-rpmh-regulators" or + "qcom,pm8005-rpmh-regulators". + +- qcom,pmic-id + Usage: required + Value type: <string> + Definition: RPMh resource name suffix used for the regulators found on + this PMIC. Typical values: "a", "b", "c", "d", "e", "f". + +- vdd-s1-supply +- vdd-s2-supply +- vdd-s3-supply +- vdd-s4-supply + Usage: optional (PM8998 and PM8005 only) + Value type: <phandle> + Definition: phandle of the parent supply regulator of one or more of the + regulators for this PMIC. + +- vdd-s5-supply +- vdd-s6-supply +- vdd-s7-supply +- vdd-s8-supply +- vdd-s9-supply +- vdd-s10-supply +- vdd-s11-supply +- vdd-s12-supply +- vdd-s13-supply +- vdd-l1-l27-supply +- vdd-l2-l8-l17-supply +- vdd-l3-l11-supply +- vdd-l4-l5-supply +- vdd-l6-supply +- vdd-l7-l12-l14-l15-supply +- vdd-l9-supply +- vdd-l10-l23-l25-supply +- vdd-l13-l19-l21-supply +- vdd-l16-l28-supply +- vdd-l18-l22-supply +- vdd-l20-l24-supply +- vdd-l26-supply +- vin-lvs-1-2-supply + Usage: optional (PM8998 only) + Value type: <phandle> + Definition: phandle of the parent supply regulator of one or more of the + regulators for this PMIC. + +- vdd-bob-supply + Usage: optional (PMI8998 only) + Value type: <phandle> + Definition: BOB regulator parent supply phandle + +=============================== +Second Level Nodes - Regulators +=============================== + +- qcom,always-wait-for-ack + Usage: optional + Value type: <empty> + Definition: Boolean flag which indicates that the application processor + must wait for an ACK or a NACK from RPMh for every request + sent for this regulator including those which are for a + strictly lower power state. + +Other properties defined in Documentation/devicetree/bindings/regulator.txt +may also be used. regulator-initial-mode and regulator-allowed-modes may be +specified for VRM regulators using mode values from +include/dt-bindings/regulator/qcom,rpmh-regulator.h. regulator-allow-bypass +may be specified for BOB type regulators managed via VRM. +regulator-allow-set-load may be specified for LDO type regulators managed via +VRM. + +======== +Examples +======== + +#include <dt-bindings/regulator/qcom,rpmh-regulator.h> + +&apps_rsc { + pm8998-rpmh-regulators { + compatible = "qcom,pm8998-rpmh-regulators"; + qcom,pmic-id = "a"; + + vdd-l7-l12-l14-l15-supply = <&pm8998_s5>; + + smps2 { + regulator-min-microvolt = <1100000>; + regulator-max-microvolt = <1100000>; + }; + + pm8998_s5: smps5 { + regulator-min-microvolt = <1904000>; + regulator-max-microvolt = <2040000>; + }; + + ldo7 { + regulator-min-microvolt = <1800000>; + regulator-max-microvolt = <1800000>; + regulator-initial-mode = <RPMH_REGULATOR_MODE_HPM>; + regulator-allowed-modes = + <RPMH_REGULATOR_MODE_LPM + RPMH_REGULATOR_MODE_HPM>; + regulator-allow-set-load; + }; + + lvs1 { + regulator-min-microvolt = <1800000>; + regulator-max-microvolt = <1800000>; + }; + }; + + pmi8998-rpmh-regulators { + compatible = "qcom,pmi8998-rpmh-regulators"; + qcom,pmic-id = "b"; + + bob { + regulator-min-microvolt = <3312000>; + regulator-max-microvolt = <3600000>; + regulator-allowed-modes = + <RPMH_REGULATOR_MODE_AUTO + RPMH_REGULATOR_MODE_HPM>; + regulator-initial-mode = <RPMH_REGULATOR_MODE_AUTO>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt b/Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt index 4edf3137d9f7..76ead07072b1 100644 --- a/Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt +++ b/Documentation/devicetree/bindings/regulator/rohm,bd71837-regulator.txt @@ -1,13 +1,5 @@ ROHM BD71837 Power Management Integrated Circuit (PMIC) regulator bindings -BD71837MWV is a programmable Power Management -IC (PMIC) for powering single-core, dual-core, and -quad-core SoC’s such as NXP-i.MX 8M. It is optimized -for low BOM cost and compact solution footprint. It -integrates 8 Buck regulators and 7 LDO’s to provide all -the power rails required by the SoC and the commonly -used peripherals. - Required properties: - regulator-name: should be "buck1", ..., "buck8" and "ldo1", ..., "ldo7" diff --git a/Documentation/devicetree/bindings/regulator/uniphier-regulator.txt b/Documentation/devicetree/bindings/regulator/uniphier-regulator.txt new file mode 100644 index 000000000000..c9919f4b92d2 --- /dev/null +++ b/Documentation/devicetree/bindings/regulator/uniphier-regulator.txt @@ -0,0 +1,57 @@ +Socionext UniPhier Regulator Controller + +This describes the devicetree bindings for regulator controller implemented +on Socionext UniPhier SoCs. + +USB3 Controller +--------------- + +This regulator controls VBUS and belongs to USB3 glue layer. Before using +the regulator, it is necessary to control the clocks and resets to enable +this layer. These clocks and resets should be described in each property. + +Required properties: +- compatible: Should be + "socionext,uniphier-pro4-usb3-regulator" - for Pro4 SoC + "socionext,uniphier-pxs2-usb3-regulator" - for PXs2 SoC + "socionext,uniphier-ld20-usb3-regulator" - for LD20 SoC + "socionext,uniphier-pxs3-usb3-regulator" - for PXs3 SoC +- reg: Specifies offset and length of the register set for the device. +- clocks: A list of phandles to the clock gate for USB3 glue layer. + According to the clock-names, appropriate clocks are required. +- clock-names: Should contain + "gio", "link" - for Pro4 SoC + "link" - for others +- resets: A list of phandles to the reset control for USB3 glue layer. + According to the reset-names, appropriate resets are required. +- reset-names: Should contain + "gio", "link" - for Pro4 SoC + "link" - for others + +See Documentation/devicetree/bindings/regulator/regulator.txt +for more details about the regulator properties. + +Example: + + usb-glue@65b00000 { + compatible = "socionext,uniphier-ld20-dwc3-glue", + "simple-mfd"; + #address-cells = <1>; + #size-cells = <1>; + ranges = <0 0x65b00000 0x400>; + + usb_vbus0: regulators@100 { + compatible = "socionext,uniphier-ld20-usb3-regulator"; + reg = <0x100 0x10>; + clock-names = "link"; + clocks = <&sys_clk 14>; + reset-names = "link"; + resets = <&sys_rst 14>; + }; + + phy { + ... + phy-supply = <&usb_vbus0>; + }; + ... + }; diff --git a/Documentation/devicetree/bindings/soc/qcom/rpmh-rsc.txt b/Documentation/devicetree/bindings/soc/qcom/rpmh-rsc.txt new file mode 100644 index 000000000000..9b86d1eff219 --- /dev/null +++ b/Documentation/devicetree/bindings/soc/qcom/rpmh-rsc.txt @@ -0,0 +1,137 @@ +RPMH RSC: +------------ + +Resource Power Manager Hardened (RPMH) is the mechanism for communicating with +the hardened resource accelerators on Qualcomm SoCs. Requests to the resources +can be written to the Trigger Command Set (TCS) registers and using a (addr, +val) pair and triggered. Messages in the TCS are then sent in sequence over an +internal bus. + +The hardware block (Direct Resource Voter or DRV) is a part of the h/w entity +(Resource State Coordinator a.k.a RSC) that can handle multiple sleep and +active/wake resource requests. Multiple such DRVs can exist in a SoC and can +be written to from Linux. The structure of each DRV follows the same template +with a few variations that are captured by the properties here. + +A TCS may be triggered from Linux or triggered by the F/W after all the CPUs +have powered off to facilitate idle power saving. TCS could be classified as - + + ACTIVE /* Triggered by Linux */ + SLEEP /* Triggered by F/W */ + WAKE /* Triggered by F/W */ + CONTROL /* Triggered by F/W */ + +The order in which they are described in the DT, should match the hardware +configuration. + +Requests can be made for the state of a resource, when the subsystem is active +or idle. When all subsystems like Modem, GPU, CPU are idle, the resource state +will be an aggregate of the sleep votes from each of those subsystems. Clients +may request a sleep value for their shared resources in addition to the active +mode requests. + +Properties: + +- compatible: + Usage: required + Value type: <string> + Definition: Should be "qcom,rpmh-rsc". + +- reg: + Usage: required + Value type: <prop-encoded-array> + Definition: The first register specifies the base address of the + DRV(s). The number of DRVs in the dependent on the RSC. + The tcs-offset specifies the start address of the + TCS in the DRVs. + +- reg-names: + Usage: required + Value type: <string> + Definition: Maps the register specified in the reg property. Must be + "drv-0", "drv-1", "drv-2" etc and "tcs-offset". The + +- interrupts: + Usage: required + Value type: <prop-encoded-interrupt> + Definition: The interrupt that trips when a message complete/response + is received for this DRV from the accelerators. + +- qcom,drv-id: + Usage: required + Value type: <u32> + Definition: The id of the DRV in the RSC block that will be used by + this controller. + +- qcom,tcs-config: + Usage: required + Value type: <prop-encoded-array> + Definition: The tuple defining the configuration of TCS. + Must have 2 cells which describe each TCS type. + <type number_of_tcs>. + The order of the TCS must match the hardware + configuration. + - Cell #1 (TCS Type): TCS types to be specified - + ACTIVE_TCS + SLEEP_TCS + WAKE_TCS + CONTROL_TCS + - Cell #2 (Number of TCS): <u32> + +- label: + Usage: optional + Value type: <string> + Definition: Name for the RSC. The name would be used in trace logs. + +Drivers that want to use the RSC to communicate with RPMH must specify their +bindings as child nodes of the RSC controllers they wish to communicate with. + +Example 1: + +For a TCS whose RSC base address is is 0x179C0000 and is at a DRV id of 2, the +register offsets for DRV2 start at 0D00, the register calculations are like +this - +DRV0: 0x179C0000 +DRV2: 0x179C0000 + 0x10000 = 0x179D0000 +DRV2: 0x179C0000 + 0x10000 * 2 = 0x179E0000 +TCS-OFFSET: 0xD00 + + apps_rsc: rsc@179c0000 { + label = "apps_rsc"; + compatible = "qcom,rpmh-rsc"; + reg = <0x179c0000 0x10000>, + <0x179d0000 0x10000>, + <0x179e0000 0x10000>; + reg-names = "drv-0", "drv-1", "drv-2"; + interrupts = <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>, + <GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>, + <GIC_SPI 5 IRQ_TYPE_LEVEL_HIGH>; + qcom,tcs-offset = <0xd00>; + qcom,drv-id = <2>; + qcom,tcs-config = <ACTIVE_TCS 2>, + <SLEEP_TCS 3>, + <WAKE_TCS 3>, + <CONTROL_TCS 1>; + }; + +Example 2: + +For a TCS whose RSC base address is 0xAF20000 and is at DRV id of 0, the +register offsets for DRV0 start at 01C00, the register calculations are like +this - +DRV0: 0xAF20000 +TCS-OFFSET: 0x1C00 + + disp_rsc: rsc@af20000 { + label = "disp_rsc"; + compatible = "qcom,rpmh-rsc"; + reg = <0xaf20000 0x10000>; + reg-names = "drv-0"; + interrupts = <GIC_SPI 129 IRQ_TYPE_LEVEL_HIGH>; + qcom,tcs-offset = <0x1c00>; + qcom,drv-id = <0>; + qcom,tcs-config = <ACTIVE_TCS 0>, + <SLEEP_TCS 1>, + <WAKE_TCS 1>, + <CONTROL_TCS 0>; + }; |