diff options
author | Filipe Manana <fdmanana@suse.com> | 2020-11-18 11:00:17 +0000 |
---|---|---|
committer | David Sterba <dsterba@suse.com> | 2020-12-08 15:54:15 +0100 |
commit | c65ca98f9e687196a840bd8b71d28d32ffe91170 (patch) | |
tree | 110a80f0f2304f351779868ddadefcacb7c3b5f7 | |
parent | c7c01a4a2524b3f130c1821fbaf1677fe8394165 (diff) | |
download | linux-c65ca98f9e687196a840bd8b71d28d32ffe91170.tar.bz2 |
btrfs: unlock path before checking if extent is shared during nocow writeback
When we are attempting to start writeback for an existing extent in NOCOW
mode, at run_delalloc_nocow(), we must check if the extent is shared, and
if it is, fallback to a COW write. However we do such check while still
holding a read lock on the leaf that contains the file extent item, and
that check, the call to btrfs_cross_ref_exist(), can take some time
because:
1) It needs to do a search on the extent tree, which obviously takes some
time, specially if delayed references are being run at the moment, as
we can block when trying to lock currently write locked btree nodes;
2) It needs to check the delayed references for any existing reference
for our data extent, this requires acquiring the delayed references'
spinlock and maybe block on the mutex of a delayed reference head in the
case where there is a delayed reference for our data extent, in the
worst case it makes us release the path on the extent tree and retry
the whole process again (going back to step 1).
There are other operations we do while holding the leaf locked that can
take some significant time as well (specially all together):
* btrfs_extent_readonly() - to check if the block group containing the
extent is currently in RO mode. This requires taking a spinlock and
searching for the block group in a rbtree that can be big on large
filesystems;
* csum_exist_in_range() - to search if there are any checksums in the
csum tree for the extent. Like before, this can take some time if we are
in a filesystem that has both COW and NOCOW files, in which case the
csum tree is not empty;
* btrfs_inc_nocow_writers() - increment the number of nocow writers in the
block group that contains the data extent. Needs to acquire a spinlock
and search for the block group in a rbtree that can be big on large
filesystems.
So just unlock the leaf (release the path) before doing all those checks,
since we do not need it anymore. In case we can not do a NOCOW write for
the extent, due to any of those checks failing, and the writeback range
goes beyond that extents' length, we will do another btree search for the
next file extent item.
The following script that calls dbench was used to measure the impact of
this change on a VM with 8 CPUs, 16Gb of ram, using a raw NVMe device
directly (no intermediary filesystem on the host) and using a non-debug
kernel (default configuration on Debian):
$ cat test-dbench.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-m single -d single"
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT -t 300 64
umount $MNT
Before this change:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9326331 0.317 399.957
Close 6851198 0.002 6.402
Rename 394894 2.621 402.819
Unlink 1883131 0.931 398.082
Deltree 256 19.160 303.580
Mkdir 128 0.003 0.016
Qpathinfo 8452314 0.068 116.133
Qfileinfo 1481921 0.001 5.081
Qfsinfo 1549963 0.002 4.444
Sfileinfo 759679 0.084 17.079
Find 3268168 0.396 118.196
WriteX 4653310 0.056 110.993
ReadX 14618818 0.005 23.314
LockX 30364 0.003 0.497
UnlockX 30364 0.002 1.720
Flush 653619 16.954 569.299
Throughput 966.651 MB/sec 64 clients 64 procs max_latency=569.377 ms
After this change:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 9710433 0.302 232.449
Close 7132948 0.002 11.496
Rename 411144 2.452 131.805
Unlink 1960961 0.893 230.383
Deltree 256 14.858 198.646
Mkdir 128 0.002 0.005
Qpathinfo 8800890 0.066 111.588
Qfileinfo 1542556 0.001 3.852
Qfsinfo 1613835 0.002 5.483
Sfileinfo 790871 0.081 19.492
Find 3402743 0.386 120.185
WriteX 4842918 0.054 179.312
ReadX 15220407 0.005 32.435
LockX 31612 0.003 1.533
UnlockX 31612 0.002 1.047
Flush 680567 16.320 463.323
Throughput 1016.59 MB/sec 64 clients 64 procs max_latency=463.327 ms
+5.0% throughput, -20.5% max latency
Also, the following test using fio was run:
$ cat test-fio.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 4 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
BLOCK_SIZE=$4
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=randwrite
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=$BLOCK_SIZE
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo
echo "Using fio config:"
echo
cat /tmp/fio-job.ini
echo
echo "mount options: $MOUNT_OPTIONS"
echo
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo "Creating nodatacow files before fio runs..."
for ((i = 0; i < $NUM_JOBS; i++)); do
xfs_io -f -c "pwrite -b 128M 0 $FILE_SIZE" "$MNT/writers.$i.0"
done
sync
fio /tmp/fio-job.ini
umount $MNT
Before this change:
$ ./test-fio.sh 16 512M 2 4K
(...)
WRITE: bw=28.3MiB/s (29.6MB/s), 28.3MiB/s-28.3MiB/s (29.6MB/s-29.6MB/s), io=8192MiB (8590MB), run=289800-289800msec
After this change:
$ ./test-fio.sh 16 512M 2 4K
(...)
WRITE: bw=31.2MiB/s (32.7MB/s), 31.2MiB/s-31.2MiB/s (32.7MB/s-32.7MB/s), io=8192MiB (8590MB), run=262845-262845msec
+9.7% throughput, -9.8% runtime
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-rw-r--r-- | fs/btrfs/inode.c | 13 |
1 files changed, 11 insertions, 2 deletions
diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c index abc0fd162f6c..dda181098b4c 100644 --- a/fs/btrfs/inode.c +++ b/fs/btrfs/inode.c @@ -1649,6 +1649,15 @@ next_slot: goto out_check; if (extent_type == BTRFS_FILE_EXTENT_REG && !force) goto out_check; + + /* + * The following checks can be expensive, as they need to + * take other locks and do btree or rbtree searches, so + * release the path to avoid blocking other tasks for too + * long. + */ + btrfs_release_path(path); + /* If extent is RO, we must COW it */ if (btrfs_extent_readonly(fs_info, disk_bytenr)) goto out_check; @@ -1724,12 +1733,12 @@ out_check: cur_offset = extent_end; if (cur_offset > end) break; + if (!path->nodes[0]) + continue; path->slots[0]++; goto next_slot; } - btrfs_release_path(path); - /* * COW range from cow_start to found_key.offset - 1. As the key * will contain the beginning of the first extent that can be |